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Abstract 12 

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the 13 

impacts of air pollution on population health and the evaluation of trends relative to other major 14 

risk factors requires regularly updated, accurate, spatially resolved exposure estimates.  We 15 

combined satellite-based estimates, chemical transport model (CTM) simulations and ground 16 

measurements from 79 different countries to produce new global estimates of annual average 17 

fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year 18 

intervals from 1990-2010 and the year 2013.  These estimates were then applied to assess 19 

population-weighted mean concentrations for 1990 – 2013 for each of 188 countries.  In 2013, 20 

87% of the world’s population lived in areas exceeding the World Health Organization (WHO) 21 

Air Quality Guideline of 10 μg/m3 PM2.5 (annual average). Between 1990 and 2013, decreases in 22 

population-weighted mean concentrations of PM2.5 were evident in most high income countries, 23 

in contrast to increases estimated in South Asia, throughout much of Southeast Asia, and in 24 

China. Population-weighted mean concentrations of ozone increased in most countries from 25 

1990 - 2013, with modest decreases in North America, parts of Europe, and several countries in 26 

Southeast Asia.  27 

  28 
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Introduction 33 

The Global Burden of Disease (GBD) 2010 provided important new estimates of the global 34 

health impacts attributable to ambient air pollution. Ambient particulate matter air pollution 35 

(PM2.5, particulate matter with aerodynamic diameter 2.5 µm or smaller) was identified as a 36 

leading risk factor for global disease burden with an estimated 3.2 million attributable deaths in 37 

the year 2010. An additional 152,000 deaths in 2010 were attributable to long term exposure to 38 

ozone1. These two pollutants were selected as indicators of exposure to ambient air pollution 39 

based on extensive epidemiologic and mechanistic evidence indicating independent adverse 40 

health impacts2. These disease burden estimates incorporated novel high resolution global air 41 

pollution exposure estimates for 1990, 2005, and 2010 that included both urban and rural areas 42 

and that merged data from ground measurements, satellite retrievals and chemical transport 43 

models. In addition to the application of these exposure estimates to the entire global population, 44 

their high spatial resolution minimized biases due to spatial misalignment between exposure to 45 

air pollution and population information3. Beyond their direct use in the GBD 2010, the PM2.5 46 

exposure estimates were combined with chemical transport model simulations to estimate the 47 

sector-specific contributions to disease burden from motor vehicle transportation4,5, household 48 

cooking with solid fuels6 and household heating7. Additionally, these exposure estimates served 49 

as the basis of the World Health Organization (WHO) air pollution mortality estimates8 and were 50 

used by the World Bank as indicators of sustainable development9 and to estimate the economic 51 

damages attributable to air pollution10.  The estimates have also been used in the U.S. 52 

Environmental Protection Agency’s (USEPA) BenMap tool11 which allows users to estimate 53 

health impacts and economic value of changes in air quality, and figured prominently in the 54 

exposure description of the International Agency for Research on Cancer Monograph on the 55 
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carcinogenicity of outdoor air pollution12. Given the lack of ground measurements in many 56 

regions of the world, the above analyses were not previously possible prior to development of 57 

consistent, globally applicable exposure estimates.  58 

 59 

In the context of the most recent update of the Global Burden of Disease (GBD 2013)13 we 60 

developed updates and revised global exposure estimates for PM2.5 and ozone (O3) with specific 61 

emphasis on evaluation of trends between 1990 – 2013. We also incorporated improvements in 62 

satellite-based estimation of PM2.5
14, the availability of internally consistent emissions 63 

inventories spanning this entire period and a substantially increased number of ground 64 

measurements of particulate matter, compared to those utilized previously. Here we describe the 65 

methodology, provide descriptive information on year 2013 air pollution concentrations and 66 

illustrate trends since 1990, at the country level.  67 

 68 

Methods 69 

PM2.5  70 

The overall approach taken to estimate annual average PM2.5 concentrations uses the mean of 71 

gridded values of satellite-based and chemical transport model estimates, calibrated to available 72 

ground measurements. In the previous GBD (2010) we used satellite-based estimates for PM2.5 73 

for the year 200515 combined with simulations from the TM5 (Tracer Model, version 5) chemical 74 

transport model16 based on year 2005 emissions, which were the most current update available at 75 

the time of analysis. To estimate exposures for 1990 we used a TM5 simulation based on 1990 76 

emissions but with the same “standard” meteorology as in the 2005 simulation. For the 1990 77 
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satellite-based estimates we used the same spatial pattern from the year 2005 estimates and 78 

adjusted this to 1990 based upon the ratio of 2005:1990 simulations from the GEOS-Chem 79 

chemical transport model17 that used anthropogenic emissions from these years (while again 80 

maintaining consistent meteorology and natural emissions). For year 2010 estimates, we used the 81 

2005 TM5 and satellite-based estimates and extrapolated these to 2010 based on the 1990 – 2005 82 

trend following an assumption that the change proportional to the time period length from 2005 83 

to 2010, relative to 2005 was 1/3 as large as the change from 1990 to 2005, relative to 1990 as 84 

described by the formula:  85 

 (PM2.5_2010-PM2.5_2005)/PM2.5_2005 = 1/3 * (PM2.5_2005 - PM2.5_1990)/PM2.5_1990. (1) 86 

In addition, we compiled available PM2.5 (and where no PM2.5 measurements were available, 87 

PM10) annual average measurement data for ~2005 from a variety of sources2. These 88 

measurements were used to calibrate the average of the TM5 and satellite-based estimates for 89 

2005 at the 0.1° x 0.1° grid-cell resolution with a simple prediction equation based upon 90 

agreement between the average of TM5 and satellite-based estimates for those locations with 91 

measurements.   92 

For GBD 2013, we followed a similar approach but used updated inputs. Specifically, we used a 93 

new series of satellite-based estimates for PM2.5 that included year-specific (3 year averages of 94 

retrievals centered on the specific year of interest) estimates for 1998 – 2012 and an improved 95 

estimation algorithm14.  Briefly, satellite-based PM2.5 estimates used aerosol optical depth 96 

(AOD) retrievals from satellites to estimate near-surface PM2.5 by applying the relationship of 97 

PM2.5 to AOD simulated by the GEOS-Chem chemical transport model.  These updated PM2.5 98 

estimates make use of both “unconstrained” (as used on GBD 2010) and “optimal-estimation” 99 
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AOD retrievals in combination with the MODIS18, MISR19,20 and SeaWiFS21 satellite-borne 100 

instruments. In the optimal estimation approach, AOD retrievals using observed MODIS top-of-101 

atmosphere reflectance are constrained by simulated AOD based on their relative uncertainties.  102 

The PM2.5 estimates produced by optimal estimation additionally used vertical profile 103 

information from the CALIOP22 satellite instrument to inform about the relationship between 104 

column AOD and ground-level concentrations. These two (optimal estimation and 105 

unconstrained) sets of estimates were then combined with information on temporal variation 106 

based on SeaWiFS and MISR  to estimate global PM2.5 estimates (50% RH) at 0.1° x 0.1° for 107 

2000, 2005, 2010 and 2011 (based on 3 years of retrievals, centered on the year of interest).  108 

Estimates for 1995 and 1990 were based on the ratio of GEOS-Chem simulations that used 109 

anthropogenic emissions (from EDGAR23) between 2005 and the respective year of interest, but 110 

constant meteorology24. 111 

We also included new TM5-FASST25,26 (FAst Scenario Screening Tool, a reduced-form version 112 

of TM5) simulations for 1990, 2000, and 2010, using an updated set of emissions inventories, 113 

and constant meteorological inputs and emissions from dust and sea salt. TM5-FASST is a 114 

reduced form version of the TM5 chemical transport model that was used in the GBD 2010 115 

exposure estimates. TM5 is a nested 3-dimensional global atmospheric chemistry transport 116 

model, which simulates ozone and aerosol components at 1° × 1° resolution16.  TM5 FASST 117 

emulates the full TM5 chemical transport model with a set of linear relationships between 118 

emissions in 56 geographically defined source regions, and pollutant concentrations in receptor 119 

regions.  TM5 FASST simulations are at a resolution of 1° x 1° grid cells that are sub-allocated 120 

based on population density (using the Gridded Population of the World, version 3, GPWv327). 121 

Here we used a consistent set of emissions estimates [ECLIPSE (IEA) 2010, 2000, 1990 122 
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emissions; RCP: international aviation and shipping (2010); GFED v3.1:  Forest fires and 123 

savannah burning (2000, 2010)] and “typical” (year 2001) meteorology, dust, and sea salt 124 

contributions with TM5-FASST to simulate ambient (50% RH) PM2.5 concentrations at 0.1° x 125 

0.1 ° for 1990, 2000 and 2010. Estimates for 1995 and 2005 were generated by fitting a natural 126 

cubic spline to the 1990, 2000 and 2010 estimates.  Estimates for 2011 were estimated by fitting 127 

a natural spline to the 1990, 2000 and 2010 estimates, then extrapolating from the 2009 and 2010 128 

fitted values.  Full TM5 simulations for 1990 and 2005 (as used in GBD 2010) were also 129 

available.  130 

To collect updated measurement data for 2010-2013, we used a variety of information sources 131 

including those used previously28, as well as new data, especially from China and India, where 132 

available. We sought input from an international group of GBD collaborators, conducted targeted 133 

searches for data and included measurements compiled from a literature search14 and from the 134 

WHO ambient air pollution in cities database8.  A final database was constructed including 135 

measurement values, year of annual average (2010-2013 data were targeted – other years were 136 

used only if no other data were available), site coordinates (if available, or city centroid 137 

coordinates if not available), site type (if available), iso3 country code, data source and whether 138 

PM2.5 was measured directly or estimated from a PM2.5:PM10 ratio. All data sources are listed in 139 

the Supporting Information. Given the spatial biases in availability of ground measurements, 140 

differences in measurement approaches between jurisdictions, and absence of details regarding 141 

measurement data in some instances, the ground measurements were not used in evaluation of 142 

the exposure assessment methodology but rather incorporated within the approach as an 143 

additional source of information. For locations where daily values were obtained or where 144 

measurement completeness was available we retained all sites with >70% valid measurements, 145 
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as reported in the source databases. For locations where data were obtained for multiple years at 146 

the same location we retained one value per location, between the years 2008-2013 in the 147 

following order of preference: 2010, 2011, 2009, 2012, 2008, 2013 to best match the temporal 148 

scale of the satellite-based and TM5-FASST estimates.  149 

If multiple monitoring types available at the same site were included in parent databases, these 150 

values were averaged. Industrial and roadside sites were excluded (where indicated in source 151 

databases; except in India where these were retained upon the advice of local experts who 152 

indicated that these sites adequately represent population exposure in that country). In the 153 

USEPA database, sites indicated as "background surveillance" were designated as to 154 

background, those indicated as "continuous air monitoring program", "population-oriented 155 

monitoring", or "exposure studies" were designated as population sites. Those sites identified as 156 

"episode monitoring" or "complaint investigation", were excluded.  All others were identified as 157 

unspecified and retained. Measurements flagged as “events,” in the USEPA database were also 158 

excluded.  159 

In locations where no PM2.5 measurements were available, we estimated PM2.5 from 160 

measurements of PM10
2,29. We preferentially used PM2.5:PM10 ratios that were locally derived. In 161 

these cases ratios from any sites within 50 km where both PM10 and PM2.5 were measured were 162 

used to estimate PM2.5 from PM10 measurements. These local ratios were only accepted and used 163 

to derive PM2.5 estimates for nearby sites if they were between 0.2 and 0.8. If local ratios were 164 

not available we used a country and monitor-specific average if available, followed by a country-165 

specific average. Otherwise, we assumed a ratio of 0.5 to estimate PM2.5 from PM10 166 

measurements. 167 

                                                              168 

July 27, 2015 Confidential Draft - Do not Cite or Distribute



10 
 

In total we included 4073 data points from 3387 unique locations (1,854 [46%] from direct 169 

measurements of PM2.5) in 79 countries (Figure S1; Supporting Information). Of the 2219 data 170 

points in which PM2.5 was estimated from PM10, 1,151 (30% of 4073 total) were estimated using 171 

a ratio derived from monitors within 50 km, 590 (15%) were estimated using in-country 172 

monitors of the same type, and 309 (8%) were estimated with other in-country monitors. Finally, 173 

the remaining 169 (4%) were estimated with a ratio of 0.5, as used for GBD 2010. The mean 174 

ratio for the estimation was 0.61.   175 

We then used a regression calibration approach to combine the mean of the satellite-based 176 

estimates and the TM5-FASST simulations with the measurements to produce final global 177 

estimates at 0.1° x 0.1 °grid-cell resolution. For the regression calibration, we initially evaluated 178 

a simple regression model:  179 

Measured ln(PM2.5) = β0 + β1 * ln(fused)       (2) 180 

where fused is the mean of the satellite-derived and TM5 estimates for each grid cell. We first 181 

tested whether to apply a single global calibration function or one that varied by the 21 GBD 182 

regions. Modeling with a random effect by 7 aggregated “super-regions” (due to the complete 183 

absence of measurements in multiple regions) indicated some regional variation in slopes but 184 

also some very poor fits in some regions, so a single global calibration function was chosen. 185 

Evaluation of model residuals indicated no association with population density and addition of 186 

population density to the model only minimally improved fit. We then evaluated the impact of 187 

including available information on the measurement values and measurement sites including 188 

whether the exact site coordinates were known, whether PM2.5 was directly measured or 189 

estimated and whether the monitoring site classification was known or unspecified. Inclusion of 190 
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these variables slightly improved the model R2 while slightly reducing the residual standard 191 

error.  192 

These two candidate global calibration models (Simple model: Intercept= 0.82, ln(fused)= 0.73,  193 

residual standard error = 0.43, Multiple R-squared:  0.60, Adjusted R-squared:  0.60; 194 

“Advanced” model with additional site parameters: Intercept= 0.42, ln(fused)=0.87, residual 195 

standard error = 0.41, Multiple R-squared:  0.64, Adjusted R-squared:  0.64) were further 196 

evaluated by a cross-validation procedure in which 10% of the measurement sites were randomly 197 

selected for model evaluation. This procedure was repeated for a total of 3 separate sets of 10% 198 

testing sites. In all cases the model with additional site parameters (“Advanced”, Figure S2; 199 

Supporting Information) had a lower RMSE (12.17 vs 11.04; 12.17 vs 11.04; 10.21 vs 9.15) as 200 

well as lower Akaike’s Information Criterion and Bayesian Information Criterion. Therefore, we 201 

selected the model with additional site parameters that included variables to indicate approximate 202 

location, unspecified monitor type, and PM2.5 calculated from PM10. A plot of these global 203 

calibration functions against the data from ground measurements and the mean of the satellite-204 

based and TM5 estimates for the corresponding grid cells is provided in the Supporting  205 

Information (Figure S2; Supporting  Information). The relevant terms from this calibration 206 

function were then used to adjust the gridded values of the mean of the satellite-based and TM5 207 

estimates (“fused”) as follows: 208 

Calibrated PM2.5 = exp[0.41765+(0.86953*ln(fused))]    (3) 209 

Estimates for 2013 were generated by extrapolating from the trend between the 2010 and 2011 210 

fused and calibrated values. Specifically, for these extrapolations we assessed the rate of change 211 
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in concentrations between 2010 and 2011 and applied this growth rate to an exponential growth 212 

function to estimates concentrations in 2013, with the following function:  213 

PM2.5_2013 = PM2.5_2010*exp(rate.of.change *(2013-2010))   (4)  214 

where, (annual) rate.of.change = ln(PM2.5_2011/ PM2.5_2010). The final PM2.5 estimates used in 215 

the burden of disease estimation and presented in the Results section are the fused, calibrated, 216 

and (where applicable) extrapolated values. National level population-weighted mean and 95% 217 

uncertainty interval concentrations were estimated by sampling 1000 fused grid cell 218 

concentrations from each country in combination with the calibration parameters and the 219 

standard error of the calibration function. These draws were then weighted by the corresponding 220 

grid cell population value (using the Gridded Population of the World, version 3, GPWv327).  221 

Ozone  222 

As in GBD 2010, we calculated a running 3-month average (of daily 1 hour maximum values) 223 

for each grid cell over a full year and selected the maximum of these values. This metric was 224 

chosen to align with epidemiologic studies of chronic exposure which typically employ a 225 

seasonal (summer) average, and to account for global variation in the timing of the ozone 226 

(summer) season28. As described above, these estimates were simulated with TM5-FASST at 227 

0.1° x 0.1° for 1990, 2000 and 2010 using the same emissions datasets and meteorological inputs 228 

as for the PM2.5 simulations. Estimates for 1995, 2005, and 2011 were generated by fitting a 229 

natural cubic spline in the same manner as described previously for PM2.5. As described above 230 

for PM2.5, an exponential growth model for ozone concentrations was used to estimate 2013 231 

concentrations from the 2011 estimates. Population weighted mean concentrations and 95% 232 

uncertainty intervals for each country were estimated as described above for PM2.5 and assuming 233 
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a normal distribution with a standard deviation calculated by assuming an uncertainty interval of ± 234 

6% of the estimated concentration.  As in the GBD 2010 exposure estimates and given the scarcity 235 

of surface ozone measurements throughout the world and the challenges in accessing hourly data 236 

from available monitoring sites to develop the desired metric, we did not utilize surface ozone 237 

measurements for developing the global estimates.  238 

 239 

Results 240 

Of the ground measurements, while 79 countries were represented, more than half were from 241 

high income countries in North America (25%), Western (32%) and Central (12%) Europe.  242 

Because of a major expansion of China’s air quality monitoring network, 10% of the ground 243 

measurements were from East Asia, and 5% were from South Asia. Countries in eleven regions 244 

(Andean Latin America, Australasia, Central Asia, Eastern Europe, High-income Asia Pacific, 245 

North Africa and Middle East, Southeast Asia, Southern Latin America, Southern Sub-Saharan 246 

Africa, Tropical Latin America, Western Sub-Saharan Africa) each contributed less than 3% of 247 

the measurement data, with no measurements at all from the other four regions (Caribbean, 248 

Central Latin America, East and Central sub-Saharan Africa) of the world.  The highest 249 

measured annual average PM2.5 concentration in the assembled measurement database was 194 250 

µg/m3 in Shijiazhuang, the capital of Hebei Province in China, while the lowest was <1 µg/m3, 251 

measured in Soldotna, Alaska, USA.    252 

Year 2013 gridded estimates of annual average PM2.5 and seasonal hourly maximum ozone 253 

concentrations are displayed in Figures 1 and 2. The highest concentrations of PM2.5 were 254 

evident in northern Africa and the Middle East due to emissions of windblown mineral dust, and 255 
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in South and East Asia, especially in northern India and eastern China due to combustion 256 

emissions from multiple sources including household solid fuel use, coal fired power plant 257 

emissions, agricultural burning, industrial and transportation-related emissions. Ozone 258 

concentrations were less variable spatially, but relatively higher in parts of the U.S., the Amazon 259 

Basin, sub-Saharan Africa and throughout much of southern Europe, the Middle East and Asia.  260 

The relationship between the spatial distribution of ambient concentrations and that of the 261 

population is particularly relevant to health burden assessment (Figure 3).  Based upon the grid-262 

cell concentration estimates and corresponding population data, 35% of global population 263 

resided in areas with concentrations above the WHO Interim Target 1 of 35 µg/m3 annual 264 

average PM2.5 with nearly all of the most extreme (> 65 µg/m3) concentrations experienced by 265 

populations in China and India. Fully 87% of the global population resided in areas above the 266 

WHO guideline of 10 µg/m3, with essentially none of the population of China (0.4%) or India 267 

(0.01%) living in areas meeting this level.  268 

Changes in estimated concentrations between 1990 and 2013 at the 0.1° x 0.1° grid cell level are 269 

shown in Figure 4. Large relative decreases were evident in the Eastern US., Europe, Russia and 270 

in parts of Southeast Asia. In contrast, large relative increases were apparent in Western Canada, 271 

parts of South America, the Middle East, India and China. Somewhat similar patterns were also 272 

evident for ozone (Figure 5) 273 

The trends in PM2.5 are examined in more detail in Figures 6a-c which display population-274 

weighted mean (95% uncertainty interval) distributions of concentrations at the country level for 275 

selected regions. Plots including all other countries are presented in the Supporting Information 276 

(Figures S3-S6), along with all of the country-level population-weighted exposure data (mean, 277 
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95% uncertainty interval) for both PM2.5 and ozone for 1990, 1995, 2000, 2005, 2010 and 2013) 278 

(File S1; Supporting  Information). By way of example, Table 1 presents population-weighted 279 

estimates for PM2.5 and ozone for 1990 and 2013 for the world’s ten most populous countries. 280 

Large proportional increases in mean population-weighted PM2.5 concentrations were apparent in 281 

India, China, Brazil, Bangladesh, India, China and Pakistan, with decreases observed in the U.S., 282 

Indonesia, Russia, Japan, and Nigeria.  283 

Between 1990 and 2013, decreases in population-weighted mean concentrations of PM2.5 were 284 

evident in most of the high income countries (Figure 6a), in contrast to consistent increases in 285 

South Asia (Figure 6b), much of Southeast Asia, and especially in China (Figure 6c). At the 286 

country-level, the highest population-weighted mean concentration estimated for 2013 was 287 

Mauritania (70 µg/m3), followed by China (55 µg/m3), Saudi Arabia (54 µg/m3), Kuwait (49 288 

µg/m3), Bangladesh (48 µg/m3), India (47 µg/m3), Pakistan and Nepal (46 µg/m3). The lowest 289 

country-level population-weighted estimates were for several Pacific and Caribbean island 290 

nations, Australia and Norway (≤ 6 µg/m3). Population-weighted ozone levels also increased 291 

throughout most of the most heavily populated countries from 1990 - 2013, although to a lesser 292 

degree than seen for PM2.5. There were modest decreases in population-weighted ozone levels in 293 

the U.S., Mexico and Canada as well as parts of Europe and several countries in southeast Asia 294 

(Indonesia,  Malaysia, Singapore) (Table S1; Supporting  Information). 295 

We also compared estimates using the updated methodology described in this manuscript for the 296 

year 2010 to those reported previously from GBD 20102 for the same year (Figure S7; 297 

Supporting Information). This is a comparison of methodology, in contrast to the description of 298 

temporal changes described above.  Our updated estimates resulted in lower levels in areas of 299 

North Africa, the Middle East and the Gobi Desert, all areas that were impacted by high levels of 300 
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windblown mineral dust. Slightly higher levels were estimated with the updated methodology in 301 

Brazil and elsewhere in South America with noticeably higher levels in India, Pakistan and 302 

Bangladesh. Somewhat lower levels were also estimated for some areas of eastern China. These 303 

differences may be due to additional temporal coverage that is incorporated into the current 304 

satellite-based and ground measurements. In North Africa the lower levels reflect changes in 305 

mineral dust emissions that were driven by changes in local meteorology, and the higher levels in 306 

India, Bangladesh and Pakistan likely reflect increases in emissions that may not have been 307 

represented in the earlier methodology that extrapolated 2005 estimates to 2010. In China, the 308 

somewhat lower levels were likely affected by the inclusion in the calibration of substantially 309 

more ground measurements of high concentrations from China which tend to reduce the slope of 310 

the calibration function (see Figure S2; Supporting  Information).  311 

At the country-level, population-weighted mean estimates for PM2.5 for the year 2010 were very 312 

similar for most countries between those estimated for GBD 2010 and GBD 2013, and 313 

discrepancies reflect the same patterns described above. Estimates for China were noticeably 314 

lower for GBD 2013 (54.8 µg/m3) compared to GBD 2010 (72.6 µg/m3), as were several 315 

countries with high contributions from windblown mineral dust (Saudi Arabia: 53.8 vs 61.7 316 

µg/m3; Qatar: 40.1 vs 69.0 µg/m3; United Arab Emirates: 40.9 vs 79.5 µg/m3 for GBD 2013 vs 317 

GBD 2010, respectively). Higher levels were estimated in GBD 2013 for countries in South Asia 318 

(India: 43.4 vs 32.0; Bangladesh: 45.7 vs 31.1 6; Pakistan: 43.4 vs 38.1; Nepal: 41.5 vs 32.7 319 

µg/m3 for GBD 2013 vs GBD 2010, respectively).  320 

 321 

Discussion 322 
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We have extended previous global estimates of long-term average exposure to PM2.5 and ozone 323 

at 0.1 x 0.1° resolution to support the Global Burden of Disease 2013. Specifically, we applied 324 

improved satellite-based estimates that also incorporated additional information on temporal 325 

trends, as well as chemical transport model simulations incorporating internally consistent 326 

emissions trends from 1990 – 2013.  Further, we have incorporated a substantially larger number 327 

of available surface measurements of PM2.5 to calibrate the estimates based on satellite retrievals 328 

and chemical transport model simulations. Given the increasing emphasis with in the Global 329 

Burden of Disease on country-level (and sub-country) reporting, we also provided population-330 

weighted estimates of exposure to PM2.5 and ozone for 188 different countries for the years 1990, 331 

1995, 2000, 2005, 2010 and 2013. As such, these data represent one of the most extensive 332 

collections of global air pollution concentration estimates produced to date. Given the advances 333 

in our methodology used to develop these estimates, compared to those previously reported2, we 334 

consider these estimates to be more accurate.  335 

 336 

Although these estimates incorporated recent advances in satellite-based estimation, newly 337 

developed emissions inventories and substantially more ground measurements, they are not 338 

without limitations. Given the need to produce similar estimates in future years in support of 339 

regular updates to the Global Burden of Disease30 and other assessments, we anticipate further 340 

enhancements to the methodology to address these limitations. Specifically, we note that there is 341 

still poor agreement between these estimates and ground-based measurements in some locations, 342 

notably in parts of South America (e.g. Chile), southern Poland and Turkey, and in specific 343 

urban areas with high levels of ambient PM2.5 such as Ulaanbaatar, Mongolia (Figure S8; 344 

Supporting Information) where ground measurements were underestimated by our approach.  345 
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The same underestimation of ground level measurements in southern Poland and Ulaanbaatar 346 

was identified by van Donkelaar et al, who suggested that higher wintertime (and in the case of 347 

Ulaanbaatar also nighttime) emissions when satellite retrievals are more limited due to more 348 

frequent winter cloud cover (or unavailable at night) are likely to be responsible14. A similar 349 

phenomenon may also be contributing to poor agreement in Chile where winter, nighttime wood 350 

burning is a major contributor to elevated PM2.5 concentrations31,32. We do note however, that 351 

these same discrepancies and general underestimation of ground measurements in specific 352 

locations are not restricted to the satellite-based estimates as they are also evident in TM5-353 

FASST simulations suggesting that both approaches may fail to accurately estimate ground-level 354 

PM2,5 in relatively small areas having very high levels.   355 

 356 

In addition, we used available PM10 ground measurements to estimate PM2.5 concentrations in 357 

locations where PM2.5 measurements were not available. Our use of PM2.5:PM10 ratios for the 358 

measurement calibration dataset represents a balance between measurement specificity and 359 

spatial representativeness of the ground measurements. For example in North Africa and the 360 

Middle East, South Asia, and high-income Asia Pacific countries, less than 20% of available 361 

ground measurements were of PM2.5.  Despite increases in the number of available PM2.5 362 

measurements used in our calibration (4073 in this analysis compared to 679 in that reported 363 

previously2), more than 50% of the ground measurements that were used were estimated from 364 

PM10 measurements.  Given the importance of these estimates in the calibration, we placed 365 

additional importance on using location-specific PM2.5:PM10 ratios to estimate PM2.5 366 

concentrations, for example using ratios from measurements within 50km in 30% of cases and 367 

in-country ratios for an additional 23% of cases. Further, our regression calibration included a 368 
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term to account for the use of direct vs estimated PM2.5 measurements. Van Donkelaar et al., 369 

using the same satellite-derived estimates included here, reported 58%, 53% and 65% of 370 

explained variability in ground measurements of PM2.5 in North America, Europe and elsewhere, 371 

respectively14. In comparison, our candidate simple regression model, which treated directly 372 

measured and estimated ground PM2.5 measurements equally, explained 60% of variability in 373 

ground measurements, while the (advanced) calibration model that was ultimately used 374 

explained slightly more variability (64%). Overall, there is a need for additional PM2.5 375 

measurements and greater global coverage. The establishment of a new global network to 376 

address these shortcomings and to improve the capability of satellite-based estimates of global 377 

particulate matter levels offers the promise of enhanced accuracy and representativeness33. The 378 

need for additional air pollution measurements was also specifically highlighted in the recent 379 

World Health Assembly Resolution on Air Pollution34.  380 

 381 

High levels of uncertainty in our estimates exist in regions of elevated windblown mineral dust.  382 

The latter is partially driven by TM5-FASST use of standard dust contributions that do not align 383 

with a specific year and the temporally variable levels of resuspended mineral dust in affected 384 

regions. As we observed variability between regions in the function used to calibrate the fused 385 

estimates ground measurements, there is a need to improve the incorporation of measurement 386 

information. For example, in future work we aim to make use of the increasing number of 387 

surface measurements, especially those in China, and to implement advanced approaches to 388 

incorporate ground measurements and other information more directly into the estimates. Future 389 

availability of additional ground measurements may also increase the feasibility of allowing 390 

spatially varying calibration functions. This might be achieved by geographically weighted 391 
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regression35 or hierarchical modelling. For the latter, calibration models for different regions may 392 

include a global calibration together with regional random effects. Such models sit naturally 393 

within a Bayesian framework. Recent advances in computational methods for inference, for 394 

example those based on Integrated Nested Laplace Approximations36,37, have increased the 395 

feasibility of implementing such complex models in this setting.  Harmonization of measurement 396 

approaches between jurisdictions would also be beneficial.  397 

Because we estimated year 2013 concentrations based upon year 2010 concentrations and trends 398 

in satellite-based estimates from 2010 to 2011, differences between estimates for 2010 and 2013 399 

from this analysis may be overly influenced by short-term variability in meteorology rather than 400 

longer-term trends in emissions, the latter being more stable over the 5-year periods included in 401 

our estimates. However, as noted in Methods, the annual satellite-based estimates are 3-year 402 

moving averages, centered on the year of interest (for example 2010 includes retrievals from 403 

2009-2011) which should partially mitigate this instability.  404 

The updated global exposure estimates presented here represent a further advance in 405 

characterizing global population exposure to ambient air pollution for use in burden of disease 406 

assessment and other impact analyses. The global coverage allows for estimation of 407 

concentrations in areas without extensive ground monitoring, including for example, rural areas 408 

with large emissions from household use of solid fuels6.  Like our previous GBD 2010 estimates, 409 

these are based on PM2.5 mass concentrations.  Although there is considerable interest in, and 410 

active research concerning, the effects of the myriad constituents of ambient air pollution, ozone 411 

and PM2.5 mass concentrations remain the most robust and consistent indicators of health-412 

damaging air pollution from combustion and other major sources38,39.  Use of these estimates in 413 

combination with chemical transport model simulations can provide information on sector-414 
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specific contributions to ambient concentrations and disease burden to inform air quality 415 

management4–7.   Improvements in the quality of these estimates and the application of a 416 

consistent methodology to evaluate temporal trends in exposure over a 23 year period should 417 

inform the choice of air quality management strategies and other approaches to mitigate the 418 

health impacts of air pollution exposure. Accordingly, we are committed to making these 419 

estimates available for others to use and have provided the associated files of country-level 420 

population weighted (File S1) and gridded estimates (linked to population data and urbanicity 421 

indicators, File S2) and a data dictionary (File S3) in the Supporting Information. Given the 422 

evidence indicating the importance of ambient air pollution to global disease burden1,8, we 423 

anticipate a need for regular updating and improving of these estimates and their use in policy 424 

assessments and comparative analyses. 425 

 426 
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 437 

Country 

1990 

PM2.5 

2013 

PM2.5 

% 

Change 

1990 

Ozone 

2013 

Ozone 

% 

Change 

China 39.3 54.3 38.0 57.0 64.5 13.2 

India 30.2 46.7 54.3 61.5 74.0 20.2 

United States 16.4 10.7 -34.5 70.3 67.0 -4.7 

Indonesia 21.0 14.8 -29.7 47.3 39.6 -16.1 

Brazil 9.7 16.5 70.4 43.4 51.0 17.3 

Pakistan 36.5 46.2 26.3 59.0 68.8 16.5 

Nigeria 31.0 29.5 -4.7 66.3 67.5 1.9 

Bangladesh 29.9 48.3 61.6 59.4 72.0 21.3 

Russia 19.7 14.2 -27.6 48.6 48.3 -0.6 

Japan 19.4 16.0 -17.5 56.8 60.5 6.7 

 438 

Table 1. 1990, 2013 and percent change since 1990 in annual average PM2.5 (µg/m3) and 439 

seasonal mean 1 hour daily maximum ozone (ppb) concentrations for the world’s ten most 440 

populous countries.  441 

  442 
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