
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Ambient Occlusion and Edge Cueing

to Enhance Real Time Molecular Visualization

Marco Tarini, Paolo Cignoni, and Claudio Montani

Abstract— The paper presents a set of combined techniques to enhance the real-time visualization of simple or complex molecules
(up to order of 106 atoms) space fill mode. The proposed approach includes an innovative technique for efficient computation and
storage of ambient occlusion terms, a small set of GPU accelerated procedural impostors for space-fill and ball-and-stick rendering,
and novel edge-cueing techniques. As a result, the user’s understanding of the three-dimensional structure under inspection is
strongly increased (even for still images), while the rendering still occurs in real time.

✦

1 INTRODUCTION

Interactive protein visualization is an important application with
harder requirements every year: public databases like RCBS Protein
Data Bank [1] are storing a large number of molecular structures of
ever-increasing complexity. It is essential to be able to visualize the
shape of these proteins in an interactive, meaningful and insightful
way so that users can correctly understand the three-dimensional struc-
ture of these shapes.

Many software systems, such as for example RasMol[28], CN3D
[6] or Chimera [5], are available to help scientists in this task. These
systems offer various visualization modalities that map the inner struc-
ture of the molecules into 3D shapes according to an almost standard
set of paradigms as Balls-and-Sticks, Space-Fill, Licorice, Ribbons
and various kinds of accessibility surfaces. These approaches are able
to describe local geometrical and chemical properties of the inspected
structure and to provide insights on chemical traits of the molecule.
An emerging problem is that, due to the growing size and complexity
of the analyzed proteins, all of these visualization modes map proteins
into three dimensional structures that, when rendered with standard
local shading techniques, fail to produce a high-level comprehensible
picture to the user. In other words, for complex molecules it is very
difficult to perceive the overall 3D structure of the protein from a sin-
gle image. This problem is only diminished, but not solved, when
other common visualization techniques, as ribbons, provide a higher
level description of the structure.

From a rendering oriented point of view, the problem is closely re-
lated to the use of local lighting models, since global illumination ef-
fects are usually not available in a handy interactive way. Sometimes
more sophisticated approaches are used by means of off-line tools like
raytracers for generating high quality images for important presenta-
tion cases (like journal or web covers); but these tools never aid the
research during the interactive visualization process.

The most common (non-local) effects that are used for enhancing
the rendering are cast shadows and depth cueing. Both of them are
available in most of the well-known molecular visualization systems,
but these approaches often fail to create an easily comprehensible im-
age. For example, consider the molecule shown in Fig. 7 lower left:
while it is clearly better than the plain rendering (top left), the shape of
some portions of the protein is still very ambiguous. Other common

• Marco Tarini is with Università dell’Insubria, Varese, Italy,

E-mail: m.tarini@isti.cnr.it.

• Paolo Cignoni is with I.S.T.I. - C.N.R, Pisa, Italy,

E-mail: p.cignoni@isti.cnr.it

• Claudio Montani is with I.S.T.I. - C.N.R, Pisa, Italy,

E-mail: c.montani@isti.cnr.it

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6

November 2006.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

techniques adopted to overcome this problem are interactivity and the
use of stereoscopic displays.

In recent years much of the research efforts on large protein vi-
sualization has targeted efficient rendering of these large 3D struc-
tures, to achieve real interactivity. Various systems were presented
with this purpose, both relying on existing 3D API [4] or trying to
exploit features of recent graphics hardware or multiresolution tech-
niques [11, 10]. Importantly, while the focus of this paper is to raise
the quality of the perception of the shapes through sophisticated shad-
ing and edge cueing effects (summarized in Fig. 1), the interactivity of
the whole system is a fundamental feature of our approach: all pre-
sented techniques work in realtime for very large proteins like the
1AON depicted in Fig. 7 (around 60K atoms) and do not need any
preprocessing phase of significant length.

The main contributions of this paper can be summarized as follows:

• the use of advanced shading techniques for enhancing the per-
ception of the 3D shape of large proteins;

• a novel technique for parameterizing the surface of molecules
represented as SpaceFill or Ball and Sticks models (sec. 3.3);

• a novel technique for efficiently computing ambient occlusion
information for molecules (sec. 4);

• an efficient approach for the rendering of molecular models using
GPU based procedural textured impostors. (sec. 3.1);

• two interactive techniques for enhancing edges in molecular ren-
derings (sec. 5).

2 PREVIOUS WORK.

We aim to enhance the shape perception process during molecular vi-
sualization by means of stylistic rendering techniques combined with
a more sophisticated shading model. In other words, we are defin-
ing an illustrative visualization approach [31, 8] for enhancing the
information-effectiveness of the rendered images of molecules.

We adopt more a sophisticated shading model that approximates
the light coming from an uniformly diffusing lighting environment.
This was shown to be useful in [17], where the authors report the re-
sults of perceptual experiments showing that depth discrimination un-
der diffuse lighting is superior to that predicted by a classical sunny
day/direct lighting model, and by a model in which perceived lumi-
nance varies with depth. The inadequacy of local lighting models was
already noted in [30], where the use of a vicinity shading, a variant
of the obscurance term proposed in [32], was proposed to enhance the
visualization of volumetric datasets. Similarly in [21] the accessibil-
ity shading approach was introduced, where the geometric local (and
global) accessibility of a point is used to modify the Lambertian shad-
ing of the surface in order to darken deep, difficultly accessible areas.

Enhancing edges and silhouette As was shown in [26, 9, 20,
14] finding and displaying silhouette edges is an important task that
is used by illustrative rendering approaches to improve the readability
of a 3D scene. Many different techniques have been proposed and a
good survey on this matter can be found in [13]. Some of the proposed

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 1. Good molecular rendering can be more informative, clearer, and more capable of communicating a shape when it is the combined result of
several effects and techniques. Top row: base atom colors, direct Lambertian and Phong illumination, self-shadowing, depth cueing. Bottom row
(the topics of this paper): ambient occlusion, depth-aware halos, depth-revealing contour lines, and intersection-revealing contour lines.

approaches, like [26], work directly in image space, by processing the
rendered depth buffer of the scene; others works on the mesh repre-
sentation finding edges of the mesh that are part of the silhouette for
the current viewpoint. Other authors exploit graphics hardware ren-
dering features to perform this task, such as the z-offsetting technique
presented in [25] that produces borders by rendering front and back
faces of a scene with a different z-offset. Recent approaches, like ours,
exploit the programmability of the graphics hardware to implement
directly on the GPU most of these approaches. A more detailed com-
parison between our approaches for enhancing the edges of a molecule
and the existing approaches is reported in section 5.

Enhancing the ambient term In local shading models the effect
light which does not come directly from the primary light source has
to be approximated. Otherwise, the portion of the scene which is not
directly lit will come out entirely dark. Even without resorting to more
correct (and complex) global illumination solutions, shortcuts are pos-
sible. The commonest and cheapest solution [23] is to use a simple
per-scene constant term, but this approach leads to a notable flatness
in the portions of the scene which are not directly lit.

The approach has been improved by explicitly computing for each
point of the surface its accessibility value, which is the percentage of
the hemisphere above each surface point not occluded by geometry
[16]. This useful technique is commonly known as ambient occlusion
and it is used in many production environments to add an approxima-
tion of the shadowing of diffuse objects lit with environment lighting.
For example, ambient occlusion is precomputed in the interactive vi-
sualization system described in [2].

Variants of the ambient occlusion term called obscurance have been
introduced in [32, 12], where the authors propose to exponentially
weight the occlusion factor according to the distance of the occlud-
ers in order to enhance the shadowing effects of near occluding sur-
faces. In all of the above proposals, the computation of this extended
ambient term is performed using a traditional ray-traced approach. In
[27] graphics hardware is exploited to efficiently compute a per ver-
tex ambient occlusion term. They render all geometry as seen from
a light source direction into the depth buffer. Then, all vertices are
rendered again as a point set. For each vertex an individual hardware
based occlusion query is used to find vertices that passed the depth test
and which are therefore visible for the considered light source; finally
a visibility matrix M is stored per vertex. A similar approach, based
on the use of the GPU for the computation of the ambient occlusion
term, has been proposed in [22], and extended to the computation of a
first bounce of the diffuse interreflection of light in [3]. Our approach
for computing the ambient occlusion term is somewhat similar to the
above techniques, but it exploits a different parametrization and access

strategy for storing the computed results relying on the procedural na-
ture of the molecular datasets; moreover, we add two significant opti-
mizations: one exploiting the structure of molecular shapes, the other
extendible to the general case.

As a final note, ’accessibility’ itself is quite an important concept in
chemistry: introduced by Lee and Richards [18] it is used to determine
which parts of a given molecule are accessible to (the spherical atoms
of) another molecule. Note that this paper does not discuss the direct
visualization of this chemical property but focuses on the improve-
ments on 3D shape perception triggered by (approximate) non-local
shading models and other illustrative rendering techniques.

2.1 Ambient Occlusion Definitions

Let us consider a point p on the surface with surface normal np. Ac-
cording to [15] we can define the irradiance, E, arriving at p as:

E(p) =

∫

Ω
np ·ωL(ω)dω (1)

where L(ω) is a scalar with magnitude equal to the radiance arriving
from direction ω , and Ω is the set of directions above the surface, i.e.
the direction for which np ·ω > 0. This can be approximately eval-
uated by discretizing the domain Ω into k sectors ωi with a possibly
uniform solid angle measure |ωi|, and, for each sector, evaluating the
radiance L only for a sample direction ωi:

E(p) =
k

∑
i=1

np ·ωiL(ωi)|ωi| (2)

The above equation becomes simpler if we consider a uniform light-
ing environment (where light comes uniformly from every direction,
as under a cloudy sky). In this case, if we discard diffuse interreflec-
tion effects and therefore we take into account only direct lighting,
L(ω) can be substituted by a simple binary function O(ω) valued 0
if the ray shoot from p along ω intersects our surface (and therefore
the light coming from the sky is obscured) and 1 otherwise. The re-
sult can be considered a simple first order approximation of the whole
rendering equation.

With the assumption of a uniform sampling of the ω directions,

E(p) =
1

4π

k

∑
i=1

np ·ωiO(ωi) (3)

3 EFFICIENT RENDERING OF BALL AND STICK AND SPACE

FILL

In our scenario the scene is composed by two simple types of prim-
itives: cylinders (side area only) and spheres. We use 2D impostors

TARINI, ET AL.: AMBIENT OCCLUSION AND EDGE CUEING FOR MOLECULAR VISUALIZATION

for both primitives. One impostor is dedicated to each occurrence of
cylinder or sphere in the scene, and it is rendered as a 2D rectangu-
lar quad in the viewing plane which encapsulates the projection of the
primitive it stands for (see Fig. 5).

The rationale is that impostors can be made much more rendering-
efficient than a triangular tessellations, both during pre-computation of
global illumination and in the final rendering. This is critical because
we need to target large (> 50k atoms) organic molecules as well. This
is also memory-efficient, as the surface of the molecule is succinctly
defined in an implicit way. The result is visually better, as the triangle
tessellations are just linear approximations bound to produce shading
and intersection artifacts.

Another advantage of the impostor approach is that, working on im-
age space, a number of rendering effects (in particular border-oriented
ones) become straightforward and computation-friendly (see Sec. 5).

However, this approach poses the problem of how to store a signal,
defined over the implicit surface, to record the precomputed ambient
occlusion terms. This problem is addressed in Sec. 3.3.

3.1 Procedural impostors

We need our impostors to be z-, normal-, α- and u,v- mapped. For a
given view, each 2D point q inside an impostor represents a 3D point p
on the primitive P (the point visible through it), and has the following
attributes:

• the Boolean membership of q inside the projection of P — in
order to discard the corresponding fragment otherwise;

• the normal pn of p — in order to apply direct illumination;

• the depth z of the fragment — in order to correctly compute the
intersections between primitives, and also to compute shadow-
maps;

• the texture position u,v for the corresponding visible 3D point on
the primitive — in order to access any attribute previously stored
for p.

The last point is crucial, because we need to store per-position infor-
mation for our primitives (in particular, a value for ambient occlusion,
see Sec. 4). In practice we are resorting to a global 2D parameteri-
zation of the entire surface of the molecule, intended as the set of the
surfaces of all its primitives (see Sec. 3.3).

A solution could be to store the listed attributes in a set of fixed
textures accessed for each fragment. This could impact perfor-
mance because of the additional texture bandwidth consumption, and
would cause aliasing problems (especially around borders, as pres-
ence of semitransparent interpolated texels makes the rendering sort-
dependent). On the contrary, our impostors are procedural, meaning
that all attributes are synthesized on the fly. This greatly helps aliasing
problems, and also improves flexibility and adaptability.

3.2 General schema

For each impostor, we send four vertices with appropriate values.
A vertex program is dedicated to expand the impostor around the

processed primitive, aiming at producing the least number of frag-
ments outside the impostor (but producing all the fragments relative
to the front facing part of the primitive). The initial vertex position
is projected and the impostor is then expanded in image space.This
happens differently for the two primitives (see Sec. 3.3).

Another objective of the vertex shader is to perform as many pre-
computations as possible in order to minimize residual per-fragment
workload (for this reason we prefer not to use the Point Sprites exten-
sion). This general optimization technique is, in our case, particularly
fruitful because our impostors represent large, high-level primitives,
and the pixel-to-vertex ratio is accordingly larger than usual.

Constant per-primitive parameters (e.g. base atom color) are passed
down unchanged by the vertex program to the fragment processor.

The fragment program computes and then processes the required
fields, including membership, u− v texture position, depth, or light-
ing (according to need of the current rendering mode and rendering
pass). Depending on the rendering technique, the final values are writ-
ten either in the current screen buffers or in intermediate textures for
subsequent passes.

3.3 Parameterizing the surface of a molecule

Our visualization algorithm requires a data structure to store the com-
puted ambient occlusion terms. This can be assumed to be a low fre-
quency signal, i.e. to vary smoothly over the surface of the molecule.
For the case of atoms, this signal is defined over spheres, so it would
be possible to store it, in a conveniently compact way, as a small set
of spherical harmonic coefficients [29] per atom. However compact
this representation would be, we choose a direct sampling represen-
tation because it is more local in nature and therefore more efficient
during rendering: only few samples need to be read and interpolated
to reconstruct the signal in a specific location.

Now we need a way to store a sampling over spheres and cylin-
ders. Since the surfaces are implicit, we resort to a specially formatted
texture that is to be coherently accessed during the rendering of the
impostors.

We assign to each instance of sphere or cylinder a unique rectangu-
lar (non necessarily squared) patch of texture space. All patches have
the same height so that they can be trivially packed in a single global
texture. During any rendering that requires texture accesses, the 2D
offset of the patch, relative to the origin of the the global texture, is
sent as an additional attribute.

Depending on the size of the molecule (number of atoms) the sizes
of texture patches vary from as few as 4 to hundreds of texels per side;
for example, for a molecule with around 1K atoms 32× 32 patches
can be packed in a 1024×1024 texture, while the surface of up to 64K
atoms can be sampled into 4×4 large patches of a 1024×1024 texture
(when many atoms are present, the radius of the molecule is probably
very large as well, reducing atom average screen size and which means
that fewer texels per atom will suffice).

For both kinds of primitive we define a mapping M between every
point on its area and a position inside the corresponding texture patch.
The function M needs to be simple, as it will be computed both ways
within the fragment shader: during scene rendering, given a point in-
side the impostor q, we need to compute M(P(q)) = (u,v) to find tex-
ture coordinates for current fragment; during ambient occlusion com-
putation (see later in sec 4), we will need to compute M−1 for each
fragment. Naturally we seek functions M that exhibit low distortions,
so that texture mapping artifacts are minimized.

We use one of two alternative parametrization schemas Ms1 and Ms2

for spheres, and one schema Mc for cylinders.

Spheres: parameterization The mapping Ms1 is a gnomonic
projection over a cube, followed by packing of its 6 faces in a rectangu-
lar patch with a 2×3 aspect ratio. Following [24], Ms2 is a gnomonic
projection over an octahedron, which is unfolded into a square. The
mapping Ms2 and its inverse are easier to compute, taking fewer op-
erations in the fragment shader (in our implementation, 9 ARB low
level fragment operation instead of 16), whereas Ms1 presents a minor
stretch energy ([24]). Another advantage of Ms2 over Ms1 is that it
requires less duplicated texels (see later in Sec 3.5), so no choice fully
dominates the other. This choice is orthogonal with the rest of any of
the algorithm discussed here.

Ms1 and its inverse are well known. We report the exact version that
we use for Ms2, that goes from the surface the unit, origin centered
sphere to the patch parameterized as the square [−1.. + 1]2 (we will
use a GPU friendly formulation, with the fewest possible cases):

Ms2(x,y,z) =

{

(x
d , y

d) if z ≤ 0 ,

(sign(x)(1− |y|
d),sign(y)(1− |x|

d)) if z > 0
(4)

where d = |x|+ |y|+ |z|. The inverse, up to a normalization, is:

M−1
s2 (u,v) =

{

(u,v,h) if h ≥ 0 ,
(sign(u)(1−|v|),sign(u)(1−|v|),h) if h < 0

(5)
where h = 1−|u|− |v|

Note that the mapping Ms1, being gnomonic, does not need its ar-
gument to be normalized prior to use.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 2. Applying a small 2D texture map over a sphere impostor, using
a 10× 10 octahedron mapping Ms2. In order to show the behavior of
Ms2 the virtual sphere (impostor) is rotated from left to right by 180o. For
illustration purposes bilinear interpolation is disabled and random values
are assigned to texels, so that they are clearly visible. Duplicated texels
are assigned to the same color (see later). Refer to fig. 6 to see the
used 2D texture.

Spheres: impostors (see Fig. 2). Four vertices are sent at the
position of the sphere center, distinguished by the value of a special
attribute (s, t) assigned respectively to (±1,±1) to designate each ver-
tex to one different corner of the impostor quad.

Each vertex is displaced in screen coordinates after projection to
produce a screen aligned quad. The displacement is given by (s · r ·
Sg, t ·r ·Sg,), where r is the radius of the sphere (passed as an attribute)
and Sg is the global scale factor, extracted once per frame from the
current view matrix (as the cubic root of its determinant) and stored in
a environment parameter.

Interpolated values for s and t are passed down to the rasterizer,
so each fragment inside the screen quad is produced with an as-
signed relative position (s, t) ∈ [−1.. + 1]2. We call this 2D space
impostor space. Fragments with |(s, t)| > 1 are immediately dis-
carded. For every surviving fragment, the original z value is de-
creased by (1−|(s, t)|)∗r and its normal in screen space is assigned to
n = (s, t,(1−|(s, t)|)). The normal is then transformed in object space

with n′ = A−1
MV (n) (i.e. by a multiplication with the inverse — i.e. the

transpose — of the current model-view matrix), and the result is fed to
the chosen mapping (u,v) = Ms(n

′). Texture is fetched at the position
(u,v) plus the offset for the current patch.

Cylinders: parametrization Let us consider the normalized, z-
axis aligned cylinder centered in the origin defined as the set of points
{(x,y,z)|x2 + y2 = 1,x ∈ [−1..+1]}.

The side area of cylinders is developable, so it would be natu-
rally parameterizedwith the zero-stretch parametrization M(x,y,z) =
(atan2(x,y)/π,z).

However computing it in the fragment shader (either direction)
would be very demanding, since it requires trigonometric functions
(direct and inverse) which are not supported in the typical GPU. These
functions could be either approximated (e.g. with Taylor formulas),
which is time consuming, or sampled from a 1D texture, which re-
quires additional texture accesses. We prefer a cheaper alternative,
consisting in the adoption of a simplified mapping Mc, which is a pro-
jection over a square-based prism and is defined by:

Mc(x,y,z) =

{

(y
2(|x|+|y|) −0.5,z) if x ≥ 0 ,

−(y
2(|x|+|y|) +0.5,z) if x < 0

(6)

Note: the prism sides are defined on the |x| ± |y| = ±1 planes rather
than the |x|=±1 and |y|=±1 to simplify the number of cases; this, of
course, does not affect the quality of the parametrization. The inverse,
up to a re-normalization of first two components of the result, is given
by:

M−1
c (u,v) =

{

(1−|2u−1|,2u−1,v) if u ≥ 0 ,
(|2u−1|−1,2u−1,v) if u < 0

(7)

Cylinders: impostors (see fig.3) To draw a cylinder impostor
we send two pairs of vertices, each located at either end of the axis
of the cylinder. After projection the points are displaced in a direc-
tion parallel to the image plane and orthogonal to the cylinder axis, to
form a rectangular quad.As before, each vertex is assigned a coordi-
nate (s, t) ∈ (±1,±1), which will be interpolated for the fragments.

To lift the burden off the fragment program, the vertex program
computes a set of (signed) intermediate values which are constant over
all the impostors and will be reused by all the fragments. Some of
these values are found in cylinder plane, which is defined as the plane

Fig. 3. Applying a 8×16 texture over a cylinder impostor, using a prism
mapping Mc. For illustration purposes, bilinear interpolation is disabled,
except in the last image, and random color values are assigned to texels.
Duplicated texels are assigned to the same color.

Fig. 4. Processing for the corners of cylinder impostors. See text.

embedding the cylinder axis and orthogonal to the viewing plane (see
fig.4).

In particular , we compute the values of dz, da and (nx,ny) which
are, respectively, the offset in the z direction, the offset in v texture
position, and the normal, for a fragment in impostor space at s = 0, i.e.
on the projection of the cylinder axis. For all other fragments, these
values must be multiplied by (1−√

s). The normal, in impostor space,
will simply be given by (s,nx,nz).

After adding da, fragments with v lying outside [−1..1] are dis-
carded.

Another task performed by the vertex shader is to extend the posi-
tion of the projected vertices also along the axis direction to accommo-
date for the part of the cylinder extruding from the original impostor
space (dotted blue line in fig. 4), only for vertices for which da · s is
positive. Finally, the vertex shader also computes the offset of the tex-
ture position u (the one varying along the diameter of the cylinder).
This data consists of an offset angle and is stored and sent to the frag-
ment shader as the unit-length complex number (roti,rotr), because
that is a space- and computation-efficient way to store a 2D rotation
(we cannot send a single scalar value because of the distortions intro-
duced by the mapping Mc).

3.4 Patch packing and determination of patch size

Thanks to the low-frequency nature of the stored signal, we can use
a sparse sampling: every visible texel will cover in most cases multi-
ple screen pixels. This means that minification filters are not needed:
MIP-mapping is disabled, and so texture patches can be of arbitrary
(non power of 2) sizes without causing any artifact. We are free to
choose the best fitting patches size, according to the number of patches
and available texture size. Consequently unused space (at right and
bottom borders of the global texture) is usually small.

For simplicity we choose to ignore differences in the sizes of atoms,
devoting squared patches the same size sp for each one. If sticks are
present, we pack two (optionally three) rectangular stick patches into
a sp × sp meta-patch. If k is the total number of patches and meta-
patches, and we plan to use a st × st texture, we choose sp simply as

⌊st/⌈
√

k⌉⌋.

3.5 Accessing texture

Because of the same reason, it is mandatory for us to interpolate be-
tween samples. While it would be possible to adopt an ad-hoc texel
interpolation schema that accesses several non necessarily adjacent
texels, in order to increase performance we prefer to perform a sin-
gle, standard bilinearly interpolated texture access per fragment (an

TARINI, ET AL.: AMBIENT OCCLUSION AND EDGE CUEING FOR MOLECULAR VISUALIZATION

Fig. 5. Rendering a molecule with impostors. Top left: the actual im-
postors used are shown as wireframed quads. Cylinders impostors are
parallel to the projection of their axis, and ball impostors are screen
aligned. Top right: cylindrical impostors have been processed. Bottom:
ball impostors have been projected. Intersections between primitives
are correctly computed via the zeta-buffer.

heavily optimized operation in graphic cards). If this is done without
care, discontinuity of M would became visible as discontinuity arti-
facts in the corresponding parts of the primitive (see Fig. 6). We solve
the problem by offsetting all texture coordinates by half a texel and
by replicating some of the texel in each patch: fig. 6) shows how the
problem is fixed for Ms2; similar solutions are adopted for Ms1 and Mc.

The amount of texel replication needed by the two sampling is
different. With Ms1, a texture patch of size 3n× 2n texels contains
(n3 − (n−2)3) unique texels out of 6∗n2. For Ms2, a n×n texture has

n2 − 2n + 1 unique texels out of n2. From this point of view Ms2 is
therefore advantageous.

4 GPU COMPUTATED AMBIENT OCCLUSION

In order to compute ambient occlusion, we first build a set of directions
sampling ω . To make it well distributed, we start with a tetrahedron or
octahedron and we subdivide it until the desired number of directions
is reached, then we apply a Laplacian smoothing to the set of found
directions.

Similarly to [27], we perform a pair of off-screen rendering passes
for each direction di in the set. In the first pass a “shadow-map” is
produced rendering the z-buffer of molecule using di as view direction.

The next pass is a rendering that writes over the texture for the
molecule, and accesses the shadow-map produced in the previous pass.
For each primitive we send a quad covering the corresponding texture
patch, complete with attributes encoding the position and shape of that
primitive. For each produced fragment at position (u,v), we compute

p = M−1(u,v), then we transform p with the same viewing conditions
used during the first pass, and comparing the resulting depth with the
one extracted from the shadow-map to determine whether p is lit by
light coming from di. If so, the light contribution for di, according
to equation 2, is accumulated at the corresponding pixel/texel through
alpha blending.

Note that replicated texels (see Sec. 6) are dealt with correctly be-
cause both copies will be mapped by M−1 in the same 3D position and
therefore will produce the same result.

Shadow-map computation is particularly undemanding in our case.
It is known that shadow-map, in the case of closed blockers, is more
robust if the mid-surfaces (half-way between front-facing and back-
facing ones) are drawn. In our case (sphere and cylinders), the mid-
surfaces are flat and can be rendered by simply disabling per-fragment
depth displacement during impostor rendering. The fragment pro-
grams stops being depth-replacing, and, since shading is disabled as
well, reduces to a simple membership test (for spheres) or to a single
output operation (for cylinder).

Fig. 6. The continuity problem when using bilinear interpolation to ac-
cess texture. In the left column the texture patch is shown in u− v pa-
rameter space. The second and third column show a rendering of the
impostor, with the sphere rotated to show the most problematic region,
which is its “back” part, where the four corners of the texture patch meet.
For illustration purposes, in the middle column we use a closest-sample
filter; in the right column a standard bilinear-interpolation filter is used.
Top row: when the entire surface of the texture patch is used, bilinear
interpolation shows discontinuity lines across cuts. To solve this prob-
lem, the texture patch is shrunk in texture space by half a texel in every
direction (middle row), and in all four sides of the patch texels values are
mirrored around the middle of the edge (bottom row). Texture is never
accessed at positions outside the outlined square. The resulting impos-
tor is smooth (bottom right). In this case, a total of 81 out of 100 texels
are unique.

We add another optimization, which works for general shapes, con-
sisting in the computation of the contributions of two opposed light
directions di and −di at a time. The two corresponding shadow-maps
are drawn side to side into a single texture. In the second pass, each
3D point p can be lit by only one of di and −di, according to normal of
p (see equation 2), so a single texture access is performed in any case
from the appropriate half of the shadow-map. This effectively halves
the processing time for the second passes.

4.1 Applications

We found that ambient occlusion adds dramatically to the clarity of the
molecular rendering, in all visualization modes. This is true for small
molecules (few dozens or few hundreds atoms, fig. 8), for medium
molecules (few thousands atoms, fig. 8), and even more so for larger
ones (several tenths of thousands of atoms, fig. 7). In the last case,
standard direct shading alone, even when enhanced with depth cueing
and shadows, can fail to produce an intelligible still image, while the
3D structure becomes evident when ambient occlusion is used, even
without any other contribution.

5 FURTHER ENHANCING VISUAL QUALITY

There are a number of visual effects that are easy to add in our
impostor-based framework.

5.1 Depth aware contour lines

Since we work in image space, contour lines can be easily added.

The first effect consists in drawing a solid line around each primi-
tive. Since these lines do not affect the depth value of fragments, they
naturally disappear at the intersections of atoms, ad occur only to sep-
arate actually detached atoms, boosting the clarity of rendered images
(see fig. 9). Less importantly, the border can help to tell the difference
between larger vs. just nearer atoms when perspective views are used.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 7. Example of the efficacy of Ambient Occlusion to deliver impres-
sion of 3D shape in still images for large molecules. A molecule of 1AON
(model taken from [1]), consisting of 58688 atoms is shown with (from
top left, in Z order): standard direct lighting, direct lighting with depth
cueing, direct lighting with cast shadows and depth cueing, and Ambi-
ent Occlusion alone. The last image uses a 1024× 1024 texture with
4×4 sized octahedron based patches.

Fig. 8. Other comparisons between direct illumination (left) and ambi-
ent occlusion (right) for small (above) and medium (below) molecules.
Above: testosterone (49 atoms) and, below, porin (2219 atoms). Models
taken from [1].

Fig. 9. Above, left: a rendering with constant width, anti-aliased lines.
Above, right: thinker, depth aware lines. Bottom (for comparisons): di-
rect illumination, cast shadows, Ambient occlusion.

To achieve solid lines, fragments detected to be just outside the
range R of the impostor (namely with a distance d from the center
with d between R and R+ξ , for a given parameter ξ) are overwritten
with black color rather then discarded. The internal border of the lines
can be interpolated between line color and color of the primitive (using
(d−R)/ξ as weight) to eliminate pixel aliasing on the internal part of
the contour.

For a more informative rendering, the thickness of the lines can be
made dependent on the jump in depth between the primitives separated
by the contour line (see fig. 9). This effect proved useful in illustrative
rendering (in the different context of pen-and-ink illustrations of trees)
in [7].

In our approach this can be cheaply done in a single-
pass rendering: fragments at a 2D distance d between R and
R + ξ are pushed back, increasing their depth by the value
η(ξ − R). This produces a truncated cone topped with a
semi-sphere, and the depth buffer ensures the desired effect.

To explain why, here we see a 2D “side
view” of the depth buffer after that atoms
A B C are drawn. Depth-culled frag-
ments are shown in green. In the final
screen buffer (represented by a line), the
black segment separating A and B ap-
pears shorter than the one separating B
and C, signalling to the viewer that the

depth jump between A and B is smaller. The parameter η dictates how
strongly depth jumps affect thickness (ξ 2 is the maximal depth jump
after which the line thickness stops increasing). Relying solely on the
depth buffer, this algorithm is independent of the order of rendering of
the primitives.

5.2 Halo Effect

The very common way to suggest depth for 2D images (especially use-
ful when they represent unfamiliar objects like molecules) is to resort
to depth-cueing, where fragments are darkened — or more generally
pushed towards a given background color — according to their depth.
This, however, has drawbacks: the vision of the furthest parts of an
object is hindered by the artificial “fog”, which is bound to reduce
contrast. Even worst, this effect is distributed over all the images, also
far from difficult to visualize depth steps.

We propose here to achieve a similar effect, but without unneces-
sary losing contrast over the entire image: we draw transparent “halos”

TARINI, ET AL.: AMBIENT OCCLUSION AND EDGE CUEING FOR MOLECULAR VISUALIZATION

Fig. 10. Halos drawn around molecules to communicate a sense of
depth. Left: for illustrative purposes, black halos alone are drawn. Right:
a dimly lit rendering combined with white halos.

around each atom. Each point in the halo is more opaque the bigger
the distance between it and its background. The halo fades to zero also
with the distance from the atom border (see fig. 10). Both darkening
and lightening halos can be used.

Not only this helps identifying depth discontinuities, but it also
helps when it comes to immediately recognize the general slope of
“walls” of atoms (wall slopes cannot be easily identified by direct
shading alone because they are composed by primitives). When a wall
composed by several atoms is seen from grazing angles, the cumulated
effect of their halos communicates so to the viewer.

A similar use of brightening/darkening halos to improve the per-
ception of depth discontinuities for general scenes was proposed, in a
totally independent way, by Luft et al. [19].

In our approach halos are rendered in a second pass, after the depth
buffer is set, and stored in a separate texture. Larger circles are drawn
around each atom, as flat rendering impostors passing through the
atom. In this pass we do not affect the zeta of the produced fragments.
Only a color is produced according to z-difference and distance from
the center. The depth test is enabled but we do not write on the depth
buffer. Every rendered fragment darkens (or brightens when white ha-
los are used) the color of the corresponding screen pixel, in an order
independent way.

5.3 Z-clipping of impostors

When the near clipping plane cuts through an atom, the top part of
the atom is clipped out of view, leaving visible whatever is behind the
atom (background, or other intersecting atoms). The effect harms the
clarity of the scene because most people intuitively imagine the atom
modeled as “full” solid spheres rather than as thin empty shells. To
solve this, when a fragment of an impostor (after z computation) is
nearer to the eye than the near clipping plane, we test the depth of
the other intersection of the current view ray with the sphere (which
is trivially found inverting the z displacement). If also this point falls
on the viewer’s side of the clipping plane than the fragment must be
discarded. Otherwise, the fragment is moved onto the clipping plane,
its normal is overwritten to (0,0,−1), to suggest a flat surface of a
“cut” atom, and the ambient occlusion term is also set to a full lit
value.

If the new depths of clipped fragments were all set to the same
value, the second of two clipped, intersecting primitives would be
drawn over the first. To show a plausible intersection inside the atoms,
we set the new depth value of capped atoms to to a small positive value
dependent on their original computed depth z. We use ε(K + z) for a
small ε and a constant K. This way, depth-test correctly computes the
intersection (see Fig. 11).

We also lighten the ambient occlusion term for fragments close to
the clipping plane, to roughly simulate the temporary culling of light-
blocker in front of them.

Fig. 11. A detail of a rendering showing a molecule cut by the near
clipping plane.

6 RESULTS

We presented a set of rendering techniques that, in our opinion, ef-
fectively extends the ability to produce real time molecular renderings
which clearly communicate 3D shapes. Some of these techniques,
like edge-cueing ones, have not been presented before (to our knowl-
edge), whereas the occlusion culling consisted in the adaptation and
optimization for the case of impostor-based rendering of a class of
methodologies developed for polygonal meshes. These visual effects
are not mutually exclusive and are designed to be combined in the
same rendering.

The ambient occlusion computation time is always very short, av-
eraging 233 light directions per second for a medium model of 2219
atoms and around 900K effectively used texels, and 15 views per sec
for the largest we tried of around 60K atoms (on a Athlon - 2.6 GHz,
with an ATI X1600). This means that ambient occlusion can be com-
puted interactively if the application requires it.

The proposed impostor based rendering approach proved very ef-
fective. In our tests the frame-rate kept in sync with the monitor re-
fresh rate in all but the most demanding scenarios (full screen, very
large molecules, all effects combined), and it never dropped below
20 frames per sec. The main weakness of our approach lies in the
depth complexity. Use of hierarchical depth buffer structures for quick
culling of entire primitives could further accelerate the rendering.

One key advancement proposed here is the ability to combine the
flexibility of texture with the efficiency of 2D impostors, admittedly
only for the special case of spheres and cylinders. This can probably
be exploited in other ways as well.

A simple, molecule visualization tool that opens PDB files and de-
livers what is described in this paper is publicly available at the project
home-page: http://qutemol.sourceforge.net.

ACKNOWLEDGEMENTS

We wish to thank Enrico Gobbetti and Mario Valle for insightful dis-
cussions, on importance of high quality shading in the three dimen-
sional perception of complex shapes in space and Monica Zoppè for
having introduced us to the field of Molecular Visualization.

REFERENCES

[1] H.M. Berman, J. Westbrook, Z. Feng, T.N. Gilliland, G.and Bhat,

H. Weissig, I.N. Shindyalov, and P.E. Bourne. The protein data bank.

Nucleic Acids Res., 28:235242, 2000. http://www.pdb.org.

[2] R. Borgo, P. Cignoni, and R. Scopigno. An easy to use visualization

system for huge cultural heritage meshes. In D. Arnold, A. Chalmers,

and D. Fellner, editors, VAST 2001 Conference Proc., pages 121–130,

Athens, Greece, Nov. 28-30 2001. ACM Siggraph.

[3] Michael Bunnell. GPU Gems 2, chapter Dynamic Ambient Occlusion

and Indirect Lighting, pages 223–233. Addison-Wesley, 2005.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

[4] Tolga Can, Yujun Wang, Yuan-Fang Wang, and Jianwen Su. Fpv: fast

protein visualization using java 3d. Bioinformatics, 19(8):913–922, 2003.

http://www.pdb.org.

[5] USCF Chimera. http://www.cgl.ucsf.edu/chimera/.

[6] Cn3D. http://ncbi.nih.gov/structure/cn3d/cn3d.shtml.

[7] Oliver Deussen and Thomas Strothotte. Computer-generated pen-and-ink

illustration of trees. In SIGGRAPH, pages 13–18, 2000.

[8] David S. Ebert and Penny Rheingans. Volume illustration: non-

photorealistic rendering of volume models. In IEEE Visualization, pages

195–202, 2000.

[9] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and

Richard F. Riesenfeld. Interactive technical illustration. In SI3D, pages

31–38, 1999.

[10] Andreas Halm, Lars Offen, and Dieter Fellner. Biobrowser a framework

for fast protein visualization. In EUROVIS 2005: Eurographics / IEEE

VGTC Symposium on Visualization 2005, pages . 287–294, 2005.

[11] Andreas Halm, Lars Offen, and Dieter W. Fellner. Visualization of com-

plex molecular ribbon structures at interactive rates. In IV, pages 737–

744. IEEE Computer Society, 2004.

[12] Andrey Iones, Anton Krupkin, Mateu Sbert, and Sergey Zhukov. Fast,

realistic lighting for video games. IEEE Computer Graphics and Appli-

cations, 23(3):54–64, May/June 2003.

[13] Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan Schlechtweg,

and Thomas Strothotte. A developer’s guide to silhouette algorithms

for polygonal models. IEEE Computer Graphics and Applications,

23(4):28–37, 2003.

[14] Tobias Isenberg, Maic Masuch, and Thomas Strothotte. 3D Illustrative

Effects for Animating Line Drawings. In Proceedings of the IEEE Info-

Vis, July 19–21, 2000, London, England, pages 413–418, Los Alamitos,

California, 2000. IEEE Computer Society.

[15] James T. Kajiya. The rendering equation. Computer Graphics (SIG-

GRAPH), 20(4):143–150, 1986.

[16] Hayden Landis. Production ready global illumination. In Siggraph 2002

Course Notes:, pages 331–338, 2002.

[17] Michael S. Langer and Heinrich H. Bulthoff. Perception of shape from

shading on a cloudy day. Technical Report Technical Report No. 73,

Max-Planck-Institut fur biologische Kybernetik, October 1999.

[18] B. K. Lee and Fred M. Richards. The interpretation of protein structures:

estimation of static accessibility. J Mol Biol., 55(3):379–400, Feb 1971.

[19] Thomas Luft, Carsten Colditz, and Oliver Deussen. Image enhancement

by unsharp masking the depth buffer. ACM Transactions on Graphics

(Siggraph Proc.), 25(3), jul 2006. to appear.

[20] Lee Markosian, Michael A. Kowalski, Daniel Goldstein, Samuel J.

Trychin, John F. Hughes, and Lubomir D. Bourdev. Real-time nonphoto-

realistic rendering. In SIGGRAPH, pages 415–420, 1997.

[21] Gavin Miller. Efficient algorithms for local and global accessibility shad-

ing. In ACM SIGGRAPH ’94, pages 319–326, New York, NY, USA,

1994. ACM Press.

[22] Matt Pharr. GPU Gems, chapter Ambient occlusion, page 667692.

Addison-Wesley, 2004.

[23] Bui Tuong Phong. Illumination for computer generated pictures. Com-

mun. ACM, 18(6):311–317, 1975.

[24] Emil Praun and Hugues Hoppe. Spherical parametrization and remesh-

ing. ACM Trans. Graph., 22(3):340–349, 2003.

[25] Ramesh Raskar and Michael F. Cohen. Image precision silhouette edges.

In SI3D, pages 135–140, 1999.

[26] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of

3-d shapes. In SIGGRAPH, pages 197–206, 1990.

[27] Mirko Sattler, Ralf Sarlette, Gabriel Zachmann, and Reinhard Klein.

Hardware-accelerated ambient occlusion computation. In VMV, pages

331–338, 2004.

[28] R.A. Sayle and E.J. Milner-White. Rasmol: biomolecular graph-

ics for all. Trends Biochem. Sci., 20:374376, 1995. available at:

http://www.umass.edu/microbio/rasmol/.

[29] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance

transfer for real-time rendering in dynamic, low-frequency lighting envi-

ronments. In SIGGRAPH 2002:, pages 527–536, New York, NY, USA,

2002. ACM Press.

[30] A. James Stewart. Vicinity shading for enhanced perception of volumetric

data. In IEEE Visualization 2003 (VIS’03), page 47, Washington, DC,

USA, 2003. IEEE Computer Society.

[31] Ivan Viola, M. Eduard Gröller, Markus Hadwiger, Katja Bühler, Bernhard

Preim, Mario Costa Sousa, David S. Ebert, and Don Stredney. Illustrative

visualization. In IEEE Visualization, page 124, 2005.

[32] Sergej Zhukov, Andrej Inoes, and Grigorij Kronin. An ambient light illu-

mination model. In George Drettakis and Nelson Max, editors, Rendering

Techniques ’98, Eurographics, pages 45–56. Springer-Verlag Wien New

York, 1998.

