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 2 

ABSTRACT  1 

Despite the global importance in ecological processes, the Amazon rainforest has been subjected 2 

to high rates of deforestation, mostly for pasturelands, over the last few decades. In this study, 3 

we used a combination of deep shotgun metagenomics and a machine learning approach to 4 

compare physiological strategies of microbial communities between contrasting forest and 5 

pasture soils. We showed that microbial communities (bacteria, archaea and viruses), and the 6 

composition of protein-coding genes are distinct in each ecosystem. The diversities of these 7 

metagenomic datasets are strongly correlated, indicating that the protein-coding genes found in 8 

any given sample of these soil types are predictable from their taxonomic lineages. Shifts in 9 

metagenome profiles reflected potential physiological differences caused by forest-to-pasture 10 

conversion with alterations in gene abundances related to carbohydrate and energy metabolisms. 11 

These variations in these gene contents are associated with several soil factors including C/N, 12 

temperature and H++Al3+ (exchangeable acidity). These data underscore that microbial 13 

community taxa and protein-coding genes co-vary. Differences in gene abundances for 14 

carbohydrate utilization, energy, amino acid, and xenobiotic metabolisms indicate alterations of 15 

physiological strategy with forest-to-pasture conversion, with potential consequences to C and N 16 

cycles. Our analysis also indicated that soil virome was altered and shifts in the viral community 17 

provide insights into increased health risks to human and animal populations. 18 

 19 

Keywords: Forest, Shotgun metagenomics, Soil virome, Pasture, KEGG pathways, Nitrogen 20 

cycle, Methane cycle 21 

 22 
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 3 

IMPORTANCE  1 

 In the Amazon, forest-to-pasture conversion has a strong negative impact on biological 2 

composition that results in alteration of important ecosystem processes. As the most 3 

comprehensive survey known to date, this study with shotgun metagenomics approach 4 

demonstrates predictive understanding of how an anthropogenic activity shapes microbial 5 

taxonomy and functions across ecosystems, and the link between them. We then link the 6 

microbiomes with each soil type to explore the adaptation mechanisms and ecological traits of 7 

microbial communities in their ecosystems. Among these, carbon metabolism and energy harvest 8 

strategies mostly relate to specific environmental challenges of microbial communities, 9 

providing insights to understand the mechanisms of ecologically relevant metabolic processes. 10 

Despite their critical roles in biogeochemical processes, viruses in terrestrial ecosystem remains 11 

understudied. Thus, the inclusion of viral community in this study would shed new lights on their 12 

roles in microbial functional traits, and provide novel hypotheses in microbial ecology of 13 

terrestrial ecosystem. 14 

 15 

INTRODUCTION 16 

The Amazon is the largest continuous rainforest on Earth and provides essential 17 

ecosystem services at regional and global scales. It harbors the largest collection of plants and 18 

animal species in the world (1) and balances the flux of atmospheric gases (2). Despite these 19 

known benefits, forest clearing has proceeded at an alarming rate over the last few decades. The 20 

process of deforestation and land use change concurrently alters the biological and biochemical 21 

compositions of the soil (3–6), which could have important consequences to the associated 22 

ecosystem processes. 23 
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 4 

Land use change is predicted to be the most important factor in altering biodiversity in 1 

tropical areas for the twenty first century (7). Ecologists have long studied the contribution of 2 

plant and animal communities to ecosystem functions in tropical forests (8–10) and the impact of 3 

deforestation on these communities (3, 4). In contrast, microbial ecologists have just started to 4 

explore similar sets of questions in the Amazon, showing that ecosystem conversion alters 5 

bacterial (5, 11–13), archaeal (14–16) and fungal (17) community composition in various 6 

Amazonian land use types. While some studies showed that plant diversity increases overall 7 

microbial diversity (18, 19) and activity in soil (20), others demonstrated the consequences of 8 

deforestation were restricted to specific functional groups of microbes or specific protein-coding 9 

genes such as those associated with C and N cycles (14, 21–26). The above studies, however, 10 

largely relied on either 16S rRNA or a single functional gene as markers of microbial 11 

communities. Although, metagenomics approach has been used in few recent studies to examine 12 

the effect at two and four months (27) and of forest-to-agriculture conversion (28) following 13 

deforestation. However, these metagenomics studies did not either evaluate the long-term impact 14 

of deforestation or functional capacities of the most common land use type following 15 

deforestation (i.e., pasture) on ecological processes carried out by soil microorganisms.  16 

In addition, viruses remain neglected in Amazon soils even though they are the most 17 

abundant biological entity, with an estimated 1031 on the planet (29). Viruses not only serve as 18 

the largest reservoir of genetic material (30–32), but also play an important role in mediating 19 

lateral gene transfer (33) and controlling microbial populations (34). Despite this, very few 20 

empirical studies have been conducted on soil viromes (Graham et al. 2019; Williamson et al. 21 

2017), and none in the context of deforestation in the Amazon rainforest. 22 

To examine the effect of forest-to-pasture conversion, the most common land use type 23 
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 5 

following deforestation in the Amazon rainforest, we collected soils samples from pristine forest 1 

and 38 years old pastureland, and performed deep sequencing with whole genome shotgun 2 

approach, aiming to: (i) estimate the composition of microorganisms and protein-coding genes, 3 

and their relationships in primary forest and established pasture; (ii) identify differential 4 

abundances of key protein-coding genes involved in ecologically relevant biochemical processes; 5 

and (iii) examine the Amazon soil virome and gain a comprehensive understanding of the 6 

alterations happening with deforestation.  7 

 8 

RESULTS 9 

Metagenome profiles. We obtained a mean of about 636 million (±12%) reads per sample, 10 

totaling 6.4 billion paired-end reads with an average length of 171 bp. Following quality filtering 11 

of metagenomes through MG-RAST (version 3.3.6), the sequence reads were mapped to the 12 

KEGG (Vol. 36) and RefSeq (Vol. 37) databases, where each read was annotated according to 13 

the KEGG Orthology groups (KOs) and species (bacteria, archaea and viruses) associated with 14 

the identified alignments. While the vast majority of the sequence reads (83.7%) passed the 15 

quality control by MG-RAST, only 13.4% had protein-coding (KOs) and taxonomic annotations. 16 

From KO sequencing reads ranging 60,373,709-76,838,373; taxonomic reads of bacteria ranging 17 

783,394-1,143,853, archaea ranging 20,661-51,138; and viral reads ranging 18,307-32,903, we 18 

obtained a total number of unique 5,607 KO genes; 23,949 bacterial, 706 archaeal, and 1,774 19 

viral taxa at species level. Before downstream analyses, all samples were rarefied to their lowest 20 

sequencing depth to bring them to equal values in order to remove sequencing effort bias. The 21 

rarefaction plots showed that diversity levels of these metagenomic datasets tend to saturate, 22 

suitable for a comprehensive analysis of the microbial communities and their physiological 23 
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 6 

potentials in both land use types (Fig. SF1). 1 

Impact of land use change on bacterial and archaeal communities. We observed substantial 2 

variation of major bacterial and archaeal taxa between forest and pasture soils. With over 26% 3 

[±0.82%; standard error of mean (S.E.M.)] in forest and 19% (±0.22%; S.E.M.) in pasture (P < 4 

0.001), Alphaproteobacteria was the dominant bacterial class in both ecosystems and showed the 5 

largest variation in response to forest-to-pasture conversion (Fig. SF2A). Other major bacterial 6 

groups that differed significantly between forest and pasture (P < 0.001) include: Actinobacteria 7 

and Firmicutes, which increased from 13.1% (0.21%; S.E.M.) to 16.65% (0.41%; S.E.M.) and 8 

11.39% (0.52%; S.E.M.) to 14.4% (0.17%; S.E.M.), respectively. Euryarchaeota and 9 

Thaumarchaeota, were the two most differentially abundant archaeal phyla (P < 0.001), where 10 

the former increased from 39.3% (0.59%; S.E.M.) to 55.48% (0.52%; S.E.M.), and latter 11 

decreased from 27.41% (0.47%; S.E.M.) to 7.73% (0.72%; S.E.M.) following deforestation 12 

(Fig. SF2B). We also identified differentially abundant bacterial (Table ST1A) and archaeal 13 

(Table ST1B) species in each ecosystem. Using criteria set by DESeq2 and Random Forest 14 

methods in this study, we identified 131 bacterial species that were enriched in forest soils, and 15 

189 species that were enriched in pasture soils. Bradyrhizobium was the most dominant bacterial 16 

genus in the forest soils, whereas Bacillus and Arthrobacter dominated pasture soils. With the 17 

same criteria, 101 archaeal species were estimated to be differentially abundant in forest, where 18 

an unclassified crenarchaeotal genus was the most dominant. On the other hand, pasture soils had 19 

51 species that were differentially abundant with an unclassified euryarchaeal genus being the 20 

most dominant.  21 

 22 
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 7 

Diversity patterns of taxonomic lineages and protein-coding genes. Forest-to-pasture 1 

conversion increased alpha [P < 0.01, (Fig. 1A)] but decreased beta [P < 0.05 (Fig. 1B)] 2 

diversities of bacterial species. While archaeal diversity did not follow a similar alpha diversity 3 

pattern (Fig. 1C), beta diversity was statistically different between forest and pasture [P < 0.05, 4 

(Fig. 1D)]. On the other hand, diversities of KO genes resembled those of bacteria [alpha: P < 5 

0.05, (Fig. 1E), and beta: P < 0.01, (Fig. 1F)]. We then asked whether the above bacteria and 6 

archaea diversity results co-varied with protein-coding genes diversity values. In this analysis, 7 

we used the principal coordinate loadings of the first axis (PCo1), which explained the highest 8 

variation in the metagenome compositions. Our data showed strong compositional similarities of 9 

KO gene profiles with bacterial [R2 = 0.95, P < 0.05 (Fig. 2A)] and archaeal [R2 = 0.93, P < 0.05 10 

(Fig. 2B)] species profiles.  11 

 12 

Impact of land use change on major functional characteristics. The ordination plots based on 13 

principal coordinate analysis (PCoA) showed that the taxonomic composition in the forest soil 14 

clustered apart from that in the pasture [ANOSIM: R = 0.74, P = 0.007 and R = 0.99, P = 0.006, 15 

respectively (Fig. 2C and 2D)]. Next, we fit KEGG level 2 functions as vectors onto the 16 

ordination and several functional attributes were significantly associated with the bacterial PCo1 17 

(28.1%) across different soil samples (Fig. 2C). Positive correlations of PCo1 with energy 18 

metabolism (r2 = 0.92, P < 0.001), cell growth and death (r2 = 0.98, P < 0.001), xenobiotics 19 

biodegradation and metabolism (r2 = 0.96, P < 0.001), and metabolism of other amino acids (r2 = 20 

0.96, P < 0.01), as indicated by the direction of the arrows, demonstrated that increasing 21 

gradients of these functions were strongly associated with forest samples, whereas pasture 22 

samples were located at opposite ends of these gradients. Similarly, pasture sites had increasing 23 
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 8 

gradients of carbohydrate metabolism (r2 = 0.86, P < 0.01), cell motility (r2 = 0.89, P < 0.001), 1 

metabolism of terpenoids and polyketides (r2 = 0.58, P < 0.05), nucleotide (r2 = 0.67, P < 0.05), 2 

cell communications (r2 = 0.71, P < 0.05) and biosynthesis of other secondary metabolites (r2 = 3 

0.91, P < 0.01), whereas forest sites were at decreasing gradient of them. Most of these 4 

functional traits were also estimated to be associated with the archaeal species (Fig. 2D), where 5 

strength and direction of associations were alike. Similar trends were also observed when 6 

performing a comparison for relative abundances of functional categories at KEGG level 2 7 

between land use types (Fig. SF3). 8 

 9 

Differential abundance of protein-coding genes and metabolic pathways. Next, we focused 10 

on determining what metabolic pathways (KEGG level 3) and associated protein-coding genes 11 

(KEGG level 4) were responsible for the disparities observed in major functional categories 12 

(KEGG level 2) in relation to land use change. A comparative analysis identified 935 KO genes 13 

showing large differences between forest and pasture metagenomes, of which 541 belong to 14 

KEGG Enzyme Commission (EC) categories. A complete list of KO genes with log2FC values 15 

and the P-values of Wald tests is provided in Table ST2. Our analysis showed that the major 16 

differences of forest and pasture metagenomes were associated with genes involved in 17 

carbohydrate, energy, and amino acid metabolisms and xenobiotic degradation, which are 18 

functionally connected to other pathways (Fig. 3).  19 

Carbohydrate metabolism - Pasture soil samples were estimated to contain elevated 20 

numbers of KEGG EC genes associated with the metabolism of starch, sucrose, and galactose 21 

(Table ST2). In addition, KO genes involved in the transport of mono- and di-saccharides were 22 

far more abundant in pasture, of which log2FC values ranged from -0.39 to -3.01. Unlike pasture 23 
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 9 

metagenomes, which had elevated counts of glycolysis-specific genes [e.g., ADP-dependent 1 

phosphofructokinase/glucokinase (EC:2.7.1.146, EC:2.7.1.147)], forest metagenomes had higher 2 

counts of genes specific for gluconeogenesis [e.g., fructose 1,6-bisphosphate phosphatase 3 

(EC:3.1.3.11); Fig. 4). In addition, genes associated with the pentose phosphate pathway (PPP) 4 

and the conversion of oxaloacetate to phosphoenolpyruvate [PEP; phosphoenolpyruvate 5 

carboxykinase (EC4.1.1.49)] had higher relative abundances in the forest metagenome samples. 6 

Furthermore, we observed considerable variation between forest and pasture metagenomes in 7 

frequencies of genes that are involved in succeeding metabolism of sugars. For example, genes 8 

associated with the tricarboxylic acid (TCA) cycle were estimated to be higher in pasture soils 9 

(Fig. 4). In addition, pasture soils had higher abundances of genes affiliated with fermentation of 10 

acetate (e.g., acetyl-CoA hydrolase (EC:3.1.2.1), and butanoate [e.g., butyrate kinase 11 

(EC:2.7.2.7)], whereas genes associated with fermentation of propanoate [propionyl-CoA 12 

synthetase (EC:6.2.1.17)], and lactate [L-lactate dehydrogenase, cytochrome (EC:1.1.2.3)] were 13 

elevated in forest soils.  14 

Energy metabolism - The most prominent differences observed were related to the genes 15 

associated with nitrogen and methane metabolisms (Fig. 5A). Forest metagenomes had an 16 

overrepresentation of EC genes involved in nitrification [nitronate monooxygenase 17 

(EC:1.13.12.16); nitrate reductase 2 alpha subunit (EC1.7.99.4)], denitrification [nitrite 18 

reductase, NO-forming (EC:1.7.2.1)] and assimilatory nitrate reduction [nitrate reductase, 19 

NADH (EC:1.7.7.1)] (Fig. 5A). Conversely, the estimated representation of genes involved in 20 

nitrogen fixation was higher in the pasture metagenomes [nitrogenase molybdenum-iron protein 21 

alpha, and beta chains (EC:1.18.6.1) with log2FC values of -5.76 and -5.92, respectively]. In 22 

methane metabolism, several genes involved in methanogenesis were enriched in pasture 23 
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metagenomes [e.g., carbon monoxide dehydrogenase (EC:1.2.7.4); acetyl-CoA 1 

decarbonylase/synthase complex subunit delta (EC:2.1.1.245); tetrahydromethanopterin S-2 

methyltransferase (EC:2.1.1.86); and methyl-coenzyme M reductase gamma subunit 3 

(EC:2.8.4.1)]. Other genes involved in methanotrophy were enriched in the forest [methylene-4 

tetrahydromethanopterin dehydrogenase (EC:1.5.1.-); formylmethanofuran dehydrogenase 5 

subunit A (EC:1.2.7.12)] (Fig. 5B and Table ST2).  6 

Amino acid metabolism - The overall abundance of genes involved in amino acid 7 

metabolism was not statistically different between forest and pasture. However, we observed 8 

overrepresentation of certain genes in forest metagenomes (P < 0.05), especially those encoding 9 

for enzymes involved in key steps of oxaloacetate-derivative amino acids such as methionine, 10 

threonine (Fig. SF4A), PPP-derivative amino acids including histidine (Fig. SF4B), and 11 

pyruvate derivative branched-chain amino acids (valine, leucine and isoleucine) (Fig. SF4C). In 12 

addition, degradation genes for branched-chain amino acids were also higher in forest 13 

metagenomes (Table ST2). As a contrast, pasture metagenomes were associated with the 14 

metabolism of alpha-ketoglutarate, another TCA cycle intermediate (Fig. 4). In addition, there 15 

was increased gene abundance related to the biosynthesis of arginine from glutamate, proline 16 

from arginine (Fig. SF4D).  17 

Xenobiotics biodegradation and metabolism - We determined higher gene sequence 18 

counts (P < 0.05) in forest metagenomes associated with the degradation of diverse aromatic 19 

compounds including benzoate, chlorocyclohexane and chlorobenzene, dioxin, nitrotoluene, and 20 

polycyclic aromatic hydrocarbon (Fig. SF5). These pathways seem to be linked and contribute to 21 

the production of the pyruvate and oxaloacetate that might act to support the TCA cycle and 22 
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replenish its intermediates, a mechanism known as anaplerosis, which are used in the 1 

biosynthesis of essential compounds such as amino acids.  2 

Others - Pastures had a higher abundance of several genes affiliated with chemotaxis, 3 

flagellar assembly, and regulation of the actin cytoskeleton (Table ST2). In addition, we 4 

estimated several differentially abundant genes between forest and pasture soils that were 5 

associated with plant-microbe and microbe-microbe interactions. For example, genes associated 6 

with biosynthesis of other secondary metabolites such as of benzoxazinoid, which are plant 7 

secondary metabolites, typically from grass species, and a beta-lactam resistance gene observed 8 

to be higher in pasture metagenomes. In contrast, a streptomycin synthesis gene encoding for a 9 

streptomycin-6-phosphatase (EC:3.1.3.39) was higher in forest metagenomes. Within the two-10 

component system pathway, the abundance of genes for multidrug transport proteins (K07788, 11 

K07789) was greater in forest, while bacitracin resistance response regulator proteins (K11629, 12 

K11630) were estimated to be higher in pasture metagenomes. Several genes (K13448, K13429, 13 

K13462, K13428, K13447 and K13424) that are known to be associated with plant-pathogen 14 

interaction pathways were more abundant in pasture metagenomes, while none were detected in 15 

forest metagenomes. 16 

Relationship between the KO gene composition and soil physicochemical properties. To 17 

explore potential drivers of community genomic composition, we performed an environmental 18 

fitting of 22 soil variables onto an ordination plot via PCoA. KO genes clustered by land use 19 

types [(ANOSIM: R = 0.98, P = 0.007 (Fig. SF6)]. Negative correlations of PCo1 with 20 

Carbon/Nitrogen (C/N) (r2=0.95, P < 0.001), temperature (r2=0.97, P < 0.001), base saturation 21 

(V; r2=0.78, P < 0.01), and Fe (r2=0.72, P < 0.01) demonstrate that pasture samples have 22 

increasing gradients of these factors, whilst forest samples are at opposite ends of these 23 
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gradients. Similarly, forest samples have increasing gradients of exchangeable acidity (H++Al3+), 1 

Sulfur (S), and Boron (B), whereas pasture samples are opposite to them. 2 

 3 

Impact of land use change on viral composition and diversity. While evaluating the impact of 4 

land use change to genomic content of microbial communities, we observed a large number of 5 

reads associated with viral sequences and asked whether land use change impacted the soil 6 

virome. We observed that alpha diversity of viral community is higher in pasture compared to 7 

forest (Fig. 6A), with significant compositional differences in these two contrasting ecosystems 8 

(ANOSIM: R = 0.67, P = 0.008; Fig. 6B). We compared the viral populations at the family level 9 

between the two land use types and estimated that Siphoviridae, Podoviridae, an unclassified 10 

family, and Myoviridae were most abundant groups, collectively comprised over 80% and 90% 11 

of the sequences found in pasture and forest soils, respectively (Fig. 6C). While the relative 12 

abundance of sequences for the above families did not differ between land uses, we observed 13 

significant differences for several viral families, such as Bicaudaviridae, Microviridae, 14 

Caulimoviridae, Tectiviridae and Flaviviridae. We identified 25 viral species that were enriched 15 

in forest soils, and 67 species that were enriched in pasture soils (Table ST3). In addition, we 16 

observed significant compositional associations of viral species with bacteria [(R2=0.84, P < 17 

0.05], archaea [R2=0.93, P < 0.05], and KO genes [R2=0.86, P < 0.05] profiles (Figs.S7A, S7B, 18 

and S7C). 19 

 20 

 21 

DISCUSSION 22 

By applying a multifactorial strategy of deep sequencing (mean 636 million reads per 23 

sample) and a machine learning approach, we compared taxonomic differences and generated 24 
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metabolic maps with differential representation of genes involved in the cycling of nutrients and 1 

greenhouse gases in two land use types in the Amazon basin: a pristine forest and a 38 years old 2 

pasture. Importantly, we reported diversity and compositional differences of viral communities 3 

in forest and pasture, which remained unstudied for these tropical ecosystems. The alteration of 4 

bacterial and archaeal compositions and diversities following deforestation, which we observed 5 

in this study,  mirrors previous observations (5, 14–16). These microbial communities are 6 

compositionally in strong concordance with protein-coding (KO) genes, suggesting that soil 7 

samples share many of these species, with associated KO genes and metabolic processes. In 8 

addition, our study demonstrated that ecosystem conversion results in increased homogenization 9 

of protein coding genes (KO), which may be explained by the reduced substrate heterogeneity in 10 

the pasture dominated with only two grass species. These shifts in biochemical pathways imply 11 

changes in the microbial physiological strategies. Importantly, these differences in metagenomes 12 

between forest and pasture are strongly associated with variation of energy and carbohydrate 13 

metabolisms; two processes of importance to carbon and nitrogen cycling. While most of the 14 

major functional characteristics are maintained in both ecosystems, relative abundances of many 15 

specific genes in these two processes substantially differed, indicating the potential for 16 

differences in physiological status and nutrient cycling between forest and pasture. 17 

Plants are major contributors of organic carbon to soils through rhizodeposition, and 18 

microbial communities utilize these carbon compounds (40). The metagenomes of pasture and 19 

forest show signatures of resulting resource differences. The pasture soil is rich in cellulosic litter 20 

from grasses, and one of the two grass species that dominates in pasture is Urochloa brizantha, 21 

which stores nutrients including starch materials in their rhizomes (41). Along with animal dung 22 

in pastureland, these carbon compounds potentially represent rich sources of fermentable 23 
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carbohydrates. In the pasture, the increased occurrence of genes involved in starch and sucrose 1 

metabolism, and the transport of mono- and di-saccharides suggest that microbes may rely more 2 

on exogenous saccharides than other substrates. This may explain why pasture metagenomes 3 

have elevated counts of genes for glycolysis, TCA cycle and acetate fermentation. In 4 

comparison, the forest metagenome was enriched in genes involved in gluconeogenesis. Higher 5 

abundance of pentose phosphate pathway (PPP) genes in forest metagenomes may provide 6 

flexibility to glycolysis/gluconeogenesis by funneling glyceraldehyde-3-P, an intermediate of the 7 

PPP, into these pathways. Here, we report that forest metagenomes had higher biosynthetic 8 

capacity of essential amino acids of oxaloacetate, pyruvate and PPP families, which potentially 9 

favors the growth of the bacterivorous and detritivorous animal component of the soil ecosystem. 10 

On the other hand, higher gene abundances for amino acid biosynthesis in the α-ketoglutarate 11 

family were demonstrated in microbial communities of pastureland. An amino acid of this 12 

family, glutamate, is the precursor for chlorophyll synthesis (42), which may support the 13 

increased capacity for photosynthesis and carbon fixation of microbial communities in 14 

pastureland. This is in agreement with previous findings of increased microbial biomass for the 15 

same pasture evaluated in our study (43). 16 

In contrast to the pasture, the forest soil is a more oligotrophic environment, and along 17 

with a lower concentration of substrates, there is also a higher diversity of C compounds due to 18 

the complex secondary chemistry of a myriad of forest vegetation (44, 45). These complex 19 

compounds are degraded by soil microorganisms into a few central aromatic intermediates (e.g., 20 

benzoate, catechol, etc.) through peripheral catabolic pathways that are subsequently channeled 21 

into the β-ketoadipate pathway by ortho ring cleavage (46). Among others, nitrate-respiring 22 

bacteria, dominated by pseudomonads, cleave the benzene-ring of these aromatic compounds 23 
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(47–50), which leads to the generation of TCA cycle intermediates. Here, it is noteworthy that 1 

Pseudomonas spp. and genes related to the degradation of these compounds are mostly enriched 2 

in forest soils, suggesting the maintenance of TCA cycle by replacing oxaloacetate and pyruvate 3 

that are removed for the biosynthesis of glucose and amino acids. The overrepresentation of 4 

genes associated with glyoxylate metabolism in forest may also contribute to carbon anaplerosis 5 

by supplying malate and its subsequent conversion to oxaloacetate. Together, the carbohydrate 6 

metabolic processes in forest microbial communities not only would maintain a better trade-off 7 

between glycolysis and gluconeogenesis but also provide metabolic plasticity for energy harvest 8 

and anaplerosis, a strategy that may be critical for the oligotrophic forest soil environment.   9 

Prominent differences imposed by ecosystem conversion in the Amazon involve 10 

pathways related to energy metabolism and observed differences involve metabolisms of 11 

methane and nitrogen, which support previous observations (6, 15, 16, 25, 27, 51). Our data 12 

demonstrate that Euryarchaeota, where known methanogens belong (25), and several known KO 13 

genes associated with methanogenesis are elevated following deforestation. Increased capacity of 14 

glycolysis and acetate fermentation may fuel the methanogenesis in pasture, which subsequently 15 

may increase the efficiency of fermentation by scavenging acetate and producing carbon dioxide. 16 

In contrast, methane-consuming microbial taxa and associated genes involved in this pathway 17 

have lower abundances in the pasture, particularly due to the loss of proteobacterial 18 

methanotrophs including Methylomonas, Methylobacterium and Methylocella. In addition to 19 

differences in methane cycling, our results highlighted differences in pathways of nitrogen 20 

cycling. Higher gene content to nitrify nitroalkanes in the forest suggests that nitroalkanes may 21 

serve as sole sources of nitrogen, carbon, and energy in its microbial communities (52, 53). Our 22 

results also suggest that nitrifying archaeal phylum Thaumarchaeota and several species of it are 23 
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more frequently distributed in forest soils, which was also shown in our previous study using 1 

functional marker genes (24). In addition, we observed higher abundance of several species of 2 

Alphaproteobacteria in forest soils known to be associated with steps of the nitrogen cycle, such 3 

as Nitrobacter sp. LIP in nitrification, and Rhodoplanes sp. HMD01017 in denitrification. Higher 4 

capacity for energy-yielding denitrification in forest soils and other oligotrophic habitats leads to 5 

the increased production of nitrous oxide and nitrogen gases (Tiedje, 1988), which is evident in 6 

the Amazon (55).  7 

Soil physicochemical properties not only impact on microbial composition, but also the 8 

rate of biogeochemical processes (57, 58). Previous reports suggest that temperature is a key 9 

factor that regulates many terrestrial processes including soil respiration (59), nitrification (60), 10 

denitrification (61) and methane emission (62). In addition, the C/N ratio has substantial impacts 11 

on nitrogen mineralization and nitrification rates (63–65), and therefore on denitrification. 12 

Deforestation by slash-and-burn processes causes a variety of changes in chemical factors (i.e., 13 

nutrients) that depend on land use type and depth, time since conversion, soil treatment and 14 

amendments, and subsequent land use (66). To the extent that available nitrogen declines, there 15 

is likely selective pressure on soil microbes to scavenge atmospheric nitrogen. This probably 16 

explains the higher capacity of pasture for nitrogen fixation, consistent with previous works 17 

showing increased abundance of the nifH gene (22, 67). The higher C/N ratio and the lability of 18 

carbon sources, evidenced by overrepresentation of genes associated with starch and sucrose 19 

metabolism in the pasture, are suggestive of reduced capacity for nitrification and therefore 20 

denitrification. On the other hand, a meta-analysis by Rustad et al. (2001) reported that warming 21 

in the range 0.3–6.0◦C increased soil respiration rates by 20% and net N mineralization rates by 22 

46%. Temperature induced increased respiration would lead to a depletion of oxygen in the 23 
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terrestrial ecosystem, which subsequently would trigger anaerobic energy-yielding processes 1 

such as fermentation, denitrification and methanogenesis. This observation has important 2 

implications. The temperature difference between our study sites (24.86◦C in forest versus 3 

27.14◦C in pasture) (15) is similar to what is predicted by 2050 in the Amazon (68). While both 4 

soils are sources of greenhouse gases (nitrous oxide, nitric oxide, CO2, CH4), increasing 5 

temperature have higher potential for the generation of these greenhouse gases from both 6 

ecosystems. Therefore, our study in two adjacent ecosystems along temperature gradient 7 

provides an opportunity to explore the long-term impact of climate-driven increase in 8 

temperature on ecosystem processes in the Amazon soils. 9 

Finally, our deep sequencing approach allowed us to obtain a glimpse of the Amazon 10 

virome. Viruses are reservoirs of many protein-coding genes of prokaryotic hosts (69), with the 11 

potential to influence nutrient cycling, and the adaptation and evolution. For instance, 12 

Pseudomonas phage PAJU2, a lysogenic phage (70), was estimated to be the most abundant 13 

virus in forest soil and its relative abundance is about 8-fold higher compared to the pasture soils, 14 

suggesting its important role in maintaining the population size and activity of ecologically 15 

important Pseudomonas hosts in forest soils. Importantly, the enormous microbial and viral 16 

deposits in the forest soil may have novel infectious strains or virulent strains of known 17 

environmental microorganisms. Clearing the pristine forest may pose a potential threat to human 18 

and animal health. Following the arrival of Europeans in the New World, millions of Native 19 

Americans in or near the Amazon basin were killed due to outbreaks of deadly infections, 20 

notably smallpox. Our results showed that Molluscum contagiosum virus and Vaccinia virus, two 21 

members of Poxviridae family are overrepresented in forest soils. Such soils could preserve 22 

cowpox, and even the otherwise extinct smallpox virus. Increased incidences of poxvirus 23 
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infections in cattle and humans have been reported near the Amazon Region of western 1 

Colombia (71) and throughout Brazil (72), coinciding with the increased rate of deforestation in 2 

the Amazon. Wolbachia phage WO is also overrepresented in forest soils. As one of most 3 

widespread reproductive parasites in the biosphere (73), Wolbachia influences the reproductive 4 

capacity of hosts, including mosquitos, and lytic WO phage is associated with the reduction of 5 

Wolbachia densities and reproductive parasitism (74). For this and other reasons (e.g., increased 6 

puddle formation due to tree stump removal and cattle trampling), forest-to-pasture conversion 7 

may drive mosquito-borne disease events, including the recent zika outbreak, and continuous 8 

malaria threats in Brazil and Peru near the deforested areas (75). Increased malaria also followed 9 

deforestation in Malaysian Borneo (76). Knowledge of the disease ecology of deforestation is 10 

still rudimentary, underscoring the need for increased surveillance of potential disease outbreaks 11 

near deforested regions.  12 

 13 

Caveats. We acknowledge caveats for our study. First, the trade-off between deep sequencing 14 

and low sample size prevented a complete exploration of spatial variability in metagenome 15 

profiles. However, previous sequencing and empirical studies covering broader spatial ranges in 16 

the pristine Amazon and deforested areas are in line with the current observations, suggesting 17 

that higher sample sizes will further consolidate the observed differences between forest and 18 

pasture. Second, while a vast majority of the sequence reads passed the quality filtering, only 19 

13.4% of the sequence reads were annotated, a percentage similar to other soil shotgun 20 

metagenomic studies (77, 78). The biology of a vast majority of microbial species remains 21 

unknown, limiting full annotation potential genes in metagenomes regardless of database used. 22 

Third, metagenomes analyzed in the study provide a snapshot of the functional characteristics of 23 

microbial communities at a given time, which may not illuminate important phenomena such as 24 
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disturbance, recovery, and succession. Fourth, there is a lack of well-curated databases and well-1 

established methods for annotating terrestrial virome at species level. In general, viral sequences 2 

are poorly represented at species level in public databases. There are some platforms that are 3 

designed and optimized for the detection of viruses of specific kinds such as VirSorter (79) and 4 

vConTACT (80) for bacterial and archaeal viruses, and ViromeScan (81) for eukaryotic and 5 

human viruses. While there are methods that are recently developed for assembled (VirMap) (82) 6 

and unassembled (FastViromeExplorer) (83)  metagenomic sequences, none of them has been 7 

validated for soil virome. Therefore, in order to be consistent with the algorithm and database 8 

used for annotation of prokaryotic taxonomy, we also used RefSeq database to annotate viral 9 

taxonomy through the MG-RAST method that provides species level resolution.  10 

 11 

 12 

 13 

 14 

Materials and Methods 15 

Site description and sampling. The study was performed at the Amazon Rainforest Microbial 16 

Observatory (ARMO), located at Fazenda Nova Vida in the State of Rondonia, Brazil 17 

(10°10′18.71″S, 62°47′15.67″W) (5). This location has one of the highest rates of deforestation 18 

in the Brazilian Amazon (84), representing the last four decades of man-made ecosystem 19 

alterations occurring in this region. Detailed information about the vegetation and soil properties 20 

of our study sites have been described elsewhere (6, 9). The primary forest is a typical wet 21 

“Terra Firme” forest with the majority of the trees yet to be identified, while the pasture was 22 

established in 1972 after a slash-and-burn procedure followed by aerial seeding of the fast-23 
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growing grasses Urochloa brizantha and Panicum maximum. The sampling strategy and sample 1 

processing were described in detail elsewhere (5, 25). Briefly, in each of the forest and pasture 2 

ecosystems, five nested quadrats were previously established within a 1-hectare plot. These two 3 

sampling plots are 3.66 km apart. For this study, sampling points were located at the corners of 4 

each quadrat along a transect, and soil cores were collected with a 10 cm-depth by 5 cm-diameter 5 

corer after the removal of the litter layer. The five soil cores for each land use type were 6 

collected in 2010, frozen on the spot, transported on dry ice to the laboratory and stored at -80oC 7 

until DNA extractions. Soil physicochemical properties were analyzed at the Laboratorio de 8 

Fertilidade do Solo, Department of Soil Sciences, University of Sao Paulo. At the time of 9 

sampling, in situ measurements of soil pH averaged 3.96 and 4.24, while soil temperature 10 

averaged 24.8oC and 27.2oC for forest and pasture, respectively. 11 

 12 

Soil DNA extraction and sequencing. Soil DNA extraction was performed with the 13 

PowerLyzer Powersoil DNA isolation kit (Mobio Inc., Carlsbad, CA). Five DNA extractions 14 

were performed per soil sample and pooled for metagenomic library preparation with the 15 

TrueSeq DNA kit (Illumina Inc., San Diego, CA). Sequencing was performed on the Illumina 16 

HiSeq platform to generate 6.4 billion of paired-end reads of 150bp. 17 

 18 

Sequence processing and annotation of metagenomes. The Amazon soil metagenomic dataset 19 

is publicly available and deposited in the Rapid Annotation using Subsystems Technology for 20 

Metagenomes (MG-RAST) database (85). A link for a total of 83 MG-RAST IDs of five forest 21 

and five pasture samples is provided in Meyer et al. (2017). Quality filtering of the raw 22 

sequences was performed using the default criteria as set by the MG-RAST pipeline (i.e. 23 
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trimming of low-quality bases, removal of artificial replicate sequences and filtering of 1 

sequences with greater than 5 ambiguous bases). As part of the MG-RAST pipeline version 3.2, 2 

paired-end reads were joined using the fastq-join algorithm. Single end reads with 150 bp length 3 

that could not be joined were retained. Quality filtered sequence reads were searched against the 4 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (86), and RefSeq (87) databases for 5 

functional and taxonomic (bacterial, archaea and viruses) annotations, respectively. The 6 

annotations were conducted at an e-value cutoff of 1e-5, a minimum identity cutoff of 60%, and 7 

a minimum alignment length cutoff of 15 (default parameters) for the annotations of 8 

metagenome sequences. Following the annotations, the datasets were exported in biom file 9 

format and merged by QIIME 1.8.0 (88) for the downstream analyses. 10 

 11 

Data analysis. Rarefaction plots were generated to check whether sampling effort was sufficient. 12 

We then compared the relative abundances of major bacterial, archaeal and viral taxa, and 13 

functional categories of genes (KEGG level 2) between forest and pasture ecosystems. Alpha 14 

diversities were calculated using species (or gene) richness and the Shannon index (H’). Bray-15 

Curtis dissimilarity was used to calculate the pairwise dissimilarities and perform principal 16 

coordinate analysis (PCoA) between metagenomes. To test the hypothesis that forest and pasture 17 

have differential metagenome profiles, PCoA plots were generated using the species level 18 

abundance dataset of bacteria and archaea, where functional categories at KEGG level 2 were 19 

fitted as vectors. Here we used two R packages- ‘ape’ (89) and ‘vegan’ (90) to calculate the 20 

association of each ecosystem with different functional attributes of the bacterial and archaeal 21 

communities.  22 

 23 
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Statistical Analysis. To determine whether differences in the relative abundances of major 1 

taxonomic and functional categories between ecosystems were statistically significant, the 2 

Mann-Whitney test with 1000 permutations was used. Performing the same statistical test, we 3 

compared the alpha diversities, and pairwise taxonomic distances between samples. Analyses of 4 

similarities (ANOSIM) tests were performed to assess whether metagenome compositions were 5 

significantly different across the terrestrial ecosystems.  6 

We employed the DESeq2 method (91), a negative binomial Wald test, to identify 7 

microbial and viral species, and protein-coding genes at KEGG level 4 (KEGG orthology, KO) 8 

that were significantly affected by forest-to-pasture conversion. The negative binomial 9 

distribution is particularly useful for metagenomic datasets, where observations have high 10 

variation among biological replications, and sample variance is typically greater than the sample 11 

mean (91). This method also calculates fold-difference in gene abundance, which is represented 12 

as the log2-fold-change (log2FC). A score of zero indicates that the KO gene or species has 13 

statistically the same proportional abundance in metagenomes of both land use types. A positive 14 

value for a given gene or species indicates overrepresentation in forest metagenomes compared 15 

to pasture, while a negative value indicates the reverse pattern. We also employed a supervised 16 

classifier, Random Forest using the R package ‘randomForest’ (92), to classify a subset of soil 17 

species and protein-coding genes that are discriminatory between land uses. To estimate the 18 

accuracy of the model, a subset of the samples was randomly partitioned as a training set to build 19 

the model, which was then used to classify the remaining samples as test set (cross-validation). 20 

With leave-one-out cross validation, suitable for small sample sizes, the average estimated 21 

generalization error of the classifier set was calculated and compared with the baseline error for 22 

random guessing. We calculated the ratio of baseline error and estimated error, and considered 23 
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this ratio of two or higher for a good classification, meaning the Random Forest classifier 1 

performs at least two-fold better than random guessing. Additionally, this classifier calculates an 2 

importance score for each feature (i.e., species or protein-coding gene) by estimating the increase 3 

in estimated error when a feature is ignored. In our analysis, we considered 0.0001 as the cutoff 4 

for importance score. The use of Random Forest in conjunction with DESeq2 was conservative, 5 

in that more genes and species passed only the DESeq2 screen, and fewer passed both. Together, 6 

both of the statistical tests increased the robustness in identifying the differentially abundant 7 

species and genes between ecosystems with their levels of importance in the ecosystems. 8 

QIIME 1.9.0 and GraphPad Prism 7.00 were used for performing statistical analyses and 9 

visualizing the results. 10 

 11 

Availability of data and materials. Metagenomic sequences for all samples used in this study 12 

are available at the Joint Genome Institute IMG/M database under the following accession 13 

numbers: 1080879 to 1080888. 14 
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 34 

FIGURE LEGENDS 35 

 36 

FIG. 1. Response of forest-to-pasture conversion to bacterial (A-B), archaeal (C-D) and 37 

protein-coding gene (E-F) alpha and beta diversities in soil metagenomes. Shannon index 38 

and Bray-Curtis similarity were used for estimating alpha (n = 5), and beta diversities (n = 10 for 39 
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pairwise similarity), respectively, where mean values of diversity were depicted. Error bars 1 

represent standard error of the mean (S.E.M). Statistical significance was calculated using Mann-2 

Whitney test with 1,000 permutations. Symbols *, and ** indicate significance values of P < 3 

0.05 and P < 0.01, respectively. 4 

 5 

 6 

FIG. 2. Relationships of protein-coding gene compositions with bacterial and archaeal 7 

species compositions across forest and pasture metagenomes. The relationships of 8 

compositional similarities are visualized using the principal coordinate loadings for the first axes 9 

(PCo1). Protein-coding genes demonstrated significantly positive correlations with bacterial (A) 10 

and archaeal (B) community compositions. Vector fitter principal coordinate analysis showed 11 

that bacterial (C) and archaeal (D) communities have distinct clustering patterns by soil types, 12 

where vectors represent the association of the functional characteristics at KEGG level 2. The 13 

vectors are shown with arrows pointing to the direction of an increase in the gradient for the 14 

corresponding variable, and with length proportional to the correlation between ordination and 15 

variable. The circles (forest, green; pasture, red) represent the relative positions of each soil 16 

taxonomic community. The significances (P-values) of the vectors were calculated based on 999 17 

random permutations of the data. Here, only functional characteristics that were estimated to be 18 

significantly (P < 0.01) associated with PCo1 are shown. Bray-Curtis metric was used for 19 

estimating distances between different samples. 20 

 21 

FIG. 3. Heat map comparison of Z-scores calculated from protein-coding gene abundances 22 

between forest and pasture metagenomes.  Only subset of genes encoding KEGG ECs 23 
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involved in nutrient cycling is shown and a complete list of all discriminatory protein-coding 1 

genes is shown in Table ST2. Only genes that passed both selection criteria for DESeq2 (BH-2 

adjusted P < 0.05) and Random Forest (importance score > 0.0001) methods were considered.  3 

 4 

FIG. 4. Metabolic map for glycolysis/gluconeogenesis and the tricarboxylic acid (TCA) 5 

cycle based on differentially abundant genes observed in forest and pasture metagenomes. 6 

Only genes that passed both selection criteria for DESeq2 (BH-adjusted P < 0.05) and Random 7 

Forest (importance score > 0.0001) methods are represented. Arrows indicate the enzyme-8 

mediated steps of the pathway, with KEGG EC numeric classification representing the reaction 9 

being catalyzed. A green arrow means that the abundance of a gene encoding KEGG EC enzyme 10 

was higher in the forest, while red means higher in the pasture. Black arrows indicate genes with 11 

similar abundances between forest and pasture metagenomes.  12 

 13 

FIG. 5. Metabolic maps for the nitrogen (A) and methane (B) metabolisms based on 14 

differentially abundant genes observed in forest and pasture metagenomes. Only genes that 15 

passed both selection criteria for DESeq2 (BH-adjusted P < 0.05) and Random Forest 16 

(importance score > 0.0001) methods are represented. Arrows indicate the enzyme-mediated 17 

steps of the pathway, with KEGG EC numeric classification representing the reaction being 18 

catalyzed. A green arrow means that the abundance of a gene encoding KEGG EC enzyme was 19 

higher in the forest, while red means higher in the pasture. Black arrows indicate genes with 20 

similar abundances between forest and pasture metagenomes.  21 

 22 

FIG. 6. Virome community structure in the metagenomes obtained from the Amazon forest 23 
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(green) and pasture (red) soils. (A) Ordination plot from principal coordinate analysis showed 1 

that forest viral composition is distinct from that of pasture. (B) Alpha diversity as estimated by 2 

Shannon index is significantly higher in pasture compared to forest. (C) Relative abundances of 3 

viral communities are estimated at family level in forest and pasture metagenomes. Error bars 4 

represent standard error of the mean (S.E.M). Symbols * and ** indicate significance values of P 5 

< 0.05 and P < 0.01, respectively, which were calculated using Mann-Whitney test with 1,000 6 

permutations. 7 

 8 

 9 

SUPPLEMENTAL MATERIAL 10 
 11 

FIG. SF1. Rarefaction curves of bacterial (A), archaeal (B), viral (C) taxonomic and 12 

protein-coding (KO) (D) gene distributions of metagenomes obtained from Amazon forest 13 

and pasture soil samples. Species richness was used as a function of sequencing depth for forest 14 

and pasture samples. Green and red lines indicate forest and pasture samples, respectively.   15 

 16 

FIG. SF2. Relative abundances of bacterial (A) and archaeal (B) communities at phylum 17 

level in the metagenomes of Amazon forest (green) and pasture (red). Taxa that are shown in 18 

each of the bacterial and archaeal domains represent over 98% of their taxonomic sequences. 19 

The most abundant phylum Proteobacteria is broken down into five classes. Error bars represent 20 

standard error of the mean (S.E.M). P-value is calculated using Mann-Whitney test with 1,000 21 

permutations and symbols * and *** indicate significance values of P < 0.05 and P < 0.001, 22 

respectively. 23 

 24 
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FIG. SF3. Relative abundances of functional categories at KEGG level 2 in the 1 

metagenomes obtained from the Amazon forest (green) and pasture (red). Error bars 2 

represent standard error of the mean (S.E.M). Symbols * and *** indicate significance values of 3 

P < 0.05 and P < 0.001, which were calculated using Mann-Whitney test with 1,000 4 

permutations. 5 

 6 

FIG. SF4. KEGG pathway map of differentially abundant genes observed in forest and 7 

pasture metagenomes for amino acid metabolism of  (A) oxaloacetate acid, (B) pentose 8 

phosphate pathway, (C) pyruvate, and (D) alpha-ketoglutarate. Only genes that passed both 9 

selection criteria for DESeq2 (BH-adjusted P < 0.05) and Random Forest (importance score > 10 

0.0001) methods are represented. Arrows indicate the enzyme-mediated steps of the pathway, 11 

with KEGG EC numeric classification representing the reaction being catalyzed. A green arrow 12 

means that the abundance of a gene encoding KEGG EC enzyme was higher in the forest, while 13 

red means higher in the pasture. Black arrows indicate genes with similar abundances between 14 

forest and pasture metagenomes.  15 

FIG. SF5. KEGG pathway map for xenobiotic metabolism involved in benzoate, dioxin, 16 

and polycyclic aromatic hydrocarbon degradation. Only genes that passed both selection 17 

criteria for DESeq2 (BH-adjusted P < 0.05) and Random Forest (importance score > 0.0001) 18 

methods are represented. Arrows indicate the enzyme-mediated steps of the pathway, with 19 

KEGG EC numeric classification representing the reaction being catalyzed. A green arrow 20 

means that the abundance of a gene encoding KEGG EC enzyme was higher in the forest, while 21 

red means higher in the pasture. Black arrows indicate genes with similar abundances between 22 

forest and pasture metagenomes.  23 
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 1 

FIG. SF6. Relationships of protein-coding (KO) gene compositions with soil 2 

physicochemical factors. Vector fitted principal coordinate analysis of protein-coding genes 3 

with vectors representing different soil factors. Each vector points to the direction of an increase 4 

in the gradient for the corresponding variable and length proportional to the correlation between 5 

ordination and variable. The circles (green, forest; red, pasture) represent the relative positions of 6 

protein-coding genes observed in a sample. The significances (P-values) of the vectors were 7 

calculated based on 999 random permutations of the data. Only soil physicochemical factors that 8 

were estimated to be significantly (P < 0.01) associated with PCo1 are shown. Bray-Curtis 9 

metric was used for estimating distances between different samples. 10 

 11 

FIG. SF7. Relationships of viral composition with bacterial (A), archaeal (B), and protein-12 

coding gene (C) compositions across forest and pasture metagenomes. The relationships of 13 

compositional similarities are visualized using the principal coordinate loadings for the first axes 14 

(PCo1). The circles (green, forest; red, pasture) represent the relative positions of each soil 15 

taxonomic community. Bray-Curtis metric was used for estimating distances between different 16 

samples. 17 

 18 

TABLE ST1. A complete list of bacterial (sheet A) and archaeal (sheet B) lineages at 19 

species level that discriminate the metagenomes between forest and pasture soils. DESeq2 20 

(BH-adjusted P < 0.05) and Random Forest (importance score > 0.0001) methods were 21 

employed to calculate the discriminatory prokaryotic and viral species between forest and 22 

pasture metagenomes. Random Forest is a supervised classifier that classifies a subset of protein-23 
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coding genes that are discriminatory between ecosystems. This classifier calculates an 1 

importance score for each feature (i.e., protein-coding gene) by estimating the increase in 2 

generalized error when feature is ignored. In our analysis, we considered 0.0001 as the cutoff for 3 

importance score. On the other hand, DESeq2 employs negative binomial distribution to identify 4 

the differentially abundant protein-coding genes, where log2FC value is calculated to 5 

demonstrate the degree of variations in abundances for each protein-coding gene. Here, the 6 

positive and negative log2FC values indicate the genes that are differentially abundant in forest 7 

and pasture metagenomes, respectively. The lfcSE stands for standard error of log2FC estimate. 8 

P-value is calculated by the Wald statistic, which is the ratio of log2FC and its standard error. P-9 

values were adjusted for multiple comparisons using Benjamini-Hochberg False Discovery Rate, 10 

and adjusted P  < 0.05 was used for statistical significance. 11 

 12 

TABLE ST2. A complete list of protein-coding genes at KEGG level 4 that discriminate the 13 

metagenomes between forest and pasture soils. DESeq2 and Random Forest methods were 14 

employed to calculate the protein-coding genes that differentiate between forest and pasture 15 

metagenomes.  16 

 17 

TABLE ST3. A complete list of viral lineages at species level that discriminate the 18 

metagenomes between forest and pasture soils. DESeq2 (BH-adjusted P < 0.05) and Random 19 

Forest (importance score > 0.0001) methods were employed to calculate the discriminatory 20 

prokaryotic and viral species between forest and pasture metagenomes. 21 
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