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It has been experimentally demonstrated that the Green’s function between two points could be
recovered using the cross-correlation function of the ambient noise measured at these two points.
This paper investigates the theory behind this result in the simple case of a homogeneous medium
with attenuation. ©2005 Acoustical Society of AmericdDOI: 10.1121/1.1830673
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I. INTRODUCTION rated by a distance is C; J(w)=[sin(wr/c)]/(wr/c). In the

) . ) ) ) time domain, the normalized correlation function is
The goal of this work is to theoretically investigate the

following problem: can we retrieve the time-domain Green’s
function (TDGF) between two points by performing a cross
correlation of the ambient noise field received on those two )
points? Experimental demonstration of this process has bediich can be written as
performed in ultrasoni¢, underwater acoustics, or 1 (» exio(t+ric)]

geophysics:* In most cases, only an estimate of the Green’s ~ Cy(t)= 4—f —

function was retrieved, with quality strongly dependent on m

the medium complexity as well as the spatio-temporal distri- 1 (> exdiw(t—r/c)]

bution of the ambient noise sources. For example, it has been “an | T ieric do. (1)
shown that an amplitude-shaded TDGF could be obtained

with surface ambient noise in underwater acoustics, the shad-e time derivative of the correlation function is then
ing being due to the surface location of noise sources in the

ocear’® Similarly, Lobkis and Weavérhave shown the —c Z(t)zi[ﬁ(tﬂ/c)—é(t—r/c)] )
emergence of the exact TDGF from the diffuse field due to ~ dt * 4mrlc '

thermal fluctuations in a reverberant ultrasonic cavity. Fi-The two terms in Eq(2) correspond to the backward and
nally, earlier works by Rickett and Claerbout conjecturedsoyarg Green's function between the receivers, which dem-
that this process could also be used to retrieve the sounds,sirates the connection between the correlation function and

speed structure of the upper crust of the earth in geophysiCe Green's function. However, the drawback of this elegant

the experimental demonstration being done in helioygegt is to start from amormalizedcorrelation function, nor-
seismology féom data describing the random vibration of theyization that is required because the overall spatial contri-
sun's surface. Because noise sources are difficult to work y ;sion from noise sources in a lossless infinite medium is

with, some related results have also been obtained Witlhfinite Experimentally though, ambient noise signals are
noise-like events, where signals recorded from randomly disz\yays finite, as is the noise correlation function. The con-

tribufted7 gources were used to perform the cross Cofgagiction comes from the fact that the theory is developed in
relation."® For example, in Ref. 7, the cross correlation of the

0 o - “lossless environments while experiments are always per-
coda waves from a distribution of seismic events providedomed in the presence of attenuation. Thus, normalization
the Rayleigh wave between wo seismometers. . acts as a subterfuge for avoiding inclusion of the required
From a theoretical point of view, earlier works have in- uenyation in the theory. The goal of our work is to show
vestigated the problem of spatial correlation with NOIS€nqw the result in Eq(2) could be derived rigorously without

. ’l . . . - . .
fields™* or with wave fields obtained from a distribution of {he need of normalization when attenuation is present in the
random source¥:*! In the case of a 3D free-space medium medium.

with a spatially uniform noise source distribution, the field at In this paper, we work directly with noise in the time

each receiver can be decomposed as a superposition of Ufamain. Thus, the mathematical developments in this paper
correlated plane waves from various directions. It has beegiart from an infinite-bandwidth formulation of the Green’s
establishedl that the normalized cross-spectral - densityqnciion. To be as general as possible, we deal here with two
C1ow) at frequencyw between two receivers 1 and 2 sepa-yecejvers simultaneously recording ambient noise in a 3D
homogeneous medium. The choice of free-space propagation
dElectronic mail: proux@ucsd.edu has been made in regards to the complex developments

Clyz(t)=%flCl,z(w)exmwt)dw,

% iwr/c

J. Acoust. Soc. Am. 117 (1), January 2005 0001-4966/2005/117(1)/79/6/$22.50 © 2005 Acoustical Society of America 79



needed to achieve the demonstration in a waveguitiee T4
incident field on the two receivers comes from a homoge-
neous spatial-temporal distribution of uncorrelated broad- —>X
band noise sources. This model is reasonable in our case
because we evaluate the ensemble average of the noise cor- 7,
relation function. It also presents the advantage of consider-
ably simplifying the mathematical developments performed
in Secs. Il and III.

This paper is structured as follows. In Sec. I, we exam-
ine the case of a homogeneous space without attenuation. We
use a geometrical interpretation to investigate the relation-
ship between the noise correlation function and the Green’s All'T
function. In Sec. lll, we extend the results to a medium WithFIG. 1. Representation of the receivers in A and B and the noise salimces
attenuation. Section IV is a discussion that links this theoretrs) in the xy plane. Each plane corresponds to a new distribution of noise

ical approach with earlier experimental works. sources at time- The integral overr in Eq. (6) could be done by accumu-
lating all noise sources over time as shown in the lower plane.

7;

Il. FREE SPACE WITHOUT ATTENUATION e o 1
—02
In a 3D homogeneous medium without attenuation, the (C1AD)=Q J_w drsf_x OIT|r2—rs||r1—rs|
Green’s function between points@# r;) and B(in r,) is

|r1_rs| |I’2—I’S|
[ro—rq

t+ c ) (8

c

X 6

1
G(rz,t;r1,0)= |r2_rl| 5<t_ y (3)

h is th tant d din th di A Note that, as written in E(5), 7 corresponds to the running
wherec 1S Ine constant sound speed in e medium. ASSUMg 0 of the signals received in A and B. However, the cross-

ing a random spatial-temporgl distribgtion .Of npise SOUrC€3orrelation functionC, 5(t) is a comparison between those
amplitudesS(rs,t;), the total field received in A is two signals, meaning that, ,(t) will extract the relative

% t propagation times between the noise sourceginand the
P(rl;t)=f_xdrsf_mdtSS(rs,tS)G(rl,t;rs,tS) receivers inr; andr,. As a consequence, the integration
over 7 corresponds just to an accumulation of noise sources
< drg [ri—ry over time. As shown in Fig. 1, all those noise events could be
- f_wms sit : 4 excited at one time only without changing the final result in

the average correlation function. Actually, the integration

Here, the causality requires that the noise sourcesditd  over rin Eq. (8) leads to the usual divergence of a correla-
that contribute to the pressure field in A at a given time tjon function over an infinite time. However, in a practical
satisfy the conditiort=ts+|r;—r¢/c. Then, the cross cor- eyxperimental case, the pressure fields in A and B first have to
relation of the two signals recorded in A and B is defined ag,e recorded over a finite interval tinie before the cross
+oo correlation is performed. Assuming that the random noise

P(ry;7)P(ry;t+7)d7, (5  sources have a creation rate(m 3s™%) per unit time per
- volume, the integral over is changed into the produdtv.

C(rlarz;t)zcl,z(t):J

which leads to The accumulation of noise events described in Fig. 1 corre-
e . o 1 sponds then to an increasewbver a smaller interval tim&
Clz(t):f drsf drs'f dr—— such thatT v remains constant. Finally, using this approach,
—o0 —o e rdllre=ry| Eq. (8) becomes
|r1_rs| |r2_rs’| +o
X§|rg,7— S| rg,7+t——+ <Cl,2(t)>:Q2TVj drg————
—® |I’2 rs||r1 rs|
(6)
. . . |r1_rs| |I’2—I’S|
Cy J(t) corresponds to one realization of the ambient noise X6 t+ c ¢ . 9

cross-correlation function. To evaluate the average noise cor-
relation function over an ensemble of realization, we use th&quation(9) shows that the noise correlation function in free
fact that noise sources are spatially and temporally uncorrespace reduces to the calculation of a spatial integral over the

lated noise source’s locations. In the following, we show that a
—A2st _ geometrical argument allows us to obtain an analytical solu-
(S(rs t9)S(re ,ts)) = Q7A(ts—ts1) A(rs=rs), @) tion for (C, (t)). We first define a Cartesian coordinate

where the notatiofX) corresponds to the ensemble averagesystem for the 3D space in which A i92,0,0), B is
of X. Q? represents the acoustic power of the noise sources—a,0,0), and a pointg is (X,y,z). The argument of the
and is taken constant over time and space. Then, it followsjelta function in Eq(9) gives a contribution to the correla-
after integration ovedrs, tion function at timet if rg is such thatir,—rg—|r,—ry
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ct=0 ct=a/2 ct=a 5 +oo /2
2.5a N etesar (CyAt))y=2maQ TVJO Slnl’((p)d(pf_ﬂzcoi 0)
2asin(6
ol t+ A) do (13)
c
\ ct=1.9 5a
y ol i — ) A last change of variabla sin(6)=x finally gives
4 +oo a 2X
(Cl,z(t)>=27rQ2va sinmp)d(pJ S HF dx.
0 —a

(14
252 25a Knowing that the integration of a Dirac functia¥(t) yields

a Heaviside step functiohi(t), the second integral in Eq.

FIG. 2. Representation in they plane of the hyperbola that contributes to a (14) gives a rectangle function
given timet in the noise correlation function. On each hyperbola, the noise
sources satisfyjr,—rg—|r;—rg=ct. The line x=0 corresponds tat t @ —H(t— 2_3-
=0. The liney=0 corresponds tat=2a for x=a, andct=—2a for x c c
< —a. The ellipse(dashed lingrepresents the noise sources for which
—rg/+|ri—r¢=ct, for ct=4a. The receivers A and B are aa,0) and whose amplitude is 1 between2a/c and 2a/c and 0 else-
(-a,0). where. The first integralover ¢) in Eq. (14) yields the am-
plitude of the noise correlation function. The limits of the
=ct. For a timet satisfying the condition—-2a<ct<2a, integral in ¢ have to be defined to preve(ﬂ:lz.(t)) from
. . ; : diverging. Actually, ¢ is the curvilinear coordinate along
the noise sources must lie on a hyperboloid defined by the . . : :
equation(Fig. 2) €ach hypert_)ola. In F_|g. 2(p_=0 is the mter_sectlon of the
hyperbola with thex axis, while the asymptotic branch of the
432 c2t2 hyperbola corresponds te—+«. Integrating overe be-
y2+22—x2<ﬁ—1) =a2(1——>, if ct+0, (100 tween O andg, corresponds then to the measure of the
ct 4a length of each hyperbola on this interval. In Fig. 2, the points
andx=0, if ct=0. verifying ¢= ¢, describe an ellipse that is orthogonal to

The hyperbola in Fig. 2 correspond to the noise source§ach Of the hyperbola. Interestingly enough, this ellifmse

in a 2D section at constant defxtiof the 3D space that will €1Ps0id in 3D is such thajro—ry|+|ry—r¢=ct, i.e, the

contribute toC; «t) at a given timet. We will see in Sec. IlI noise sources whose cumulated travel to A and B are the

the importancé of the ellipse in Fig. 2 that is made of theSame. We will see in the next section that this ellipse corre-

noise sources i, such that|r,—rd+|r,—rJ=ct. Note sponds to the points that have suffered from the same attenu-
S S S "

that these conical shapes are invariant by rotation around tHon in the correlation process. Defining the ¢, ellipsoid
axis of the two receiveréx axis in Fig. 2. This means that, as the 3D compact support on which the integration in Eq.
in 3D, the hyperbola and the ellipse turn out to be a hyper-(14) is performed leads to the final result

boloid and an ellipsoid whose symmetry axis is the lines <C1'2(t)>=27TQ2TV[COSK(,DO)—1]H(t). (16)
between the two receivers. As can be seen in Fig. 2, ever ) o ) o
noise source in space belongs to a unique hyperbola. Eagﬂwe time derivative of the average correlation function is
hyperbola is parametrized byt, with the conditon—2a  then

<ct=<2a. This implies thatC, ,(t)=0 for t outside the in-

terval [ —2al/c,2a/c]. To perform the spatial integration in a(Clyz(t»=47-raQ2Tv[cosh<po)—1]

Eqg. (9), we make a change of variable from the Cartesian

I(t)=H , (15

coordinate to a coordinate system adapted to the hyperbola in 1 2a 1 2a
Fig. 2 X|z=0o|lt+—|— =4[ t—— a7
9. 2a c 2a c
x=asin( 0) cosr( ) peR’ The Dirac functions in Eq(17) are the causal and anticausal
] ¢ ) T T (or time-reversedGreen’s functions from A to B. There is no
y=acod 0)sinh( ¢)cod y) with { fe| - 2'2|-  problem in obtaining a time-reversed expression of the
zZ=a cos( 0) sinI’( <p) sin( t//) ye [0 277] Green’s function because a correlation function is defined for

(11) negative and positive times. Physically speaking, the time
symmetry of Eq(17) results from our hypothesis of spatially

The Jacobian of this change of variable is uniform ambient noise distribution. Noise sources surround-
3 : . ing the receivers in A and B, the correlation function contains

I(¢.0,4)=a> cos f)sinf(¢)[ costi(¢) —sin(9)]. (12) both propagation information from Ato B and B to A. Taking

the time derivative of the correlation function, the time sym-
Then, we have for any point; defined by the coordinates metry means that both the forward and backward Green's
(¢,0,4)) |ro—r¢=a(coshg)+sin(d)) and  |ry—ry functions between A and B are retrieved from ambient noise
=a(coshg)—sin(d)), from which it follows cross correlation. The amplitude of these Green'’s functions is
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driven by the noise excitation power and the area of théAs in Sec. Il, the integral oved 7 is changed into the product
ellipsoidal compact support on which noise sources ardv. It corresponds to the accumulation of noise sources with
taken. Note again that the compact support is necessary @ creation rater (m>s 1) over the finite duration signals of
this analysis to prevent the noise correlation function fromlengthT recorded in A and B. Then, we have

diverging.
O I = =
b 472 ) S a1 dlri—ry

r1_rs|_ |r2_"s|”

Co Co

IIl. FREE SPACE WITH ATTENUATION

One remaining question is the physical meaning of the Xexr{iw(w |
boundary limite = ¢y necessary to perform the integration in
Eq. (14). Actually, ¢, is strongly related to the presence of WG
attenuation in the medium. Up to now, we have considered a Xex;{ - —2'(|rl—rs| +|r2—rs|)]. (21)
homogeneous propagation medium without attenuation. In Co

that case, the ampl_itude contribu_tion from noise sources faEquation(Zl) is the equivalent of Eq(9) in the presence of
away from the receivers A and B is not lowered, which leads,enyation. We recognize in the two exponentials the hyper-
to a diverging correlation function as seen in Etd). The 15 spatial dependence for the phase term and the ellipse
goal of this section is to show that the presence of atte”uas'patial dependence for the amplitude tefig. 2. We apply

tion in the medium solves this problem. Volume attenuationpen, the change of variable done in Sec[Hq. (11)] to

is included in the medium by adding an imaginary Compo‘decouple the phase term from the amplitude term in(E).
nent to the sound speed=cy+ic;, with ¢;<cy. We chose i follows

this usual way to account for attenuation because of its con-
venience to pursue the mathematical derivation. The fre- Q*Tw [+= e
: : (CoAt))= do | desinhg)
guency dependence of the Green’s function that results from : 2 o 0
attenuation is discussed later. The Green’s function is then

modified as follows: y p( 2acoshg) wc; f“ﬂ .
exp ——— X

1o 1 N P c§ -a
G(rz,t;rl,O)z—j do——expio| t—

2m ) |rp—r| 0 2X

Xexp{iw t+—1|. (22)
_ Co
xexg| —wo 2" (19
@b c? ' The presence of attenuation in the medium makes the inte-

) ] ) gral over¢o converge as
Assuming again  that (S(rs,ts)S(rs ,ts))=Q5(ts
—tg)d(rs—rg) and using the same development as in EQs. [ += ] 2acoshi¢)wc;

J desinh(p)exp — ———

(4) to (8), we have now >
0

Q% [+ (7 [+ (+= (++drydtdwde’dr 2
o 2 slitl S Zawci Cé ’
ry—r
xex;{iw( T—ts— | lC S|) tio' while the integral ovex gives
0
+a . 2X Co ) 2a
[ro—ry f dxexpio|t+—||==—|exp io| t+—
X t+7'_ts_ —a CO 2iw CO
Co
el fioft- 2] 20
ry—r ro—r —expio|lt——]||.
xex;{—ci(a} 125—0—(0’ 225) ) (19 Co
c c
0 0 Finally, combining Egs(23) and(24), it follows
After a change of variable—t;= 7', we perform the inte-
gration on 7 knowing that f§” exdi(w+w')7 ]d7 = Jw QZTvcgfﬂo 1 _ 2a
+w'), which leads to (Cdt))= 8rac J . Cie| TR t+c—0

Q? (+= (+= (+» drdrldw 2a
<C1,2(t)>:—2f J f T —exp(iw(t——
477 —o0 J -0 J—x c

|I’2—I’S||I’1—I’S| 0
X ex;{ iw
WG derivative of the noise correlation function yields the Green’s
Xexg — —2'(|r1—rs| +ro—rg)|. (200 function. In the case of a medium with attenuation, the time
Co derivative of the correlation function gives

1 2a(l)Ci
—exp — > .
w CO

[ri—ry Irz—rslﬂ (25)
0 Co

t+

From the result derived in Sec. |, we know that the time
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d o Q*Twe} J‘+°°dw 1 [, 22 ir
at{Cd =" | Lo @A et g
=< 05
o 2awc; f+°° do 1 S
ex c2 . o 2a 3 o cresensesaesnesncsnaneaned
e z
) 2a 2awc; E :
Xexpio|t——| |exg ——; . < .05t
Co Co
(26) § A .
-1 -05 0 05 1

The two integrals in Eg(26) contain a frequency-dependent @)
term 1k that prevents us from directly identifying these in-
tegrals as the exact Green'’s function from Ato B and B to A.
Actually, this 1k is due to the choice made to describe the
attenuation in the medium. Adding an imaginary part to the
sound speedd=cy+ic;) means that we made the assump-
tion of a linear dependence of the attenuation with frequency,
as shown in the Green’s function formulatipiqg. (18)]. If

we had chosen @" dependence of the attenuation in the
Green’s function, we would have obtained a%/amplitude
term in the derivative of the correlation functipgqg. (26)].
Physically speaking, this means that the attenuation in the
medium will impact the estimate of the Green’s function 4
from the ambient noise correlation function. More precisely, (b) Time (s)

attenuation acts as a low-pass filter whose frequency behav-

ior follows the frequency dependence of the attenuation irf!G- 3. Representation of the noise correlation functigray ling and its
the mecium. Thus, the physical interpretaion of E25)is 1% S»eloc fold nk (@ 1 an ninte bt case i,
still the same as Eq17) width case{10-20 HZ.

Time (s)

Amplitude (a.u.)

d
a<Clv2(t)>“47TaQ2TVQ[G(r2'0;r1’_t) in ultrasonic€ underwater acoustisand geophysic$the

correlation function is preferred to its derivative to approxi-
—G(ry,t;r2,0)], (27)  mate for the Green’s function. Indeed, performing a time

where the~ sign means that the Green’s function has beerflerivative on experimental data is usually avoided because it
low-pass filtered according to the frequency dependence @ould be the source of strong undesirable noise. However,
the medium attenuation. Comparing E¢®6) and (18), we the mathematical demonstration above clearly shows that it
note that the amplitude terf is directly related to the for- is the derivative of the ambient noise correlation function

mulation of the attenuation term used in of the definition ofthat converges to the Green's function. What do we lose
the Green’s function. when we don't perform the time derivative?

We see from the mathematical developments made in AN element of response is given in Fig. 3, where ambi-
Sec. Ill that the introduction of a small attenuation in the®nt noise correlation function&C, At)) are plotted versus
medium makes the correlation function converge withoutheir derivatives for a infinite bandwidtfFig. 3(@)] and a
any constraint on the noise source statistics. The final resulimited bandwidth signa[Fig. 3b)], respectively. The two
is the same as in Sec. II, except that the frequency f”terinéunctlons look very different in the infinite bandwidth case,
occurs when a frequency-dependent attenuation is intrgloStly because the zero-frequency component creates the
duced. The derivative of the ambient noise correlation funcPlateau of the correlation function. However, this dc compo-
tion gives birth to a causal and anticauéad time-reversed ~ Nent will usually not be available in realistic experiments. In

estimate of the Green’s function between the two points athe case of a finite bandwidth problem, we see that the two
which noise has been recorded. functions resemble each other. Their principal difference is a

7/2 phase shift that does not affect the overall shape of the
waveform but that could be of importance in the case of
tomography applications where exact arrival times need to
In the literature, most experimental results have beeibbe estimated. However, if undesired noise becomes an ex-
obtained by using the noise correlation functi@md not its  perimental issue when performing the time derivative of the
derivative as a close estimation of the Green’s function.correlation function, it is not a bad approximation to estimate
Only Weaver's results in ultrasonic reverberant cavities the Green’s function as the noise correlation function itself.
have clearly demonstrated, both theoretically and experimen-  Finally, how could the theoretical demonstration done in
tally, that the Green’s function would be retrieved from theSec. Il be adapted to the case of a heterogeneous medium?
diffuse noise correlation function derivative. In similar works For example, if we assume a spatial dependence of the sound

IV. DISCUSSION
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speedcy=cy(X,Y,z), is the final result in Eq(27) still cor-  acoustics that refraction could generate multiple arrival times
rect? It is possible to show that, for uncorrelated noiseébetween two points. If a noise source creates multiple echoes
sources, EQ.(21) is still valid if the arrival times|r, in A and B, it means that it belongs to differefinvariant
—r4/cy and |r,—r4|/cy are changed into a more general 3D surfaces of the correlation function. There is then no

formulation f;*ds/c(s) and [ ?ds'/c(s’), where the path§  isomorphism between the hyperbola in the homogeneous
: y A Medium and the-invariant sheets in the refractive medium.

andS’ between the noise sourceripand the receivers in : -
and B are given by the Fermat principle. In this case thdn this case, further analysis is necessary to understand the

noise sources that contribute to the noise correlation functioﬁelat'oﬁsr'p l)_e'[r\é\{lezen the noise correlation function and the
at a given timet have to satisfy the following equation: Green’s functior:

r; ds r, ds’ . ) S
_ —=1. (28) R. L. Weaver and O. J. Lobkis, “Ultrasonics without a source: Thermal
ro C(s)  Jr c(s) fluctuation correlations at MHz frequencies,” Phys. Rev. L&#.134301
. ) (2009).
In general, the noise sources that satisfy E2B) are N0 2p Roux, W. A. Kuperman, and the NPAL Group, “Extracting coherent
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