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Ambient synthesis of a multifunctional 1D/2D
hierarchical Ag–Ag2S nanowire/nanosheet
heterostructure with diverse applications†

Jinyan Xiong,a Chao Han,a Weijie Li,a Qiao Sun,b Jun Chen,c Shulei Chou,a

Zhen Li*ab and Shixue Doua

A new type of unique 1D/2D hierarchical Ag–Ag2S heterostructures is fabricated by an extremely simple so-

lution route under ambient conditions. The morphology, size, crystal structure and composition of the

products were comprehensively investigated, and it was found that the reaction time and the amount of S

powder play crucial roles in the formation of well-defined 1D/2D hierarchical Ag–Ag2S heterostructures.

The diffusion and Ostwald ripening processes dominate the evolution of the heterostructure. The resultant

1D/2D Ag–Ag2S hybrids exhibit great potential in Li/Na ion battery anodes, SERS detection and decoloration

towards organic dyes.

Introduction

Semiconductor-noble metal-based hybrid nanostructures have

promising potential in energy, environmental and catalysis

applications, due to their unique optical, electrical and cata-

lytic properties arising from each of their components and

their synergistic interactions.1 Their great potential drives en-

gineering of nanofabrication and properties of such semicon-

ductor–metal hybrid nanomaterials with different architec-

tures.2 Being one of the important semiconductor-noble

metal hybrids, Ag–Ag2S with different heterostructures, in-

cluding nanotubes,1a nanowires,3 nanoprisms,4 and nano-

particles,5 have been widely exploited in the past several

years. It was reported that Ag–Ag2S nanohybrids showed excel-

lent properties in resistive switches,3,6 DNA hybridization

probes,4b bactericidal effects,4a,5a,7 photodegradation of

pollutants,1a,5b and water splitting.6a From the fabrication

perspective, most fabrications of Ag–Ag2S hybrids suffered

from the drawbacks of high temperature,5b complicated

processes,6a,7 and high energy consumption,3 which seriously

restrict their development and practical applications. It still

remains a challenging but exciting topic to explore a facile

strategy to prepare well-defined and unique multidimensional

Ag–Ag2S heterostructures, as well as to investigate their novel

properties and potential applications.

Generally, the composition and structure of hybrids play

the pivotal role in determining their functions and applica-

tions.8 Recent advances demonstrate that complex one-di-

mensional/two-dimensional (1D/2D) heterostructures com-

posed of 1D nanowires and 2D nanosheets exhibit great

potential in photocatalysis,9 energy storage,10 counter

electrodes,11 and photoelectrochemical cells,12 owing to their

unique structural features, which allow them to transport

charge carriers very well along the axial direction and have a

relatively large surface area. However, to the best of our

knowledge, there are sparse reports on the preparation of 1D/

2D Ag–Ag2S heterostructures and exploration of their fasci-

nating properties. Herein, a new type of 1D/2D Ag–Ag2S archi-

tecture has been fabricated by an extremely simple solution

route under ambient conditions, and the as-synthesized Ag–

Ag2S hybrids exhibit favorable multifunctional properties for

energy and environmental applications.

Experimental
Experimental methods

Ag nanowires (Ag NWs) were prepared according to our previ-

ous report with a minor modification.13 In a typical synthesis,

10 mL of 1,2-propanediol containing PVP40 was loaded into a
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25 mL vial, and heated with magnetic stirring in an oil bath

at 135 °C for 1 h. 1 mL of NaCl in 1,2-propanediol solution

(1 mM) was then quickly added, and stirred for another 5 min.

Finally, AgNO3 (0.1 M solution in 1,2-propanediol) was added

to the mixture. The mixture solution was then heated at 135

°C with magnetic stirring for 1 h, yielding the gray Ag NWs.

Ag nanoparticles (Ag NPs) were prepared by the similar

procedure applied to Ag NWs, except without NaCl.

1D/2D Ag–Ag2S hierarchical heterostructures were pre-

pared from the above synthesized Ag nanowires and sulphur

powder. 8 mL of freshly prepared Ag NW solution was firstly

added into 10 mL of ethanol under constant magnetic stir-

ring for 10 min. Then, 0.0048 g of sulfur powder was added

into the reaction mixture. The reaction mixture was stirred

for 24 h, and then the resultant Ag–Ag2S precipitate was sepa-

rated by centrifugation, washed with de-ionized water and ab-

solute ethanol several times to remove impurities, and then

dried at 60 °C.

Ag–Ag2S heteronanoparticles were prepared using the sim-

ilar approach to the 1D/2D Ag–Ag2S hierarchical hetero-

structures, except 8 mL of Ag NPs solution was added rather

than Ag NWs solution.

Pure Ag2S nanospheres were prepared from AgNO3 and

saturated Na2S solution in ethanol in the presence of PVP.

The reaction mixture was stirred for 24 h.

Characterization

X-Ray diffraction (XRD) measurements were performed on a

GBC MMA X-ray diffractometer using Cu Kα1 radiation

(40 kV). XRD patterns were recorded from 20° to 80° with a

scanning rate of 4° min−1. SEM images were collected using a

field-emission scanning electron microscope (JSM-7500FA,

JEOL) operated at an accelerating voltage of 5 kV. TEM im-

ages were collected on a field-emission transmission electron

microscope (ARM-200 F, JEOL), using an accelerating voltage

of 200 kV. Ultraviolet/visible (UV/vis) absorption spectra were

recorded at room temperature on a UV-3600 (Shimadzu)

spectrometer.

SERS measurement

2 mg of the as-synthesized 1D/2D Ag–Ag2S hierarchical

heterostructures were added into 200 μL of MB solution with

concentrations of 10−3, 10−4, 10−5, and 10−6 M. The mixture

was ultrasonically dispersed for 10 min and shaken for 12 h

in the dark at room temperature. Then, the dispersion was

dropped onto a glass slide for SERS measurement. All SERS

spectra were collected on a JY HR 800 Raman spectrometer

under excitation at 632 nm with a power of 13.5 mW.

Battery performance measurements

The electrode slurry for lithium/sodium ion batteries was pre-

pared by mixing 70 wt% active powder material, 15 wt% car-

bon black, and 15 wt% carboxymethyl cellulose (CMC)

binder. The slurry was pasted on copper foil, followed by dry-

ing in a vacuum oven overnight at 80 °C, and then pressing

at a pressure of 30 MPa to enhance the contact between the

mixture and the copper foil. For the lithium ion battery test,

lithium foil was employed as both the reference and counter

electrodes. The electrolyte was 1 M LiPF6 in ethylene carbon-

ate (EC)–diethyl carbonate (DEC) solution (1 : 1 v/v). For the

sodium ion battery test, sodium foil was cut by the doctor

blade technique from bulk sodium stored in mineral oil,

which then was employed as both the reference and counter

electrodes. The electrolyte was 1 M NaClO4 in EC/DEC solu-

tion (1 : 1 v/v). The cells were assembled in an argon-filled

glove box, and their electrochemical performance was tested

with the Land test system in the voltage range of 0–2.5 V with

a current density of 30 mA g−1.

Decoloration test

The application of the as-synthesized 1D/2D Ag–Ag2S hierar-

chical heterostructures for the decoloration of organic dyes

was evaluated in both a dark environment and under solar

light irradiation. In the experiment, 50 mg of the hetero-

structures were added into 50 mL of MB solution (10−5 M) at

room temperature. After ultrasonic dispersion, the suspen-

sion was stirred in the dark for 30 min to ensure the estab-

lishment of an adsorption–desorption equilibrium between

the hybrid structures and MB. Then, the solution was ex-

posed to irradiation of a LSC-100 solar simulator (Newport)

under magnetic stirring. At each irradiation time interval,

2 mL of the suspension was collected and then centrifuged to

remove the photocatalysts. The concentration of MB was ana-

lyzed by using a Shimadzu UV-3600 spectrophotometer, and

the characteristic absorption of MB at 664 nm was used to

evaluate the decoloration activity. All of the measurements

were carried out at room temperature.

Results and discussion

A typical Ag–Ag2S architecture is synthesized through the re-

action of Ag nanowires (NWs) with sulfur powder in ethanol

at room temperature. The X-ray diffraction (XRD) pattern of

the as-prepared sample in Fig. 1A indicates that the product

is a hybrid consisting of monoclinic Ag2S (JCPDS card no.

14–0072) and face-centered cubic Ag (JCPDS card no. 04–

0783). The absence of impurity peaks in the XRD pattern sug-

gests the high purity of the Ag–Ag2S hybrid synthesized by

this facile approach. The energy-dispersive X-ray (EDX) analy-

sis result shown in Fig. S1 in the (ESI†) indicates that the as-

prepared hybrid is composed of Ag and S with an atomic ra-

tio (i.e. Ag/S) higher than the stoichiometric ratio of 2 : 1 for

Ag2S, demonstrating the successful synthesis of the Ag–Ag2S

hybrid.

Characterizations by scanning electron microscopy (SEM)

and transmission electron microscopy (TEM) provide insight

into the morphology and detailed structure of the as-

prepared Ag–Ag2S hybrid. A panoramic view of the as-

prepared sample shows uniform nanowires ∼100 nm in di-

ameter and several micrometers in length (Fig. S2†). The en-

larged SEM image in Fig. 1B reveals that many sheet-like
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nanostructures (∼15 nm in thickness) have densely grown on

the entire surface of the 1D nanowire to form a 1D/2D hierar-

chical nanostructure. Fig. 1C clearly shows the TEM image of

an individual 1D/2D Ag–Ag2S hierarchical nanostructure, in

which sheet-like leaves surround the 1D nanowire in a three-

dimensional (3D) manner. The hybrid has two kinds of seg-

ments with different contrasts, in which the darker segment

is metallic Ag and the brighter segment should be semicon-

ducting Ag2S. The high-resolution TEM (HRTEM) image in

Fig. 1D shows a lattice fringe of 0.208 nm, which corresponds

to the (200) plane of monoclinic Ag2S. The selected area

electron diffraction (SAED) pattern (Fig. 1E) also reveals the

presence of Ag2S in the hybrid. High-angle annular dark-field

(HAADF) imaging was used to identify each chemical compo-

nent. Due to the differences between Ag and S in scattering

electrons, the as-prepared Ag–Ag2S hybrid has different con-

trasts in the HAADF image (Fig. 1F), which is opposite to

those observed in the bright field image, i.e. the bright seg-

ments indicate the presence of the heavier metal Ag, and the

dark parts indicate the presence of Ag2S. Elemental mapping

of a single 1D/2D heterostructure obtained by HAADF-TEM

reveals the homogeneous distribution of Ag and S elements

in the hybrid (Fig. 1G and H).

The above results demonstrate the successful synthesis of

1D/2D Ag–Ag2S hierarchical heterostructures. To understand

the formation mechanism of such an interesting structure,

we carried out time-dependent experiments and collected

samples at different time intervals. The morphological and

structural evolution of the products obtained with different

reaction times were examined by SEM (Fig. 2). Before the

addition of S powder, the Ag NWs are very straight, and the

surfaces are very smooth (Fig. 2A). After the addition of S

powder and reaction for 30 min, no significant difference

was observed on the surfaces of the Ag NWs at this early

stage (Fig. 2B), although the reaction mixture changed from

grey to yellow due to the formation of a thin Ag2S layer on

the surfaces of the NWs. As the reaction proceeded for 1.5–4

h, the surfaces of the nanowires became rougher, and a few

spiny or scaly structures were formed, as shown in Fig. 2(C–E).

The epitaxial growth of the Ag2S nanostructures could be

due to the excessive crystallization of Ag2S in some places on

the surface of the nanowire. When the reaction time was

lengthened to 6–8 h, more and more quasi-nanosheets were

formed on the nanowires to form a mace-like structure, as

shown in Fig. 2(F and G). With a further extended reaction

time, the nanosheets adhering to the nanowires became

larger and became joined to one another (Fig. 2H). After the

reaction for 24 h, the final products were entirely composed

of the 1D/2D hybrid heterostructures (Fig. 2I).

These structures and morphologies were further analyzed

by TEM and high-resolution TEM. As shown in Fig. 3A, the

TEM images confirm that for the products obtained within

30 min, a thin Ag2S layer is coated on the surface of the Ag

NWs to form a well-defined core–shell Ag–Ag2S nanowire with

a relatively smooth surface, due to the sulfuration of the Ag

NWs. The corresponding HRTEM image (Fig. 3B) clearly re-

veals that the resolved lattice fringes are 0.199 nm, corre-

sponding to the d-spacing of the (−131) planes of monoclinic

Ag2S. With the growth of the Ag2S shell, the surface of the

hetero-nanowires became coarse [Fig. 3(C and D)]. Further

prolonging the reaction time to 6 h led to the formation of a

mace-like structure with a few quasi-nanosheets on the nano-

wires [Fig. 3(E and F)].

The crystalline structures and optical properties of the

above products were further studied and the results are

shown in Fig. 4. The XRD patterns (Fig. 4A) clearly reveal that

Fig. 1 (A) XRD pattern and (B) SEM image of the as-prepared Ag–Ag2S

heterostructures with a S/Ag ratio of 1 : 2; (C) TEM image, (D) HRTEM

image, (E) SAED pattern, (F) HAADF image, and (G, H) the corresponding

EDX elemental mapping analysis of an individual Ag–Ag2S heterostructure.

Fig. 2 SEM images of Ag–Ag2S heterostructures obtained with a S/Ag

ratio of 1 : 2 at different reaction times: (A) 0 min, (B) 30 min, (C) 1.5 h,

(D) 2 h, (E) 4 h, (F) 6 h, (G) 8 h, (H) 12 h, and (I) 24 h.
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the intensity of the Ag2S diffraction peaks are gradually in-

creased with increasing reaction time, demonstrating the

gradual formation of the Ag–Ag2S hybrid and the increased

content of Ag2S. It is well known that Ag NWs show intense

surface plasmon resonance (SPR) absorption in the visible re-

gion, which is highly sensitive to their diameter and length-

to-diameter ratio, as well as the optical and electronic proper-

ties of their surroundings.13,14 The absorption spectra shown

in Fig. 4B were from ethanol-Ag and ethanol-Ag/Ag2S disper-

sions collected at different reaction times, which were mea-

sured with a UV-3600 (Shimadzu) spectrometer in the UV-vis-

NIR region at room temperature. The scan speed is medium

and the interval is 1 nm. The pure Ag NWs exhibit two absor-

bance peaks at 350 and 385 nm. The peak at 350 nm could

be attributed to the longitudinal mode of the nanowires,

which is similar to that of bulk Ag14a,15 or the out-of-plane

quadrupole resonance of Ag NWs.16 The peak at 385 nm is

assigned to the transverse plasmon resonance of Ag

NWs.14a,15 The optical response of the Ag NWs was observed

to be markedly affected by the formation of Ag2S. Upon the

formation of the Ag2S shell (30 min), the longitudinal mode

almost disappeared and the transverse plasmon resonance of

the Ag cores observed at about 385 nm decreased, redshifted

and significantly broadened, which could have possibly con-

tributed to the synergistic effects between Ag NWs and the

Ag2S shell in the Ag–Ag2S hybrids: the higher refractive index

of Ag2S (1.9–2.5)17 than that of ethanol (∼1.359)14a,18 and its

high relative dielectric constant (εr = 6),19 as well as the con-

finement of free electrons within the Ag core.14a,20 The peak

width of the SPR band increased slightly with increasing time

(30 min–4 h), which implies that the Ag nanowires are be-

coming more isolated with less and less electronic interac-

tions between nearby unites. When the reaction time is 6 h,

the spectra exhibited a new absorption band centered at

around 495 nm and a very weak SPR peak. The new absorp-

tion is ascribed to the band gap of Ag2S, which is similar to

the reported absorption between 490–520 nm of rod-like Ag2S

nanocrystals,21 530 nm of Ag2S nanofibers,6c 573 nm of Ag2S

nanotubes,22 443 nm of Ag2S nanoparticle chains,23 and 514–

531 nm of the Ag2S/Ag heterostructures.7 The weak SPR ob-

served herein indeed suggested that the good contact be-

tween the Ag2S and Ag segments might ensure an effective

charge transfer across the phase boundary, and changes in

the structure and shape of the product. When the time was

increased to 8 h, the SPR absorption bands of the Ag NWs al-

most disappeared owing to their further sulfuration, and the

characteristic absorption feature of Ag2S moved to the longer

wavelength region at around 515 nm. The observed red-shifts

may reflect the grain/crystallite growth of Ag2S and enlarge-

ment of the Ag2S domains in the heterostructures. Eventually,

with more and more quasi-nanosheets formed on the nano-

wires (see Fig. 2G and H), the characteristic absorption fea-

ture of Ag2S moved to around 525 nm for the time at 12 h,

providing strong evidence that essentially Ag NWs have

turned into Ag–Ag2S hybrids and the product mainly com-

posed of Ag2S components. The final dispersion was brown-

ish black in appearance. The Ag–Ag2S NWs obtained at 24 h

exhibit a similar absorption profile in comparison with the

products obtained at 12 h, in which the characteristic absorp-

tion feature of Ag2S remained at 525 nm and did not shift

with increasing reaction time, due to the lack of obvious

changes in the structures and shapes of the final products

(see Fig. 2I). Their broad absorbance from the UV to the

near-infrared window is crucial for the full use of sunlight.

It should be noted that the formation of the 1D/2D Ag–

Ag2S hierarchical heterostructures is strongly dependent on

the Ag/S ratio. Fig. 5 presents the SEM images of the Ag–Ag2S

heterostructures obtained from different ratios of Ag/S after

the reaction for 24 h. The surfaces of the heterostructures be-

come smoother and smoother with the decreasing S/Ag ratio

from 0.4 : 1 (Fig. 5A) to 0.33 : 1 (Fig. 5B), to 0.22 : 1 (Fig. 5C)

Fig. 3 TEM images (A, C, and E) and corresponding HRTEM images

(B, D, and F) of Ag–Ag2S heterostructures obtained at different reaction

times: (A, B) 30 min, (C, D) 4 h, and (E, F) 6 h.

Fig. 4 (A) XRD patterns and (B) UV-vis-NIR absorption spectra of Ag–

Ag2S heterostructures obtained with a S/Ag ratio of 1 : 2 at different re-

action times.
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and to 0.2 : 1 (Fig. 5D). For the heterostructures obtained

from the ratio of 0.2 : 1, the morphology of the initial Ag NWs

remains almost unchanged, except for the formation of a

thin Ag2S layer on the surface of the Ag NWs, as shown by

the TEM and HRTEM images in Fig. S3†(A and B).

Based on these results, the formation of the 1D/2D Ag–

Ag2S hierarchical heterostructures can be illustrated in

Scheme 1A, in which the diffusion and Ostwald ripening pro-

cesses dominate the evolution of the heterostructure mor-

phology. It is well known that room temperature diffusion of

metals into semiconductors to form metal–semiconductor

pairs generally occurs on the nanometer scale when the

band-gap energy of the semiconductor is lower than about

2.5 eV.2b,24 The band gap of a bulk Ag2S crystal is about 0.9

eV at room temperature, and 1.4–2.3 eV for its nanoscale

analogues.2b,7 Therefore, the diffusion of Ag metal in the Ag–

Ag2S nanowires well satisfies the aforementioned diffusion

criterion. Scheme 1B shows a simplified diagram of the en-

ergy level of the Ag–Ag2S nanocomposites and the work func-

tion of Ag, the dominant energy level, the bottom of the con-

duction band and the top of the valence band of Ag2S, which

are −4.26 eV, −3.63 eV, −4.42 eV and −5.32 eV, respectively,

from the vacuum energy level.2b,7,25 In equilibrium, the Fermi

levels of Ag and Ag2S should be at the same level. According

to the potential alignment, the electrons (majority carriers)

can drift from the Fermi level of Ag to the Fermi level (EF,

which is approximately treated as the donor level) of the

n-type Ag2S semiconductor upon their contact, leaving some

positive charge buildup on the metal contact interface,7,26

which could facilitate the diffusion of Ag in Ag2S and result

in substitutional interstitial processes.25 As a consequence,

the Ag–Ag2S interface causes the bending and upshift of the

energy bands.26 In the presence of S powder, which could

serve as a strong oxidant, the surface reactive Ag atoms of the

nanowires are oxidized to form a thin uniform Ag2S layer at

an early stage. The subsequent diffusion of Ag would con-

tinue, as well as its reaction with S at different sites, leading

to the growth of convexity due to the increase in internal en-

ergy arising from the interfacial strain caused by the lattice

mismatch between Ag and Ag2S, and due to the large volume

expansion during the sulfurization reaction, since the molar

volumes of Ag and Ag2S are 10.3 cm3 mol−1 and 34.3 cm3

mol−1, respectively.19a The initially formed Ag2S convexity

continues its growth and undergoes an Ostwald ripening pro-

cess to turn into nanosheets. With the growth of Ag2S, the

diffusion of Ag atoms from the internal Ag core to the surface

Ag2S becomes slower and slower, leading to a negligible dif-

ference in the 1D/2D hybrid heterostructures obtained after

24 h. The SEM images and XRD pattern of a sample reacted

for 6 days are shown in Fig. S4,† which are similar to those

obtained at 24 h. Compared to previously reported methods for

the fabrication of 1D Ag–Ag2S heterostructures, a major advan-

tage of the present work is the use of the stable sulfur powder

rather than Na2S to synthesize this new type of well-defined

1D/2D hybrid architecture under ambient conditions.4b,27

As a proof-of-concept application of this intriguing hybrid

nanostructure, the obtained 1D/2D hierarchical Ag–Ag2S

heterostructures were used as multifunctional materials in re-

chargeable Li/Na-ion batteries, in decolouration of organic

dyes, as well as in surface-enhanced Raman spectroscopy

(SERS) detection. Fig. 6A shows the cycling performance and

coulombic efficiency of the electrodes in Li-ion batteries fab-

ricated from the 1D/2D hierarchical Ag–Ag2S hetero-

structures. Their capacities drop in the first few cycles due to

the formation of a solid electrolyte interphase (SEI) film,

which is similar to what happens in other nanostructure-

based electrodes.28 The first few cycles involve the formation

Fig. 5 SEM images of Ag–Ag2S heterostructures prepared with

different molar ratios of sulfur powder to Ag nanowires: (A) 0.4 : 1, (B)

0.33 : 1, (C) 0.22 : 1, and (D) 0.2 : 1.

Scheme 1 (A) Schematic illustration of the synthesis of 1D/2D Ag–

Ag2S heterostructures and (B) simplified band structures in the Ag–

Ag2S system before and after contact.
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of a stable SEI film resulting from electrolyte decomposition,

which degrades the capacity. The capacity slowly decreases

to around 201 mAh g−1 after 25 cycles of charging and

discharging, followed by a gradual increase to 302 mAh g−1

after 200 cycles. The increasing trend in the capacity is simi-

lar to that in the reported literature, and the capacity is larger

than that of pure Ag2S nanoparticles.29

From the charge–discharge curves in Fig. 6B, the initial

discharge and charge capacities are 885 and 626 mA h g−1, re-

spectively, corresponding to a coulombic efficiency of 71%,

which is higher than that of the reported Ag2S/C nano-

composite (∼61%) and pure Ag2S (∼40%), and the charge ca-

pacity of the Ag–Ag2S heterostructure electrode was also

larger than that of the other two.29 Nevertheless, the coulom-

bic efficiency increased to above 98% after 25 cycles,

suggesting the excellent retention capacity of the Ag–Ag2S

electrode with 1D/2D morphology. These electrochemical

characteristics can be attributed to their composition and

unique 1D/2D structure: (1) the Ag in the hybrid possesses

much better electrical conductivity than the pure Ag2S and

provides interconnected charge pathways so that the conduc-

tivity and mechanical strength of the whole heterostructure

electrode are improved; (2) the 1D nanowires with superior

electronic conductivity and the 2D nanosheets effectively

shorten the diffusion length of the Li ions in the small pri-

mary subunits;30 (3) the unique hierarchical 1D/2D structure

could not only provide more sites or paths for lithium ion

storage or transport, but also provides enough space to buffer

the volume expansion during cycling and facilitate good con-

tact with the conductive carbon black.31

In addition to the lithium ion battery, the 1D/2D hierar-

chical Ag–Ag2S heterostructure electrode was also used as the

anode for the sodium ion battery for the first time. As shown

in Fig. 6C and D, its capacity decreased dramatically from

422 to 91 mAh g−1 in the first 10 cycles, followed by a gradual

decrease to 63 mAh g−1 after 200 cycles. The initial discharge

and charge capacities are 422 and 239 mA h g−1, respectively,

corresponding to a coulombic efficiency of 57%, and the cou-

lombic efficiency increased to above 98% after 30 cycles,

which also suggests the excellent capacity retention of the

Ag–Ag2S electrode with 1D/2D morphology.

Fig. 7A shows the removal of methylene blue (MB) by the

1D/2D Ag–Ag2S hierarchical heterostructures under both visi-

ble light illumination and in dark conditions. Approximately

76% of the dye is decolorized under solar light exposure of

150 min as compared to the 69% efficiency in dark condi-

tions, demonstrating the weak photocatalytic effect of the

1D/2D Ag–Ag2S hierarchical heterostructures (Fig. 7B). It is

also implied, however, that the adsorption process is quicker

than the photodegradation process. Ag2S works more as an

adsorbent and less as a photosensitizer and electron donor

in imparting the decoloration effects to the Ag NWs under so-

lar light irradiation. The adsorption process transfers MB

molecules to the photocatalyst surfaces, but the solar-light-

driven photocatalysis process cannot radically eliminate MB.

Compared with the Ag–Ag2S nanoparticles (Fig. 7C and Fig.

S5 in the ESI†), pure Ag2S nanoparticles (Fig. 7D and S6 in

the ESI†), and Ag NWs, the excellent decoloration of MB on

the 1D/2D Ag–Ag2S hierarchical heterostructures can be as-

cribed to their strong adsorption capability in the dark, due

to the interfacial effect after the introduction of Ag2S nano-

sheets onto the surface of the Ag NWs, and the weak photo-

degradation of the adsorbed MB molecules through the

heterostructures.

Surface-enhanced Raman scattering (SERS) spectroscopy is

a powerful tool for the detection of traces of chemical and

biological species. To study the SERS responses of our as-

prepared 1D/2D hierarchical Ag–Ag2S heterostructures, the

commonly used organic dye methylene blue (MB) was se-

lected as the target molecule. The original Raman spectrum

of MB is dominated by ν(C–C) ring stretching at ∼1622 cm−1,

Fig. 6 Cycling performance and charge–discharge voltage profiles for

the first 4 cycles of the 1D/2D hierarchical Ag–Ag2S heterostructure

electrode used as the anode for the lithium ion battery (A and B) and

the sodium ion battery (C and D) at a specific current of 30 mA g−1.

Fig. 7 (A) Decoloration activity of the 1D/2D hierarchical Ag–Ag2S

compared with the Ag–Ag2S nanoparticles and pure Ag2S nanoparticles

and SEM images of 1D/2D hierarchical Ag–Ag2S (B), Ag–Ag2S

nanoparticles (C) and pure Ag2S nanoparticles (D).
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α(C–H) in-plane ring deformation at ∼1398 cm−1, and δ(C–

N–C) skeletal deformation at ∼449 cm−1.32 Fig. 8 shows the

Raman spectra of MB deposited on different glass slides

coated with 1D/2D hierarchical Ag–Ag2S nanowires, Ag–Ag2S

nanoparticles, and pure Ag2S nanoparticles, in comparison

with the spectrum of MB. It is obvious that most signals of

the characteristic peaks were highly enhanced in the SERS

spectra compared with that of the MB solution (10−3 M). The

characteristic peaks of MB are located almost in the same

place or only slightly shifted, which indicates the adsorption

of MB on the substrate surface. According to the peak at

∼1626 cm−1, the signal enhanced by the 1D/2D hierarchical

Ag–Ag2S heterostructures and the Ag–Ag2S nanoparticles is

higher than that by the pure Ag2S nanoparticles, which dem-

onstrates the significant role of Ag in the hybrid structure in

enhancement. It is generally accepted that both electromag-

netic enhancement and chemical enhancement could con-

tribute to the overall surface enhancement.33 The unique

strong local plasmon resonance from the Ag metal in the hy-

brid structure generates more “hot spots” that can contribute

to SERS enhancement, compared to the pure Ag2S nano-

particles.34 The highest intensity in the case of the 1D/2D hi-

erarchical Ag–Ag2S heterostructures is probably due to the hi-

erarchical and concave structures constructed from 1D

nanowires and 2D nanosheets, which may boost their en-

hancement in comparison with spherical nanoparticles with

smooth surfaces.33,35 The enhancement of pure Ag2S nano-

particles is relatively weaker, since the localized surface

plasmon resonance (LSPR) of Ag2S is usually located in the

near-infrared/infrared region, and SERS enhancement mainly

results from the charge transfer resonance between the Ag2S

and MB molecules.4b,33,34,36

In order to demonstrate the application of the as-

fabricated 1D/2D hierarchical Ag–Ag2S as a promising SERS-

active substrate, we also examined the dependence of the

SERS signal on the concentration of adsorbed MB (Fig. S7†).

The intensity of the spectra increases with the increase in

concentration from 10−6 M to 10−3 M. At low concentrations

(i.e.10−5/10−6 M), the characteristic peaks of MB at ∼1622

cm−1, ∼1398 cm−1 and ∼449 cm−1 are faintly visible, and they

become much more prominent and sharp at higher concen-

trations (i.e. 10−4–10−3 M). This result is probably due to more

dye molecules adsorbed on the substrate surface, which can

create more surface active “hot spots” compared to lower

concentrations.

Conclusions

In summary, unique 1D/2D hierarchical Ag–Ag2S hetero-

structures were successfully prepared at room temperature by

an extremely simple solution method. The growth of Ag–Ag2S

hybrids is dominated by the diffusion and Ostwald ripening

processes. The resultant 1D/2D hierarchical Ag–Ag2S hetero-

structures exhibit good capacity when used as Li/Na ion bat-

tery anodes, high sensitivity for the detection of organic dyes

through SERS, and decoloration activity towards organic dyes.

It was expected that this work could open up new avenues to-

wards the facile and rational synthesis of multifunctional 1D/

2D hierarchical architectures of semiconductor-noble metal

hybrids for diverse applications.
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