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Abstract

Convolutional neural networks (CNN) have become a standard approach for mod-
eling genomic sequences. CNNs can be effectively built by Neural Architecture
Search (NAS) by trading computing power for accurate neural architectures. Yet,
the consumption of immense computing power is a major practical, financial, and
environmental issue for deep learning. Here, we present a novel NAS framework,
AMBIENT, that generates highly accurate CNN architectures for biological se-
quences of diverse functions, while substantially reducing the computing cost of
conventional NAS.

1 Introduction

Convolutional neural networks (CNNs), which led to breakthroughs in computer vision research
as part of the 2012 ImageNet competition[1] and the ensuant rise of deep learning[2], have found
extensive use in the domain of regulatory genomics[3, 4]. A significant amount of work in this area
has focused on predicting the presence of regulatory features (e.g. transcription factors, histone
marks, chromatin accessibility) directly from genomic sequence inputs[5–10].

As manually designing the network architecture is a time-consuming process with significant im-
plications for model performance, we recently developed AMBER[11] to automate the process by
extending computer vision neural architecture search (NAS) algorithms[12, 13] to apply them to the
regulatory feature prediction domain. In essence, AMBER enables the trading of computing power
for accurate CNN architectures without large time commitments or a deep understanding of machine
learning.

However, the computing power required for deep learning, and for NAS in particular, can cause
time delays and incur high financial and environmental costs[14]. For instance, it is estimated that
training a state-of-the-art natural language processing deep learning model with NAS emits as much
carbon dioxide as five cars over their entire life-time[14]. Thus, there is an urgent need for more
emission-efficient and environmentally-friendly NAS methods. Furthermore, despite intense work on
the regulatory feature prediction problem, it is unclear whether different regulatory features should
be modeled with different CNN architectures.
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We herein describe a new method, AMBIENT, which addresses this challenge by incorporating
information about the regulatory features in the search process. For a given regulatory feature’s
dataset (e.g. ChIP-seq peaks), AMBIENT maps a summary of that dataset to the initial state of the
controller model and generates an optimal task-specific architecture. We show that AMBIENT is
more efficient than existing methods, allowing it to identify architectures of comparable accuracy at
an accelerated pace.

2 Methods
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Figure 1: Visual overview of the AMBIENT method.

2.1 Overview of AMBIENT framework

Generally, NAS methods consist of a controller model and its child models [12]. Given a task of
interest, the controller model generates child neural architectures from a model search space, and
the sampled architectures are subsequently implemented, trained, and evaluated for their prediction
performance. The feedback loop between the controller-generated architectures and their performance
evaluations facilitates the training of the controller model to generate better child architectures.
Existing NAS approaches[11–13] designate a one-to-one correspondence between a controller and a
child task during the controller training.

In this work, we augment the controller model to generate multiple task-specific architectures based
on the distinct characteristics of said tasks, as illustrated in Fig. 1. The introduction of data descriptors
enables the controller to jointly learn the optimal architectures among diverse and similar tasks of
interest. During application, AMBIENT generates an optimal architecture for a new task based on its
data descriptors, instead of training from scratch, thus substantially reducing its need for computing
power. Mathematical and technical details for the AMBIENT controller model are in Appendix A.

2.2 Compilation of Dataset and Data Descriptors

Training and testing data were taken from the original publication introducing CNNs for the regulatory
feature prediction task[6]. From the original set of 919 regulatory features, we randomly drew 36 for
training. As this work is still in the pilot stages, we set aside the remaining data for more extensive
analysis at a later date. Regulatory features were held out while still taking into consideration bias due
to cell-type specific coverage similarity (i.e. chromatin accessibility and RNA polymerase features
were held-out on a per-tissue basis).

To summarize each regulatory feature, we included a number of data descriptors. First, we considered
high-level data descriptors such as whether the regulatory feature in question was a transcription
factor, RNA polymerase, histone mark, or chromatin accessibility. Based on the InterPro domains[15]
present in the training set of regulatory features, we added two data descriptors indicating whether a
given regulatory feature possessed a C2H2-type zinc-finger domain or a C2H2 bZIP Maf domain. In
addition to these coarse-grained data descriptors, we also considered a number of more fine-grained
quantitative measures. We included descriptors for the number of peaks in a given sequencing
experiment, as well as the median and variance of peak widths. To gauge the locality of each

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2021.02.25.432960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.25.432960


Presented at the 15th conference on Machine Learning in Computational Biology (MLCB 2020)

regulatory feature, we recorded the distance from each peak to the nearest annotation for several
annotations – splice sites, exons, genes, and UTRs – from GENCODE v34[16]. These distances were
summarized with their median and variance. We also included the average conservation across the
regulatory regions using phastCons[17] and phyloP[18]. Finally, we included quantitative summaries
of motifs identified in each regulatory feature. In specific, we used HOMER 2[19] to identify motifs
of 6, 8, and 10 bp, and then measured the multiplicity and strand bias for each motif length considered.
We summarized both measures with their minimum, maximum, and median. For the multiplicity, we
also included the variance.

2.3 Design of the Model Search Space

We designed a 10-layer model search space to systematically evaluate the optimal architecture
differences among distinct epigenetic regulatory features. Specifically, the 10 layers were divided into
three consecutive convolution-pooling-dropout blocks, where higher blocks simultaneously increased
the channel dimension while reducing the feature dimension by a factor of 4, a common heuristic used
in computer vision. The number of channels in the blocks were set to 16, 64, and 256, respectively.
Within each block, there were seven candidate convolution operations with hyperparameters of kernel
size k ∈ {1, 8, 14, 20} and dilation rate1 d ∈ {1, 2}. For the pooling portion of the block, there were
two feature-level pooling operations: max-pooling and average-pooling. Both pooling operations
used a step size of 4 and stride of 4. Finally, each block had a dropout operation, with dropout
rates p ∈ {0.1, 0.3, 0.5}. In the last block, we replace the feature-level pooling with four distinct
channel-level pooling operations: flatten, global max or average-pooling, or a LSTM.

3 Results
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Figure 2: Sankey diagram of the results for different classes of regulatory features. Convolutional
and dense layers are followed with ReLU activation layers unless otherwise noted (e.g. linear). n
is the number of output units for a dense layer. For a dropout layer, p is the dropout rate. For a
convolutional layer, f is the number of filters, k is the kernel width, and d is the dilation. Note that
d = 1 for convolutional layers unless stated otherwise.

3.1 Training AMBIENT on Diverse Epigenetic Features Reveals Both Distinct and
Universal Aspects of Optimal Neural Architectures

We trained AMBIENT jointly with 36 epigenetic regulatory features. For each individual regulatory
feature, we sampled neural architectures from the trained controller RNN using its corresponding

1Note that dilation rate is not applicable when k = 1
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Figure 3: Comparison of test performance and GPU runtime on a single NVIDIA V100 GPU. For
each functional category, one representative held-out independent regulatory genomics dataset was
analyzed by running AMBER[11] (blue), and applying the trained AMBIENT directly, to infer the
neural architecture using the held-out dataset descriptors (red). Lines are average rewards for n = 10
architectures generated by AMBER or AMBIENT, trained independently; shaded areas are 95%
confidence intervals; reward break-even points are the first time that AMBER rewards exceed that of
AMBIENT.

data descriptors as inputs, then grouped the architectures based on their biological functions (i.e.
transcription factor, RNA polymerase, histone mark, or chromatin). Strikingly, our marginalized
analysis demonstrates that AMBIENT learned distinct neural architectures for modeling genomic
sequences regulated by different epigenetic features (Fig. 2). For example, to model genomic
sequences with DNase activity, AMBIENT strongly prefers average pooling after convolution with
large kernel size (k=20) as the first two layers; by contrast, sequences bound by TFs are considered
to be better modeled with max pooling following convolution with large kernel size. Similarly,
sequences bound by RNA polymerase exclusively prefer a smaller kernel size for the first convolution
operation, supported by previous work[5]. Within each functional category, we observed relatively
smaller variations of architectures for particular factors (data not shown).

Interestingly, the variable architectures are predominantly in the first convolution-pool-dropout block,
whereas the latter two blocks are largely constant across regulatory features, indicating partial neural
architectures, especially top layers after initial feature extraction, are transferable across vastly diverse
genomic sequence contexts.

3.2 AMBIENT Predicts Accurate Neural Architectures with Minimal Computing Power
Overhead

A big challenge for NAS is its requirement of high computing power, and more recently uncovered,
its huge emission footprint [14]. Thus, we sought to evaluate the quality of AMBIENT-generated
neural architectures on held-out regulatory features, and how much runtime and computing power is
reduced without training NAS from scratch. To that end, we ran the single-run AMBER genomics
NAS method[11] on four held-out epigenetic features, one for each functional category (Fig. 3). We
analyzed the average performance of architectures generated by AMBER over time. We directly
compared these performance measurements with the performance of models generated by the trained
AMBIENT controller model (i.e. applying AMBIENT directly to the held-out dataset descriptors
without any fine-tuning). Indeed, comparable performances on the validation datasets were achieved
for both AMBER and AMBIENT, indicating both methods optimized the neural architectures and
were upper-bounded inherently by the training dataset. However, AMBIENT only required a single
forward-pass, and thus had minimal computing power overhead. In comparison, AMBER had to be
trained from 8 to 21 GPU hours, with an average of 15 GPU hours, to achieve comparable or better
performance.

4 Conclusions

We present a novel NAS method, AMBIENT, that can generate accurate CNN architectures capable of
modeling genomic sequences for diverse epigenetic regulatory features, while substantially reducing
the carbon-emission footprint. Analysis of AMBIENT-designed neural architectures can provide
valuable hypotheses for testing in computational and functional genomics.
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Appendix A AMBIENT Controller Recurrent Neural Network

For any given child neural network, we can model its network architecture as a sequence of computa-
tional layers that maps input features to output labels, where the operation per layer is determined
in an auto-regressive manner. Following the existing work[11–13], we employ a Recurrent Neural
Network (RNN) to capture the layer-wise dependencies:

ht = f(Xt;ht−1)

yt = σ(ht ·Wt)

We parameterize f with a long short-term memory network (LSTM); for each layer t, its computa-
tional operations are sampled from a multinomial distribution yt, specified by a softmax transforma-
tion σ(·) of ht ·Wt. Given yt, we sample the categorically-encoded architecture token Xt+1 and feed
it to update the LSTM hidden states for step t+ 1.

Unlike conventional NAS optimizations, where the initial LSTM state h0 is random initialized and
subsequently learned through optimization, we aim to incorporate the dataset-specific descriptors to
inform the initial state: h0 = g(Dk), where Dk is a vector of data descriptors for the k-th dataset,
and g is parameterized as a 16-unit multi-layer perceptron that maps Dk to h0.

The controller parameters θ are learned by maximizing the validation AUC, denoted by Rk, across
a set of K datasets with distinct data descriptors {Dk|k = 1, 2, ..,K}. Let the likelihood of
selecting a target architecture X given the parameters θ be denoted as π(X; θ): π(X; θ) =
∏

t
P(Xt|X(t−1):1; θ)).

Since Rk is not differentiable with respect to the controller parameters π(X; θ), we employ a
Reinforcement learning framework to maximize validation AUC as a reward. In this work, we obtain
the policy gradient by minimizing the surrogate loss function by Proximal Policy Optimization (PPO)
[20]. Specifically, using a batch of architectures and their reward signals, the loss function is:

R(θ) = −

B
∑

k=1

min{
π(X; θ)

π0(X; θ)
·Ak, clip(

π(X; θ)

π0(X; θ)
, 1− ǫ, 1 + ǫ) ·Ak}

where ǫ is the clipping strength and set to 0.2 following the previous report[20]; Ak is the advantage
for the k-th target architecture. We estimate Ak by subtracting the corresponding moving average of
the k-th dataset’s reward, denoted by bk; followed by re-scaling to have the unit variance within a
batch: Âk = (Rk − bk)/

√

V ar(Rk − bk).

The advantage estimates Âk are inserted in R(θ) to obtain the policy gradients. In practice, the
estimation for Ak is crucial for training the AMBIENT controller RNN, because it needs to normalize
the reward signals over multiple datasets with potentially different validation AUC baselines and
variances.

To compare the efficiency of AMBIENT, we also run the plain version of AMBER[11] without the
consideration of data descriptors, which we refer to as single-run AMBER because it runs on a single
regulatory epigenetic feature. For fair comparison, we did not employ the parameter-sharing module
when asking the AMBER modeler to implement a child architecture[13]. Optimization-related
parameters (e.g. LSTM units, learning rate, batch size) for the controller RNN were set to be identical
between AMBIENT and single-run AMBER. We trained AMBIENT using 4 Nvidia-v100 GPUs and
single-run AMBER using a single Nvidia-v100 GPU.
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