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Abstract

As described previously (R. F. Post, D. D. Ryutov, J. R. Smith, and L. S. Tung, Proc. of
MAG '97 Industrial Conference on Magnetic Bearings, p. 167), research has been underway at the
Lawrence Livermore National Laboratory to build a theoretical and experimental base for the design
of ambient-temperature passive magnetic bearings for a variety of possible applications. In the
approach taken the limitations imposed by Earnshaw's theorem with respect to the stability of
passive magnetic bearing systems employing axially symmetric permanent-magnet elements are
overcome by employing special combinations of elements, as follows: Levitating and restoring
forces are provided by combinations of permanent-magnet-excited elements chosen to provide
positive stiffnesses (negative force derivatives) for selected displacements (i.e., those involving
translations or angular displacement of the axis of rotation). As dictated by Earnshaw's theorem,
any bearing system thus constructed will be statically unstable for at least one of the remaining
possible displacements. Stabilization against this displacement is accomplished by using periodic
arrays ("Halbach arrays") of permanent magnets to induce currents in close-packed inductively
loaded circuits, thereby producing negative force derivatives stabilizing the system while in
rotation. Disengaging mechanical elements stabilize the system when at rest and when below a low
critical speed. The paper discusses theory and equations needed for the design of such systems.

I) Introduction

There are many examples of rotating machinery, e.g., modular flywheel energy storage
systems (electromechanical batteries) where it would be highly advantageous to be able to employ
"passive" magnetic bearing systems. Compared to "active” magnetic bearings (those employing
position sensors, electronic amplifiers, and control magnets) passive bearing systems could be less
complex, less subject to failure, and, possibly, far lower in cost. Passive magnetic bearings must,
however, be able to overcome the well-known consequences of Earnshaw's theorem [1] This
theorem asserts the impossibility of statically levitating systems employing only permanent
magnets or electromagnets with fixed currents. One approach, pursued by Argonne National
Laboratory [2] and by other groups, is to employ superconducting elements in the bearing system.
Owing to their diamagnetic and other characteristics, superconductors evade Earnshaw's theorem,
and thus offer a way to resolve this problem. This solution, however, necessarily involves the use
of cryogenic systems, with their attendant power requirements and complexity. Passive bearing
systems employing ambient-temperature permanent-magnet elements would seem preferable to
either active or superconductor-based bearing systems for a wide variety of possible applications.

Research has been underway for some time at the Lawrence Livermore National Laboratory
to build a theoretical and experimental base for designing ambient-temperature passive magnetic
bearings for various applications [3]. In brief summary of the working principles undergirding this
particular approach to passive magnetic bearing systems, they are the following:



(1)  Itis sufficient in the applications intended if stability is only achieved in the rotating state.
That is to say, a centrifugally disengaging mechanical system can be used to insure stable levitation
at rest (when Eamnshaw's theorem applies). This relaxation of requirements opens up the
possibility of using dynamic effects to achieve stability, a possibility not included in the
assumptions made in deriving Earnshaw's theorem.

(2)  Stable levitation results if the vector sum of the force derivatives of the several elements of
the bearing system, for axial, radial, and tilt-type displacements from equilibrium, is net negative
(i.e., restoring). In this way it is possible to achieve Earnshaw-stable levitation using systems
composed of multiple elements, no one of which is by itself stable against all of these
displacements. Insuring stability then becomes a quantitative matter, where the destabilizing
tendency, for a given displacement of one magnetic element is paired off against the (greater)
stabilizing tendency of another element for displacements in that same direction, and so forth.

This article will be concerned with presenting the results of theoretical analyses, in the form
of design equations, that we have developed to facilitate the design of Earnshaw-stable ambient-
temperature passive bearing systems. Only brief comments will be made on the next level of
instability-related problems encountered in rotating systems, rotor-dynamic instabilities. Our
analyses of this latter problem (in the context of passive magnetic bearing systems), and the
stability criteria that have resulted from these analyses will be the subject of future papers.

II) Criteria for Earnshaw-Stability of Levitated Rotors

We first define criteria that, if met, will insure the Earnshaw-stability of a rotor supported
by a passive bearing system. Figure 1 is a schematic drawing of such a system, in this case shown
with the axis of rotation being vertical. The magnetic bearing components, A and B, shown above
and below the rotor, may be composed of sub-elements, as described later. The combined
characteristics of bearing components A and B are represented by stiffnesses K, and Ky for lateral

displacements (i.e., force derivatives with magnitudes -K, and -Kg). For axial displacements

bearing components A and B will be characterized by stiffnesses B,K, and BgKy. In the

equations of motion of the rotor/bearing system we define transverse displacements of the center of
mass by the variables x and y, and axial displacement by the variable z. Tilts of the axis can be

characterized by two angles, 0., Gy, representing tilts in the xz and yz planes, respectively. For
small perturbations, lateral displacements of the axis in the bearings A and B can be represented as:

X, =x+6,d Xg = x-6,d yp = y+6,d Vg =y-6,d (1)
Perturbations of the potential energy with respect to the equilibrium state can be written as:
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Using the Hamiltonian approach [4], and noting that the kinetic energy of the perturbations in the
system, where we ignore gyroscopic effects, is a positive-definite quadratic form, one comes to the



conclusion that the system is stable if and only if the potential energy (2) is also a positive-definite
quadratic form, i.e., if

Ky >0, Kg >0, and (B,Ky+BgKg) >0 3)

Our task in defining an Earnshaw-stable passive bearing system will be to find combinations of
bearing elements satisfying (3), recognizing that these conditions are more stringent than required
in all situations.

In summary to this point, achieving Earnshaw-stability in a passive magnetic bearing
system is an exercise in defining a bearing system composed of various elements, no subset of
which is required to be stable against all displacements from equilibrium. One is not here dealing
with individual elements that are intrinsically stable, but rather with a bearing system achieving
stable levitation by the satisfaction of quantitative requirements on its various elements.

HI) Axially Symmetric Permanent-Magnet Elements

To provide levitation and/or centering forces in our passive bearing system it utilizes axially
symmetric bearing elements employing permanent magnet material. The simplest form of such
elements are permanent magnets in the form of thin discs or annuli, magnetized in the axial
direction and polarized so as either to attract or to repel. When facing each other, such elements in
the attracting polarization provide radial centering, but are, per Earnshaw, unstable against axial
displacements, and vice-versa for the repelling polarization.

Before presenting approximate analytical formulae for the forces and stiffnesses of the
above-described elements, we note a property of all such axially symmetric elements. That is, the
absolute value of the radial and axial stiffnesses of such elements for small displacements are in
ratio of 1:2, while their signs are opposite. Thus, in calculating the axial stiffness of such an element
one can be assured that the radial stiffness will be of opposite sign and of half the magnitude. This
result is a consequence of the curl-free nature of the vacuum magnetic fields, and of the fact that in
calculating the radial stiffness one must take a cosine-average of the forces, whereas for axial
displacements no such averaging is required.

For the case of two equal-diameter magnetized discs with radius = b (m.) and thickness = h
(m.), facing each other at a separation distance = 2a (m.), where a << h and a <<b, the magnitude
of the axial force exerted by one disc on the other one is given approximately by the expression:

2B%bh 1
Fo== {(1+a/h)|n[1+a/h]-(1+2a/h)ln[§(1+2a/h)]+(a/h)|n(a/h)} Newtons ()

z
0

Here B_ (Tesla) is the remanent field of the permanent magnetic material (e.g., 1.4 Tesla for high-

flux NdFeB magnet material), and p, = 4%t x 107 hy/m.
In the limit of zero separation between the magnets, the limiting axial force becomes:

2

B,bh
Fz(max)=2ln(2)[ " ] Newtons (5)
0




The axial force derivative (negative of the axial stiffness) is (for attracting magnets):

2
%?: %O—b{zln[%(Hza/h)] - In[(a/h)(1+a/h)]} Newtons/meter  (6)

For repelling magnets the magnitude of the force and of its axial derivative remain the same,
but the signs of both are changed. Also, as noted, the magnitude of the force derivative for
displacements transverse to the axis is half of the value given by equation (6), and of opposite sign.

One can deduce directly from the above results obtained for repelling and attracting axially
symmetric magnets that the best one can do with any combination of such elements is to achieve a
meta-stable state, i.e., one in which the force derivatives of the various elements add to zero, a
situation of no practical value. Using only such elements it is impossible to satisfy criterion (3).

Equations (4) and (6) are but examples of the types of equations that will be needed for the
design of the systems we will describe. There are, of course, other axially symmetric magnet
configurations that could be employed, such as concentrically nested annular magnets, and circular-
pole magnets energized by permanent-magnet material. The relative stiffnesses and forces of these
alternate configurations could be determined analytically, by the use of computer codes, or by
measurements, and the data obtained plugged into the overall design to arrive at an Earnshaw-stable
situation, employing the "stabilizer” elements to be described in the sections to follow.

IV) Halbach-Array Stabilizers

As per the previous discussion, to achieve an Earnshaw-stable system levitated by
ambient-temperature permanent magnets it is necessary to add another ingredient. That is, one
must introduce at least one element that will have a ratio of transverse to longitudinal force
derivatives that deviates from the -2:1 or 2:-1 stiffness ratios of the axially symmetric elements, in
such a way and of a sufficient magnitude that the bearing system taken as a whole can satisfy the
requirements of criterion (3) or its generalizations (for example, in order to include gyroscopic
effects).

The stabilizer elements to be described employ periodic arrays of permanent magnets,
configured in "Halbach arrays", named after the physicist who pioneered their analysis and use,
Klaus Halbach. These configurations, employing only permanent-magnet bars in their
construction, represent optimally efficient ways to assemble such bars, creating a strong
periodically varying magnetic field at one face of the array, while nearly canceling the field on the
back face of the array. Devised by Halbach for use in particle accelerators and free-electron lasers,
they also turn out to be ideally suited for the stabilizers described here.

Halbach-array stabilizers take two geometrically different forms; "transverse" and "axial."
Figure (2) is a schematic representation of one form of a transverse stabilizer. A rotating multi-
pole Halbach array is shown surrounding a close-packed array of inductively loaded electrical
circuits, (only the outer conductor of each such circuit is shown). The rotating Halbach array
produces a time-varying flux in each circuit. Above a low critical speed (determined by the circuit
resistance and inductance), the induced current approaches a phase shift of nearly 90 degrees
relative to the inducing flux. This current, interacting with the magnetic field of the Halbach array,
then exerts a net transverse restoring force on the rotating magnet array, thereby providing the
needed stabilizing force derivative for magnet systems that would be otherwise unstable radially.
At the same time, the axial force derivative of such an element is very low, arising only from weak



end effects, so that the stabilizer will not itself contribute any appreciable destabilizing effect in the
axial direction.

Since they employ non-axially symmetric fields, and since they involve dynamic
(induction) effects, Halbach array stabilizers are not subject to the constraints of Earnshaw's
theorem. Thus either alone, or in combination with axially symmetric permanent-magnet elements,
they enable the design of Earnshaw-stable systems (for operation above a critical speed)[S].

The magnetic field produced by a N-pole Halbach array [6] as a function of radial position,

p <a, and azimuthal angle, ¢, is given by the following equations:

B, = B, [%]m cos(No) (7)
B, =B, [g]m sin(No) 8)
sl [
Cy= cosN(rc/M)[s—i?N(%E/M';ﬂ] N> 1 (10)

In these expressions the quantity a (m.) is the inner radius of the Halbach array, and b (m.)
is its outer radius. In the expression for Cy;, the quantity M is the total number of magnets in the

array. In Figure 2, and for the type of array shown, there are 4 magnets per pole (i.e., 4 magnets
per wavelength in the azimuthal direction), so that M =4N., i.e. N = 6 in the figure.

We consider two types of circuits for the windings of the stabilizer. The simplest type of
circuit is a rectangular "window frame.” The outer leg of this rectangular circuit, located at radius

p,, corresponds to one of the conductors shown in the figure, while the inner leg (not shown in the
figure) is located at radius p; <p,. The inductance of each circuit (self-inductance plus the effect
of mutual inductance with adjacent circuits) is taken to be equal to L, (henrys), and its resistance is

R (ohms). The conductor itself is "litzendraht" (litz) wire. That is, it is composed of a multi-
stranded bundle of fine strands of insulated copper wire. As later discussed, the use of litz wire
greatly reduces the power losses associated with internal eddy currents in the wires.

The current induced in the circuits by the rotating Halbach array can be calculated from the
flux produced by the array fields (equations 7 - 10). At low speeds the current leads the flux by 90
degrees, resulting in drag forces but little repulsion. As the speed increases the phase lags until it
approaches that of the flux, at which point the repelling force is maximal, and the drag torque is
greatly reduced (varying inversely with the speed). The "transition speed," defined as the rotation
speed where the repelling force has reached half its limiting value, is given by the relationship:

o = fzf [l%] radians/sec. (11)

For typical stabilizers, this transition speed can be as low as a few hundred RPM. If it is desirable
--to lower the transition speed, inductive loading can be added to each of the circuits (we have used

small powder-core toroids for this purpose).



From the analysis the expression for the stiffness, K, of this form of stabilizer for
displacements transverse to the axis of rotation is:

2 N 2N-1

- Boyah?

K, = (ZF\i;)AM[ &io ]{1 - [g-‘-) }[Eag] Newtons/m. (12)
2 2

The quantity AM corresponds to the total number of circuits, and the quantity h (m.) is the axial
length of the Halbach array bars.

The analysis may also be extended to evaluate the ohmic power losses in the circuits
relative to the stiffness. The expression derived is:

1

N(N-1
;"_ = NR-1)L ZL" Pt Newtons m-! watt? (13)
0 2Rp, - P,

When it is desirable to minimize the power losses associated with the stabilizer, reference
[3] describes a version in which ohmic losses approach "zero" in the centered position. In this
version, the window-frame circuits have their legs on opposite sides of the stator, and the Halbach
array has an even order (N = 2, 4, 6, etc.). In this case there is flux cancellation in the centered
condition and (except for residual currents arising from mechanical and magnetic tolerances
associated with the Halbach array and the windings) the induced currents approach zero. For this
case, the stiffness is given by the equation:

2 5 2N-1
K, = An {Boh N} [9] Newtons/meter (14)
Ko P a

Here the quantity ¢ (m.) is the radius of the cylindrical stator, and the quantity, P (m.), is the
perimeter of each circuit. This term arises from inserting into the expression the results of an
evaluation of the effect of the adjacent circuits on the inductance of each circuit, assuming no added
inductive loading is used. As a result, and in the case that a high-order Halbach array is used (N >>
2), the stiffness values that can be attained can be quite high, in excess of 107 Newtons/m.

The stabilizers just described address the problem of stabilization of a bearing system that
is unstable for transverse displacements, but stable axially. An example would be a rotor levitated
vertically between two sets of repelling magnets. For those cases where transverse stability is
present (for example when attracting magnet pairs or their equivalent are used) and the system is
unstable axially, a stabilizer employing planar Halbach arrays can be used. Figure 3 is a schematic
representation of such a stabilizer. As shown, a planar circuit array is positioned midway between
planar Halbach arrays, coupled to each other at their inner radii so that they rotate together, and
oriented azimuthally so that their axial fluxes cancel at the midway between them. Thus, when
positioned midway between the Halbach arrays no currents are induced in the circuits, but currents
and restoring forces arise from any axial displacement from this position. The design equation
derived for this case is the following: '



B3N -
K =12 [6G(ay) - aG(e)]  Newtonsimeter (15)

In this expression a (m.) is the inner radius of the planar Halbach array, b (m.) is its outer
radius, the parameters o, = Nh/a and oy, = Nh/b, N, is the number of circuit wires, and the function

G(o) is defined by the relationship:
G(@) =[1 + aln(a) + a(1 - C)], C=Euler's const. = 0.577....  (16)

The quantity By, represents an effective mean value of the peak value of the magnetic field

at the midplane between the two Halbach arrays at the inner radius, a. This quantity was
calculated from results derived by Halbach for a linear array such as would be used as a "wiggler" in
a free-electron laser. The result is given by (M = total number of magnet bars in each array):

Bop = 28,{1 - exp[- Nﬂ}{%%)] exp(-Nh/a) Tesla (17)

In a later section an example of the design of a complete Earnshaw-stable bearing system
employing design equations given here will be outlined. We will now discuss a loss-related issue
associated with residual eddy currents in the litz wire of the stabilizer circuits.

V) Eddy-Current Losses in the Stabilizer Windings

In the stabilizer configurations described the legs of the litz-wire circuits closest to the
Halbach arrays are exposed to a rotating vector magnetic field, whether or not there is cancellation
of the flux linked by these windings. This rotating field will induce residual eddy currents in the
strands of the litz wire, thus leading to losses. However, since these residual losses vary as the
fourth power of the diameter of these strands, the use of litz wire composed of many strands of
fine wire can reduce these losses to the fractional-Watt level. It is straightforward to calculate the
eddy-current loss per meter in a litz wire strand. The expression derived is:

Poc
L

&3

B2w?a*
[ 0 } Watts/meter of conductor (18)
c
Here o (rad./sec.) = Nw,, where o, is the angular frequency of the rotating system),  is the
frequency of the rotating field of magnitude B (Tesla), a (m.) is the radius of the conductor strand,
and p, (chm-meter) is its resistivity.

VI) Comments on the Stabilization of Rotor-Dynamic Instabilities

While the emphasis in this paper is on the design of Earnshaw-stable passive magnetic
bearing systems, some remarks are in order on the use of passive elements to stabilize rotor-
dynamic modes. Two generically different techniques exist for their stabilization: (1) eddy-current
dampers, and, (2) anisotropic radial stiffness. The former involves, for example, stationary



conducting sheets exposed to axially symmetric fields from circular poles excited by permanent
magnets. This technique has been employed, for example, by Fremerey [7]. The second technique,
believed novel to our approach, is to introduce anisotropic stiffness in the radial stabilizers of the
types described by equations (12) and (14). This result can be accomplished by modulating the
spacing of the circuits as a function of azimuth, or by modulating their inductive loading as a
function of azimuth, or by using a stator of elliptical cross-section. As described in reference [3],
the degree of anisotropy required for this type of stabilization depends on the magnitude of the
displacement-dependent drag terms, as follows:

—ny— < [1 - 2—\—/%5?1} , stable, }gdg (19)

Here o, and a, (Newtons/meter), the displacement-dependent drag-force terms, have been

assumed also to be anisotropic for generality. When these terms are small (as they are likely to be
in many situations), the degree of anisotropy predicted to be required for stabilization would be
minimal. Note that in addition to the stabilization introduced by anisotropy, displacement-
dependent ohmic losses in the stabilizer windings can be expected to introduce some damping of
radial oscillations.

VII) Example System Design

To illustrate the use of the design equations that have been presented we outline the design
of a vertical-axis system supporting a mass of 10 kilograms. (F, = 100 Newtons, approximately).
Of the two alternatives, we choose to levitate the rotor between two sets of repelling disc-shaped
magnets, so that the system is stable axially but unstable radially. Stabilization for transverse
displacements is then to be achieved by using upper and lower Halbach-array transverse
stabilizers.

The parameters of the upper and lower repelling bearing sets are chosen by requiring that
they both have the same magnitude of (unstable) transverse stiffness, subject to the requirement
that the difference in their axial forces should equal 100 Newtons (to provide levitation). We
further assume that the ratio of the half-gap to the magnet thickness, i.e., the parameter (a/h), is the
same for both magnet sets. It then remains to select the radius, b, and the relative thickness of the
upper and lower magnet sets in order to satisfy the two requirements.

We begin by evaluating the equations for the axial force, equation (4), and equation (6) for
the axial stiffness (from which the transverse stiffness can be evaluated) in the case that the
parameter (a/h) is fixed at the value 0.1 (thus satisfying the small-parameter assumption made in
deriving the equations):

2

B,bh
F,(@h =0.1) =0.97515 " Newtons (20)
0

2
'

b
K, (ah=0.1) = 1.1856 [1—[——] Newtons/meter (21)
0



Recalling the 2:-1 ratio of stiffnesses for axially symmetric permanent-magnet elements that
was discussed in Section III, we have for the transverse stiffness the relationship:

2
t

K, (ah=0.1) =-0.5928 [E] Newtons/meter (22)

We will also use in the design equation (5), defining the maximum (repelling) force,
occurring as the gap, a, approaches zero. Putting in numerical values for the coefficient we have:

2

B,bh
F, (max) = 1.3863 " Newtons (23)
0

We further assume that the relative magnet thickness of the lower magnet element (the one
that provides the levitating force), is /b = 0.2, and that the remanent field B, = 1.25 Tesla

(standard grade NdFeB material). For the upper magnet we will leave the thickness, h, as a variable
to be determined. With these assumptions equations (20) and (23) become:

F,(@h=0.1,hb=02B=125T) = 24250x 10°b? N (lower mag.) (24)

F,(max) = 3.4474X10°b2 N (lower mag.) (25)
F,(@mh=0.1,B,=125T)=12125x10°bh N (upper mag.) (26)
K (h=0.1,B=125T) = -7.3709x 10°b Newtons/meter (27)

Imposing the requirement that the transverse stiffness of both the top and bottom bearing
elements should be equal implies that both magnets have the same radius (their thicknesses will not
be equal, however). The common radius can be determined by establishing a value for F, (max).
To provide a robust value of the levitating axial force we take this maximum value to be 400N (4
times the weight that is to be levitated). With this assumption one finds for the magnet radii, b =
.03406 m. The thickness of the upper magnet element can be determined by imposing the
condition that the net levitating force should be 100 Newtons, yielding the equation:

2.4250 X 105 b2 - 1.2125 x 106 b2(h/b) = 100 Newtons (28)

Inserting the previously determined value of b we find (h/b) = 0.1289, for the upper
magnet, to be compared to (h/b) = 0.2 for the lower magnet.

To complete the design we need only determine parameters for radial stabilizers whose
positive transverse stiffness sufficiently exceeds the negative stiffness of the levitator magnets to
yield a desired net positive stiffness value. Inserting the value of b into equation (27) we find for
the negative stiffness of each magnet set the value

K, (@h=0.1,B,=125T) = -2511x 10* Newtons/meter (29)

If we employ stabilizers of the type represented by equations 7,8,9,10, and 14 with the
parameters B, =125 T, a/b= 0.3, h=005m.,P=3h, N=6, and c/a = 0.95, we obtain a positive



stiffness value K, = 4.2 x 105 Newtons/meter, or about 16 times the negative stiffness of the

levitating elements. It should be apparent that the stiffness of the Halbach array stabilizers can
readily be made to overcome the negative stiffnesses of the levitating bearings.

VIII) Summary and Conclusions

We have outlined the theory and presented some design equations that can be used to
perform the design of ambient-temperature passive magnetic systems that satisfy criteria for
Earnshaw-stability. We have further sketched some approaches to the stabilization of rotor-
dynamic instabilities in such systems. We have concluded by using the design equations to arrive
at an example set of parameters for a vertical-axis system whose mass is 10 kilograms, finding
reasonable values for all of the required parameters. The results presented are being incorporated in
models that will explore practical issues that are sure to be encountered in converting the theoretical
results into working systems.

Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under
Contract W-7405-Eng-48
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Schematic drawing of axial stabilizer using planar Halbach arrays
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