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It has been experimentally demonstrated that the Green’s function between two points could be
recovered using the cross-correlation function of the ambient noise measured at these two points.
This paper investigates the theory behind this result in the simple case of a homogeneous medium
with attenuation. ©2005 Acoustical Society of America.@DOI: 10.1121/1.1830673#
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I. INTRODUCTION

The goal of this work is to theoretically investigate th
following problem: can we retrieve the time-domain Gree
function ~TDGF! between two points by performing a cro
correlation of the ambient noise field received on those
points? Experimental demonstration of this process has b
performed in ultrasonic,1 underwater acoustics,2 or
geophysics.3,4 In most cases, only an estimate of the Gree
function was retrieved, with quality strongly dependent
the medium complexity as well as the spatio-temporal dis
bution of the ambient noise sources. For example, it has b
shown that an amplitude-shaded TDGF could be obtai
with surface ambient noise in underwater acoustics, the s
ing being due to the surface location of noise sources in
ocean.2,5 Similarly, Lobkis and Weaver6 have shown the
emergence of the exact TDGF from the diffuse field due
thermal fluctuations in a reverberant ultrasonic cavity.
nally, earlier works by Rickett and Claerbout conjectur
that this process could also be used to retrieve the so
speed structure of the upper crust of the earth in geophy
the experimental demonstration being done in he
seismology from data describing the random vibration of
sun’s surface.3 Because noise sources are difficult to wo
with, some related results have also been obtained w
noise-like events, where signals recorded from randomly
tributed sources were used to perform the cross c
relation.7,8 For example, in Ref. 7, the cross correlation of t
coda waves from a distribution of seismic events provid
the Rayleigh wave between two seismometers.

From a theoretical point of view, earlier works have i
vestigated the problem of spatial correlation with no
fields9,1 or with wave fields obtained from a distribution o
random sources.10,11 In the case of a 3D free-space mediu
with a spatially uniform noise source distribution, the field
each receiver can be decomposed as a superposition o
correlated plane waves from various directions. It has b
established9 that the normalized cross-spectral dens
C1,2(v) at frequencyv between two receivers 1 and 2 sep

a!Electronic mail: proux@ucsd.edu
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rated by a distancer is C1,2(v)5@sin(vr/c)#/(vr/c). In the
time domain, the normalized correlation function is

C1,2~ t !5
1

2p E
2`

`

C1,2~v!exp~ ivt !dv,

which can be written as

C1,2~ t !5
1

4p E
2`

` exp@ iv~ t1r /c!#

ivr /c
dv

2
1

4p E
2`

` exp@ iv~ t2r /c!#

ivr /c
dv. ~1!

The time derivative of the correlation function is then

d

dt
C1,2~ t !5

1

4pr /c
@d~ t1r /c!2d~ t2r /c!#. ~2!

The two terms in Eq.~2! correspond to the backward an
forward Green’s function between the receivers, which de
onstrates the connection between the correlation function
the Green’s function. However, the drawback of this eleg
result is to start from anormalizedcorrelation function, nor-
malization that is required because the overall spatial con
bution from noise sources in a lossless infinite medium
infinite. Experimentally though, ambient noise signals a
always finite, as is the noise correlation function. The co
tradiction comes from the fact that the theory is developed
lossless environments while experiments are always
formed in the presence of attenuation. Thus, normaliza
acts as a subterfuge for avoiding inclusion of the requi
attenuation in the theory. The goal of our work is to sho
how the result in Eq.~2! could be derived rigorously withou
the need of normalization when attenuation is present in
medium.

In this paper, we work directly with noise in the tim
domain. Thus, the mathematical developments in this pa
start from an infinite-bandwidth formulation of the Green
function. To be as general as possible, we deal here with
receivers simultaneously recording ambient noise in a
homogeneous medium. The choice of free-space propaga
has been made in regards to the complex developm
79/79/6/$22.50 © 2005 Acoustical Society of America
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needed to achieve the demonstration in a waveguide.5 The
incident field on the two receivers comes from a homo
neous spatial-temporal distribution of uncorrelated bro
band noise sources. This model is reasonable in our
because we evaluate the ensemble average of the noise
relation function. It also presents the advantage of consi
ably simplifying the mathematical developments perform
in Secs. II and III.

This paper is structured as follows. In Sec. II, we exa
ine the case of a homogeneous space without attenuation
use a geometrical interpretation to investigate the relat
ship between the noise correlation function and the Gre
function. In Sec. III, we extend the results to a medium w
attenuation. Section IV is a discussion that links this theo
ical approach with earlier experimental works.

II. FREE SPACE WITHOUT ATTENUATION

In a 3D homogeneous medium without attenuation,
Green’s function between points A~in r1) and B ~in r2) is

G~r2 ,t;r1,0!5
1

ur22r1u
dS t2

ur22r1u
c D , ~3!

wherec is the constant sound speed in the medium. Assu
ing a random spatial-temporal distribution of noise sour
amplitudesS(r s ,ts), the total field received in A is

P~r1 ;t !5E
2`

`

dr sE
2`

t

dtsS~r s ,ts!G~r1 ,t;r s ,ts!

5E
2`

` dr s

ur12r su
SS r s ,t2

ur12r su
c D . ~4!

Here, the causality requires that the noise sources in (r s ;ts)
that contribute to the pressure field in A at a given timt
satisfy the conditiont5ts1ur12r su/c. Then, the cross cor
relation of the two signals recorded in A and B is defined

C~r1 ,r2 ;t !5C1,2~ t !5E
2`

1`

P~r1 ;t!P~r2 ;t1t!dt, ~5!

which leads to

C1,2~ t !5E
2`

1`

dr sE
2`

1`

dr s8E
2`

1`

dt
1

ur12r suur22r s8u

3SS r s ,t2
ur12r su

c DSS r s8 ,t1t2
ur22r s8u

c D .

~6!

C1,2(t) corresponds to one realization of the ambient no
cross-correlation function. To evaluate the average noise
relation function over an ensemble of realization, we use
fact that noise sources are spatially and temporally unco
lated

^S~r s ,ts!S~r s8 ,ts8!&5Q2d~ ts2ts8!d~r s2r s8!, ~7!

where the notation̂X& corresponds to the ensemble avera
of X. Q2 represents the acoustic power of the noise sou
and is taken constant over time and space. Then, it follo
after integration overdr s8
80 J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005
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^C1,2~ t !&5Q2E
2`

1`

dr sE
2`

1`

dt
1

ur22r suur12r su

3dS t1
ur12r su

c
2

ur22r su
c D . ~8!

Note that, as written in Eq.~5!, t corresponds to the runnin
time of the signals received in A and B. However, the cro
correlation functionC1,2(t) is a comparison between thos
two signals, meaning thatC1,2(t) will extract the relative
propagation times between the noise source inr s , and the
receivers inr1 and r2 . As a consequence, the integratio
over t corresponds just to an accumulation of noise sour
over time. As shown in Fig. 1, all those noise events could
excited at one time only without changing the final result
the average correlation function. Actually, the integrati
over t in Eq. ~8! leads to the usual divergence of a corre
tion function over an infinite time. However, in a practic
experimental case, the pressure fields in A and B first hav
be recorded over a finite interval timeT before the cross
correlation is performed. Assuming that the random no
sources have a creation raten ~m23 s21! per unit time per
volume, the integral overt is changed into the productTn.
The accumulation of noise events described in Fig. 1 co
sponds then to an increase ofn over a smaller interval timeT
such thatTn remains constant. Finally, using this approac
Eq. ~8! becomes

^C1,2~ t !&5Q2TnE
2`

1`

dr s

1

ur22r suur12r su

3dS t1
ur12r su

c
2

ur22r su
c D . ~9!

Equation~9! shows that the noise correlation function in fre
space reduces to the calculation of a spatial integral over
noise source’s locations. In the following, we show tha
geometrical argument allows us to obtain an analytical so
tion for ^C1,2(t)&. We first define a Cartesian coordina
system for the 3D space in which A is (a,0,0), B is
(2a,0,0), and a pointr s is (x,y,z). The argument of the
delta function in Eq.~9! gives a contribution to the correla
tion function at timet if r s is such thatur22r su2ur12r su

FIG. 1. Representation of the receivers in A and B and the noise source~in
r s) in the xy plane. Each plane corresponds to a new distribution of no
sources at timet. The integral overt in Eq. ~6! could be done by accumu
lating all noise sources over time as shown in the lower plane.
Roux et al.: Ambient noise cross correlation
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5ct. For a timet satisfying the condition22a<ct<2a,
the noise sources must lie on a hyperboloid defined by
equation~Fig. 2!

y21z22x2S 4a2

c2t2
21D 5a2S 12

c2t2

4a2 D , if ctÞ0, ~10!

andx50, if ct50.
The hyperbola in Fig. 2 correspond to the noise sour

in a 2D section at constant depthz of the 3D space that will
contribute toC1,2(t) at a given timet. We will see in Sec. III
the importance of the ellipse in Fig. 2 that is made of t
noise sources inr s such thatur22r su1ur12r su5ct. Note
that these conical shapes are invariant by rotation around
axis of the two receivers~x axis in Fig. 2!. This means that
in 3D, the hyperbola and the ellipse turn out to be a hyp
boloid and an ellipsoid whose symmetry axis is the lin
between the two receivers. As can be seen in Fig. 2, ev
noise source in space belongs to a unique hyperbola. E
hyperbola is parametrized byct, with the condition22a
<ct<2a. This implies thatC1,2(t)50 for t outside the in-
terval @22a/c,2a/c#. To perform the spatial integration i
Eq. ~9!, we make a change of variable from the Cartes
coordinate to a coordinate system adapted to the hyperbo
Fig. 2

H x5a sin~u!cosh~w!
y5a cos~u!sinh~w!cos~c!
z5a cos~u!sinh~w!sin~c!

with H wPR1

uPF2
p

2
,
p

2 G
cP@0,2p#

.

~11!

The Jacobian of this change of variable is

J~w,u,c!5a3 cos~u!sinh~w!@cosh2~w!2sin2~u!#.
~12!

Then, we have for any pointr s defined by the coordinate
~w,u,c! ur22r su5a(cosh(w)1sin(u)) and ur12r su
5a(cosh(w)2sin(u)), from which it follows

FIG. 2. Representation in thexy plane of the hyperbola that contributes to
given timet in the noise correlation function. On each hyperbola, the no
sources satisfyur22r su2ur12r su5ct. The line x50 corresponds toct
50. The liney50 corresponds toct52a for x>a, and ct522a for x
<2a. The ellipse~dashed line! represents the noise sources for whichur2

2r su1ur12r su5ct, for ct54a. The receivers A and B are at (a,0) and
(2a,0).
J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005
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^C1,2~ t !&52paQ2TnE
0

1`

sinh~w!dwE
2p/2

p/2

cos~u!

3dS t1
2a sin~u!

c Ddu. ~13!

A last change of variablea sin(u)5x finally gives

^C1,2~ t !&52pQ2TnE
0

1`

sinh~w!dwE
2a

a

dS t1
2x

c Ddx.

~14!

Knowing that the integration of a Dirac functiond(t) yields
a Heaviside step functionH(t), the second integral in Eq
~14! gives a rectangle function

P~ t !5HS t1
2a

c D2HS t2
2a

c D , ~15!

whose amplitude is 1 between22a/c and 2a/c and 0 else-
where. The first integral~over w! in Eq. ~14! yields the am-
plitude of the noise correlation function. The limits of th
integral in w have to be defined to prevent^C12(t)& from
diverging. Actually, w is the curvilinear coordinate alon
each hyperbola. In Fig. 2,w50 is the intersection of the
hyperbola with thex axis, while the asymptotic branch of th
hyperbola corresponds tow→1`. Integrating overw be-
tween 0 andw0 corresponds then to the measure of t
length of each hyperbola on this interval. In Fig. 2, the poi
verifying w5w0 describe an ellipse that is orthogonal
each of the hyperbola. Interestingly enough, this ellipse~or
ellipsoid in 3D! is such thatur22r su1ur12r su5ct, i.e., the
noise sources whose cumulated travel to A and B are
same. We will see in the next section that this ellipse cor
sponds to the points that have suffered from the same att
ation in the correlation process. Defining thew5w0 ellipsoid
as the 3D compact support on which the integration in E
~14! is performed leads to the final result

^C1,2~ t !&52pQ2Tn@cosh~w0!21#P~ t !. ~16!

The time derivative of the average correlation function
then

d

dt
^C1,2~ t !&54paQ2Tn@cosh~w0!21#

3F 1

2a
dS t1

2a

c D2
1

2a
dS t2

2a

c D G . ~17!

The Dirac functions in Eq.~17! are the causal and anticaus
~or time-reversed! Green’s functions from A to B. There is n
problem in obtaining a time-reversed expression of
Green’s function because a correlation function is defined
negative and positive times. Physically speaking, the ti
symmetry of Eq.~17! results from our hypothesis of spatiall
uniform ambient noise distribution. Noise sources surrou
ing the receivers in A and B, the correlation function conta
both propagation information from A to B and B to A. Takin
the time derivative of the correlation function, the time sym
metry means that both the forward and backward Gree
functions between A and B are retrieved from ambient no
cross correlation. The amplitude of these Green’s function

e

81Roux et al.: Ambient noise cross correlation
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driven by the noise excitation power and the area of
ellipsoidal compact support on which noise sources
taken. Note again that the compact support is necessa
this analysis to prevent the noise correlation function fr
diverging.

III. FREE SPACE WITH ATTENUATION

One remaining question is the physical meaning of
boundary limitw5w0 necessary to perform the integration
Eq. ~14!. Actually, w0 is strongly related to the presence
attenuation in the medium. Up to now, we have considere
homogeneous propagation medium without attenuation
that case, the amplitude contribution from noise sources
away from the receivers A and B is not lowered, which lea
to a diverging correlation function as seen in Eq.~14!. The
goal of this section is to show that the presence of atten
tion in the medium solves this problem. Volume attenuat
is included in the medium by adding an imaginary comp
nent to the sound speedc5c01 ic i , with ci!c0 . We chose
this usual way to account for attenuation because of its c
venience to pursue the mathematical derivation. The
quency dependence of the Green’s function that results f
attenuation is discussed later. The Green’s function is t
modified as follows:

G~r2 ,t;r1,0!5
1

2p E
2`

1`

dv
1

ur22r1u
expF ivS t2

ur22r1u
c0

D G
3expS 2vci

ur22r1u

c0
2 D . ~18!

Assuming again that ^S(r s ,ts)S(r s8 ,ts8)&5Q2d(ts

2ts8)d(r s2r s8) and using the same development as in E
~4! to ~8!, we have now

^C1,2~ t !&5
Q2

4p2 E2`

1`E
2`

t E
2`

1`E
2`

1`E
2`

1` dr sdtsdvdv8dt

ur22r suur12r su

3expF ivS t2ts2
ur12r su

c0
D1 iv8

3S t1t2ts2
ur22r su

c0
D G

3expF2ciS v
ur12r su

c0
2

1v8
ur22r su

c0
2 D G . ~19!

After a change of variablet2ts5t8, we perform the inte-
gration on t8 knowing that *0

1` exp@i(v1v8)t8#dt85d(v
1v8), which leads to

^C1,2~ t !&5
Q2

4p2 E2`

1`E
2`

1`E
2`

1` dtdr sdv

ur22r suur12r su

3expF ivS t1
ur12r su

c0
2

ur22r su
c0

D G
3expF2

vci

c0
2 ~ ur12r su1ur22r su!G . ~20!
82 J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005
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As in Sec. II, the integral overdt is changed into the produc
Tn. It corresponds to the accumulation of noise sources w
a creation raten ~m23 s21! over the finite duration signals o
lengthT recorded in A and B. Then, we have

^C1,2~ t !&5
Q2Tn

4p2 E
2`

1`E
2`

1` dr sdv

ur22r suur12r su

3expF ivS t1
ur12r su

c0
2

ur22r su
c0

D G
3expF2

vci

c0
2 ~ ur12r su1ur22r su!G . ~21!

Equation~21! is the equivalent of Eq.~9! in the presence of
attenuation. We recognize in the two exponentials the hyp
bola spatial dependence for the phase term and the el
spatial dependence for the amplitude term~Fig. 2!. We apply
then the change of variable done in Sec. II@Eq. ~11!# to
decouple the phase term from the amplitude term in Eq.~21!.
It follows

^C1,2~ t !&5
Q2Tn

2p E
2`

1`

dvE
0

1`

dw sinh~w!

3expS 2
2a cosh~w!vci

c0
2 D E

2a

1a

dx

3expF ivS t1
2x

c0
D G . ~22!

The presence of attenuation in the medium makes the i
gral overw converge as

E
0

1`

dw sinh~w!expS 2
2a cosh~w!vci

c0
2 D

5
c0

2

2avci
expS 2

2avci

c0
2 D , ~23!

while the integral overx gives

E
2a

1a

dx expF ivS t1
2x

c0
D G5

c0

2iv FexpS ivS t1
2a

c0
D D

2expS ivS t2
2a

c0
D D G . ~24!

Finally, combining Eqs.~23! and ~24!, it follows

^C1,2~ t !&5
Q2Tnc0

3

8paci
E

2`

1`

dv
1

iv FexpS ivS t1
2a

c0
D D

2expS ivS t2
2a

c0
D D G 1

v
expS 2

2avci

c0
2 D .

~25!

From the result derived in Sec. I, we know that the tim
derivative of the noise correlation function yields the Gree
function. In the case of a medium with attenuation, the ti
derivative of the correlation function gives
Roux et al.: Ambient noise cross correlation
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d

dt
^C1,2~ t !&5

Q2Tnc0
3

4pci
H E

2`

1` dv

v

1

2a
expS ivS t1

2a

c0
D D

3expS 2
2avci

c0
2 D 2E

2`

1` dv

v

1

2a

3expS ivS t2
2a

c0
D DexpS 2

2avci

c0
2 D J .

~26!

The two integrals in Eq.~26! contain a frequency-depende
term 1/v that prevents us from directly identifying these i
tegrals as the exact Green’s function from A to B and B to
Actually, this 1/v is due to the choice made to describe t
attenuation in the medium. Adding an imaginary part to
sound speed (c5c01 ic i) means that we made the assum
tion of a linear dependence of the attenuation with frequen
as shown in the Green’s function formulation@Eq. ~18!#. If
we had chosen avn dependence of the attenuation in t
Green’s function, we would have obtained a 1/vn amplitude
term in the derivative of the correlation function@Eq. ~26!#.
Physically speaking, this means that the attenuation in
medium will impact the estimate of the Green’s functi
from the ambient noise correlation function. More precise
attenuation acts as a low-pass filter whose frequency be
ior follows the frequency dependence of the attenuation
the medium. Thus, the physical interpretation of Eq.~26! is
still the same as Eq.~17!

d

dt
^C1,2~ t !&'4paQ2TnV@G~r2,0;r1 ,2t !

2G~r1 ,t;r2,0!#, ~27!

where the' sign means that the Green’s function has be
low-pass filtered according to the frequency dependenc
the medium attenuation. Comparing Eqs.~26! and ~18!, we
note that the amplitude termV is directly related to the for-
mulation of the attenuation term used in of the definition
the Green’s function.

We see from the mathematical developments made
Sec. III that the introduction of a small attenuation in t
medium makes the correlation function converge with
any constraint on the noise source statistics. The final re
is the same as in Sec. II, except that the frequency filte
occurs when a frequency-dependent attenuation is in
duced. The derivative of the ambient noise correlation fu
tion gives birth to a causal and anticausal~or time-reversed!
estimate of the Green’s function between the two points
which noise has been recorded.

IV. DISCUSSION

In the literature, most experimental results have be
obtained by using the noise correlation function~and not its
derivative! as a close estimation of the Green’s functio
Only Weaver’s results in ultrasonic reverberant caviti1

have clearly demonstrated, both theoretically and experim
tally, that the Green’s function would be retrieved from t
diffuse noise correlation function derivative. In similar wor
J. Acoust. Soc. Am., Vol. 117, No. 1, January 2005
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in ultrasonics,8 underwater acoustics,2 and geophysics,4 the
correlation function is preferred to its derivative to appro
mate for the Green’s function. Indeed, performing a tim
derivative on experimental data is usually avoided becaus
could be the source of strong undesirable noise. Howe
the mathematical demonstration above clearly shows th
is the derivative of the ambient noise correlation functi
that converges to the Green’s function. What do we lo
when we don’t perform the time derivative?

An element of response is given in Fig. 3, where am
ent noise correlation functionŝC1,2(t)& are plotted versus
their derivatives for a infinite bandwidth@Fig. 3~a!# and a
limited bandwidth signal@Fig. 3~b!#, respectively. The two
functions look very different in the infinite bandwidth cas
mostly because the zero-frequency component creates
plateau of the correlation function. However, this dc comp
nent will usually not be available in realistic experiments.
the case of a finite bandwidth problem, we see that the
functions resemble each other. Their principal difference
p/2 phase shift that does not affect the overall shape of
waveform but that could be of importance in the case
tomography applications where exact arrival times need
be estimated. However, if undesired noise becomes an
perimental issue when performing the time derivative of
correlation function, it is not a bad approximation to estima
the Green’s function as the noise correlation function itse

Finally, how could the theoretical demonstration done
Sec. III be adapted to the case of a heterogeneous med
For example, if we assume a spatial dependence of the so

FIG. 3. Representation of the noise correlation function~gray line! and its
time derivative~black dotted line!: ~a! in an infinite bandwidth case, with
a50.25 m andc51 m/s; ~b! with the same parameters, in a limited ban
width case@10–20 Hz#.
83Roux et al.: Ambient noise cross correlation
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speedc05c0(x,y,z), is the final result in Eq.~27! still cor-
rect? It is possible to show that, for uncorrelated no
sources, Eq.~21! is still valid if the arrival times ur1

2r su/c0 and ur22r su/c0 are changed into a more gener
formulation* rs

r1ds/c(s) and* rs

r2ds8/c(s8), where the pathsS

andS8 between the noise source inr s and the receivers in A
and B are given by the Fermat principle. In this case,
noise sources that contribute to the noise correlation func
at a given timet have to satisfy the following equation:

E
rs

r1 ds

c~s!
2E

rs

r2 ds8

c~s8!
5t. ~28!

In general, the noise sources that satisfy Eq.~28! are no
longer located on a hyperbola as in Fig. 2 and the chang
variable done in Eq.~11! is now irrelevant. However, the
physical insight derived from the geometrical interpretat
in Fig. 2 is still correct. Actually, two conditions are require
for this to be true. First, there must exist, for a givent, a 3D
surface made of the noise sources that satisfy Eq.~28!, and
this set of 3D surfaces must cover the whole 3D space w
22a<ct<2a. Second, one point in space must belong
one and only one of these 3D surfaces. Those two condit
mean that there exists an isomorphism between the hype
loids in the homogeneous space case and the 3D sheets
heterogeneous medium. If this is so, a conformal transfor
tion could be used to shift from the heterogeneous spac
the homogeneous one, in which the integration from Eq.~21!
to Eq. ~27! is performed before the inverse conformal tran
formation is made to go back to the heterogeneous sp
The existence of such a conformal transformation ensu
that we have again in a heterogeneous space

d

dt
^C1,2~ t !&}G~r2,0;r1 ,2t !2G~r1 ,t;r2,0!. ~29!

However, such a conformal transformation is not alwa
likely to exist. For example, it is well known in underwat
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acoustics that refraction could generate multiple arrival tim
between two points. If a noise source creates multiple ech
in A and B, it means that it belongs to differentt-invariant
3D surfaces of the correlation function. There is then
isomorphism between the hyperbola in the homogene
medium and thet-invariant sheets in the refractive medium
In this case, further analysis is necessary to understand
relationship between the noise correlation function and
Green’s function.5,12
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