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Abstract 

In this paper an ambient response analysis of the Great 
Belt Bridge is presented. The Great Belt Bridge is one of 
the largest suspension bridges in the world, and the 
analysis was carried out in order to investigate the 
possibilities of estimating reliable damping values from 
the ambient response due to traffic and wind. The 
response data were analysed using tbree different 
techniques: a non-parametric technique based on 
Frequency Domain Decomposition (FDD), a parametric 
technique working on the raw data in time domain, a 
data driven Stochastic Subspace Identification (SSI) 
algorithm and finally a covariance driven SSI technique. 
In a small frequency band from 0.17-0.30 Hz 5 modes 
were identified, and the quality of the modal estimates 
were evaluated based on MAC values on the mode 
shapes estimates and standard deviations on damping 
estimates. 
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Introduction 

sampling time step 

response vector 

natural frequency 

damping ratio 

mode shape matrices 

When modal properties are to be identified from large 
structures, usually the possibilities to control and measure 
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the loading on the structure is rather limited This is 
especially true for very large bridges where the excitation of 
the low frequency modes by artificial loading is difficult. 
Further, since the bridge is carrying heavy traffic 24 hours a 
day, the ambient response will in any case be a dominating 
signal. Thus, in stead of trying to control the loading and 
reduce the response from ambient loads, in this case the 
ambient response was used as data for an output only modal 
identification. 

Several real cases of ambient response analysis can be found 
in Ventura and Horyna [ 1], and a comparison between 
different techniques for modal identification from ambient 
responses can by found in Andersen et al. [2]. 

The main purpose of this investigation was to make a survey 
on the possibilities of estimating the total damping from 
ambient response measurements only. The investigation was 
carried out on the Great Belt bridge in Denmark, a 
suspension bridge with a closed box-girder and a free span 
of 1624m Earlier an investigation of the structural damping 
of the same bridge has been carried out, Jensen et al. (3]. 
However, in this earlier investigation only one technique 
was used for identification. 

The purpose of this investigation was to make an 
independent identification of the bridge using different 
identification techniques and to compare the different 
techniques evaluating the quality of the modal identification. 

Long-span bridge design is dominated by aeroelastic 
stability considerations involving a complex interaction 
between bluff-body unsteady fluid dynamics and structural 
response. The structural damping and the damping 
introduced by the flow around the structure plays a central 



role. The classical wind tunnel tests can only be used as a 
guide-line since the high Reynolds number present in 
full-scale cannot be reproduced at model-scale level. 

Thus, the long term goal of this investigation is to establish a 
procedure for modal identification of large bridges so that 
reliable damping estimates can be obtained and the influence 
from the wind can be accurately obtained The aim is to 
establish tl1e relation between the damping and the wind 
speed so that tl1e amplitudes of wind induced oscillations 
can be more accurately obtained 

In this particular case four time series were acquired, all at 
the same day. During the measurements, the wind direction 
and speed was recorded to be almost constant , a North
West wind at about 6 mls. Since the wind was not close to 
be perpendicular to the bridge line no severe vortex-induced 
oscillations was expected, and thus, the damping values 
presented in this paper are assumed to be representative for 
traffic induced vibrations. 

The four test cases, in the following denoted test4, test5, 
test6 and test?, were performed using the same transducer 
set -up. Transducers were 8 DC accelerometers placed in 
three cross sections along the main bridge deck , see Figure 
1. The measurement cross sections were placed between the 
two main pylons approximately one third of the distance 
between the pylons from the west pylon. The transducers 
had a sensitivity of 40 V/g, and tl1e signals were sampled at 
approximately 200 Hz using a 16 bit data acquisition 
system. Afterwards, the signals were decimated by 125 to a 
sampling frequency of 1.58 Hz corresponding to a Nyquist 
frequency of0.791 Hz. The length of decimated time series 
was 6000 data per channel for test4, test5 and test? and 
12000 data points per channel for test6. This corresponds to 
about l hour measurements for the short time series and 
about 2 hours for the long time series. 

The response data were analysed using three different 
techniques: a non-parametric technique based on Frequency 
Domain Decomposition (FDD), a parametric technique 
working on the raw data in time domain, a data driven 
Stochastic Subspace Identification (SS!) algorithm, and 
finally a covariance driven SS! algorithm. 

Because of difficulties using parametric models on data with 
a large number of modes, the data were band-pass filtered to 
concentrate on the frequency region 0.17-0.30 Hz. 

The results from the three techniques were compared and 
validated against each other. 

Principle of Frequency Domain Decomposition 
(FDD) 
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The Frequency Domain Decomposition (FDD) technique is 
an exiension of the classical frequency domain approach 
often referred to as the Basic Frequency Domain (BFD) 
technique, or the peak picking technique. The classical 
approach is based on simple signal processing using the 
Discrete Fonrier Transform, and is using the fact, that well 
separated modes can be estimated directly from the power 
spectral density matrix at the peak. 

In the FDD technique first the spectral matrix is formed 
from t11e measured outputs using simple signal processing 
by discrete Fonrier Transform (DFT). However, instead of 
using t11e spectral density matrix directly like in the classical 
approach, the spectral matrix is decomposed at every 
frequency line using Singular Value Decomposition (SVD). 
By doing so the spectral matrix is decomposed into a set of 
auto spectral density functions, each corresponding to a 
single degree of freedom (SOOF) system. This is exactly 
true in the case where the loading is white noise, the 
structure is lightly damped, and where the mode shapes of 
close modes are geometrically orthogonal. If these 
assumptions are not satisfied, the decomposition into SOOF 
systems is an approximation, but still the results are 
significantly more accurate than the results of the classical 
approach. 

The singular vectors in the SVD are used as estimates of the 
mode shape vectors, and the natural frequencies are 
estimated by taking each individual SOOF auto spectral 
density function back to time domain by inverse DFT. The 
frequency and t11e damping were simply estimated from the 
crossing times and the logarithmic decrement of the 
corresponding SOOF auto correlation function. 

The theoretical background of t11e FDD technique is 
described in Brincker et al. [4]. 

Results of Frequency Domain Decomposition 
(FDD) 

Figure 2 shows the singular value decomposition of the 
spectral density matrix oftest4. In this identification, the 
measurements had 6 channels of response data. Thus, the 
decomposition results in 6 singular values. 

As it appears, more than 15 modes seems to be present in 
the frequency range from 0-0.7 Hz. Further, most of the 
modes seems to be well separated, but around 0.28 Hz two 
close modes are present. For the band-pass filtered data, 5 
modes are clearly visible including the mentioned set of 
close modes around 0.28 Hz. 

All 5 modes were easily identified using the FDD technique 
for all test cases. The results are given in tables l-4. In all 
cases the spectral density function were estimated using 



z 

-50,r-----------+---=y_J,.=1' 50 
0 

50 

-50 ° 
Figure 1. Transducer set-up, Distances between the three 
cross sections are approximately 70 m_ 
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Figure 2. Singular value decomposition of the spectral 
density matrix of the test4, top: unfiltercd data, bottom: 
band-pass filtered data. 
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1024 point FFT except in the case oftest6 were the spectral 
densities were also calculated using 2048 point FFT The 
corresponding values of the damping are given in brackets 
in table 3, Mode shapes for test4 are shown in Figure 5. 

Principle of Stochastic Subspace Identification 
(SSI) 

Stochastic Subspace Identification (SS!) is a class of 
techniques that are all formulated and solved using state 
space formulations of the form 

xt+I = Axt + wt 

y, =Cx, +v, 

where x, is the Kalman sequences that in SS! is found by a 

so-called orthogonal projection technique, Overschec and 
De Moor [6l Next step is to solve the regression problem 

for the matrices A and C, and for the residual sequences 

W, and v, , Finally, in order to complete a full covariance 

equivalent model in discrete time, the Kalman gain matrix 
K is estimated to yield 

xt+1 = Ax, + Ke, 

y, = Cx, +e, 

It can be shown, Brincker and Andersen [5], that by 

performing a modal decomposition of the A matrix as 

A = V[u, jv-1 
and introducing a new state vector 

z, = v-1 x, the equation can also be written as 

z,.1 = [u, ]z, + 'l'e, 

y, = <I>z, + e, 

where [u,] is a diagonal matrix holding the discrete poles 

related to the continuos time poles A., by p, = exp(A.,Ll.t), 
and where the matrix <I> is holding the left hand mode 
shapes (physical, scaled mode shapes) and the matrix 'I' is 
holding the right hand mode shapes (non-physical mode 
shapes). TI1e right hand mode shapes are also referred to as 
the initial modal amplitudes, Juang [7], 

TI1e specific technique used in this investigation is the 
Principal Component algorithm. see Overschee and De 
Moor[6l 



Results of Stochastic Subspace Identification (SSI) 

For each test case a set of models with different model 
orders were identified and the stabilisation diagram was 
established Figure 3 shows the stabilisation diagram for the 
data driven SSI for test4. 

For the covariance driven SS!, the covariance function were 
estimated using the Random Decrement technique which 
provides unbiased and low variance covariance function 
estimates, Asmussen [5]. Figure 4 shows the stabilisation 
diagram for the covariance driven SS! for test4. 

As it appears, SSI has some problems handling this case. 
Even though the five peaks appear quite clearly in both 
spectral densities and decomposed spectral densities, the 
modes are not clearly indicated in the stabilisation diagrams. 
This problem was even more severe before band-pass 
filtering the signals. Further, there does not seem to be much 
difference between the modal indication (stabilisation) for 
the data driven and the covariance driven SS!. For the case 

Frequency Stability Diagram of all Estimated Models 
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Figur 3. Stabilisation diagram of test4 (zoomed). Data 
driven SSI. 
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of test4 shown in Figure 3 and 4 it might look like the data 
driven SS! stabilise better. However, results for the other 
cases does not support this conclusion. 

The 5 modes were not easily identified using the SSI 
technique on the four test cases, however, identification was 
possible in the most cases. The results are given in tables I-
4. Mode shapes for test4 are shown in Figure 5. 

Evaluation of results 

The quality of the two SSI techniques were evaluated 
comparing the estimated mode shapes with the mode shape 
estimates from FDD. The mode shapes were compared 
using the MAC values, see tables 1-4. As it appears from the 
results, the difference between the data driven and the 
covariance driven SS! is rather small. but it seems like the 
data driven SSI in general has a little more reliable mode 
shape estimates than the covariance driven. SS! has severe 
problems identifying the fifth mode. For test4 the 
identification of the fifth mode failed for both the data 
driven and the covariance driven SSI. 

Since the FDD technique is based on traditional spectral 
estimation that introduces leakage bias, it was expected that 
the quality of the damping estimates from FDD would be 
rather poor compared to estimates obtained by a parametric 
model like SS!. This expectation was reinforced by the fact 
that damping values were small, typieally smaller than 1 % . 

The quality of the damping estimates can be evaluated by 
ealculating the standard deviation over the four test cases. 
Results are given in table 5. As it appears from the results, 
the FDD technique has much less uncertainty on the 
damping estimates than the SS! technique. If the mean of the 
standard deviation over the modes is considered, FDD is 
clearly better than SSI, if the maximum standard deviation is 
considered, FDD is clearly better than SS!, and finally if the 
minimum standard deviation is considered, FDD is as good 
SS!. The somewhat surprising conclusion is that FDD is to 
prefer from SS! when accurate damping estimates are of 
importance. However, in the cases where 1024 data point 
were used in the FFT, results indicate that the FDD dantping 
estimates were biased by leakage. This can be concluded 
comparing the results for the 1024 data point FFT with the 
results of the 2048 data point FFT. As it appears, the 2048 
data point FFT had smaller dantping estimates in all cases. 

Conclusions 

The signals were band-pass filtered and five modes were 
identified in a narrow frequency range from 0. 174l.29 Hz. 
Two of the five mode were close modes. 



There was not much difference between the results of the 
data driven and the covariance driven SS! technique. In 
general the SS! techniques had difficulties identifying all 
five modes, and the damping estimates were rather 
uncertain. 

The FDD technique easily identified all five modes for all 
four test cases. Damping values were judged to be biased by 
leakage, however, the dan1ping estimates were evaluated to 
be significantly better than the estimates obtained by SS!. 

For all five modes the damping was estimated to small 
values less or around I % damping. 

The lengtl1 of the time series should not be shorter than I 
hour. If possible the length of the time series should be 2 
hours or more to minimise the leakage bias on the damping 
estimation when using FDD. 

References 

[I] Ventura, Car Ios E. and T omas Horyna: "Structural 
Assesment by Modal Analysis in Western Canada", 
Proc. of the IS"' Interuational Modal Analysis 
Conference, Orlando, Florida, Orlando, 1997. 

[2] Andersen, P, R. Brincker, B. Peelers, G. De Roeck, 
L. Hermans and C. Kriimer: "Comparison of 
system Identification Methods Using Ambient 
Bridge Test Data",", Proc. of the 17"' International 

Tbl!T 4C a e est f ompanson o identification algoritluns 
Frequency Domain Stochastic Subspace MAC 
Decomposition Identification (SS!) FDD-

[3] 

[4] 

[5] 

(6] 

[7] 

[8] 

(FDD) Data Driven (DD) SSI(DD) 
Frequency Damping Frequency Damping 
(Hz) (%) (Hz) (%) 
0.174 1.09 0.172 0.42 0.998 
0.208 0.58 0.208 0.83 0.999 
0.238 0.54 0.236 6.42 0.959 
0.281 0.79 0.281 0.50 0.970 
0.289 0.40 0.291 4.99 0.323 

30 

Modal Analysis Conference, Kissimee, Florida, 
1999. 

Laigaard Jensen, J., A Larsen, I.E. Andersen and 
T. Vejrum: "Estimation of Structural Dmping of 
the Great belt suspension bridge". Proc. of the 4"' 
European Conference on Structural Dynamics, 
EuroDyn/99, Prague, 1999. 

Brincker, R., L. Zhang and P. Andersen: "Modal 
Identification from Ambient Responses using 
Frequency Domain Decomposition, Proc. of the 
18"' Interuational Modal analysis Conference, San 
Antonio, Texas, February 7-10, 2000. 

Asmussen, J.C.: "Modal Analysis Based on the 
Random Decrement Technique, Application to 
Civil Engineering Structures". Ph. D. Thesis, 
Aalborg University, Department of Building 
Technology and Structural Engineering, 1997. 

Brincker. R. and P. Andersen: "ARMA Models in 
Modal Srace", Proc. of the 17"' Interuational 
Modal Analysis Conference, Kissimee, Florida, 
1999. 

Overschee, Van P., and B. De Moor: " Subspace 
Identification for Linear Systems", Kluver 
Academic Publishers, 1996. 

Juang, J.N.: "Applied System Identification", 
Prentice Hall, Englewood Cliffs, New Jersey, 1994. 

Stochastic Subspacc MAC 
Identification (SS!) FDD-
Covariance Driven (CD) SSI(CD) 
Frequency Damping 
(Hz) (%) 
0.174 1.04 0.998 
0.197 0.34 0.555 
0.236 4.23 0.955 
0.283 1.31 0.880 
0.301 1.50 0.204 



Table 2 Test 5 Comparison of identification algorithms 
Frequency Domain Stochastic Subspace MAC Stochastic Subspace MAC 
Decom}X)sition Identification (SS!) FDD- Identification (SS!) FDD-
(FDD) Data Driven (DD) SSI(DD) Covariance Driven (CD) SSI(CD) 
Frequency Damping Frequency Damping Frequency Damping 
(Hz) (%) (Hz) (%) (Hz) (%) 
0.174 0.83 0.172 0.27 0.998 0.174 0.63 0.999 
0.208 0.68 0.209 0.72 0.998 0.207 0.33 0.995 
0.239 0.54 0.237 4.66 0.991 0.238 1.29 0.991 
0.279 0.44 0.281 0.33 0.998 0.280 0.24 0.982 
0.288 0.45 0.288 0.12 0.983 0.289 0.49 0.933 

Tbl3T 6C a e est ompanson o 1 en 1cat10n al .thm (FDD ul . b I< . 2048 . FFT) gon s res ts m rac ets IS pomt 
Frequency Domain Stochastic Subspace MAC Stochastic Subspace MAC 
Decomposition Identification (SS!) FDD- Identification (SS!) FDD-
(FDD) Data Driven (DD) SSI(DD) Covariance Driven (CD) SSI(CD) 
Frequency Damping Frequency Damping Frequency Damping 
(Hz) (%) (Hz) (%) (Hz) (%) 
0.174 0.64 (0.51) 0.174 0.32 0.996 0.174 0.46 0.998 
0.207 0.38 (0.29) 0.208 0.32 0.999 0.208 0.20 0.997 
0.239 0.52 (0.38) 0.234 3.94 0.987 0.238 1.63 0.996 
0.281 1.16 (0.57) 0.281 0.56 0.994 0.280 0.15 0.979 
0.288 0.32 (0.23) 0.288 0.08 0.995 0.288 0.18 0.809 

Table 4 Test 7 Comparison of identification algoritluns 
Frequency Domain Stochastic Subspace MAC Stochastic Subspace MAC 
Decomposition Identification (SS!) FDD- Identification (SS!) FDD-
(FDD) Data Driven (DD) SSI(DD) Covariance Driven (CD) SS!( CD) 
Frequency Damping Frequency Damping Frequency Damping 
(Hz) (%) (Hz) (%) (Hz) (%) 
0.174 0.93 0.174 0.82 0.993 0.174 0.67 0.998 
0.207 0.37 0.208 0.34 1.000 0.208 0.30 0.999 
0.238 0.39 0.234 5.54 0.965 0.235 0.83 0.985 
0.279 0.37 0.280 0.48 0.995 0.282 0.57 0.975 
0.288 0.40 0.287 0.14 0.887 0.291 0.61 0.952 

Tbl5\Cl f d standard d . ti f h dam . a e a ues o mean an evta ono t e npmg ral!o over th£ tst e our e cases. 
Mode Frequency Domain Stochastic Subspace Stochastic Subspace 

Decomposition (FDD) Identification (SS!) Identification (SS!) 
Data Driven (DD) Covariance Driven (CD) 

Mean value Standard Mean value Standard Mean value Standard 
(%) deviation (%) deviation (%) Deviation 

(%) (%) (%) 
I 0.87 0.19 0.46 0.25 0.70 0.24 
2 0.50 0.15 0.55 0.26 0.29 0.06 
3 0.50 O.o? 5.14 1.08 2.00 1.53 
4 0.69 0.36 0.47 0.10 0.57 0.53 
5 0.39 0.05 1.33 2.44 0.70 0.70 

Mean 0.16 0.83 0.61 
Minimum O.o? 0.10 0.06 
Maximum 0.36 2.44 1.53 
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Figure 5: Mode shapes for the first three modes. Left: Frequency Domain Decomposition (FDD). Right: Stochastic Subspace 
Identification (SS!), data driven. 
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