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Abstract

Three-dimensional (3D) kinematic models are widely-used in video-
based figure tracking. We show that these models can suffer from
singularities when motion is directed along the viewing axis of a
single camera. The single camera case is important because it arises
in many interesting applications, such as motion capture from movie
footage, video surveillance, and vision-based user-interfaces.

We describe a novel two-dimensional scaled prismatic model
(SPM) for figure registration. In contrast to 3D kinematic models, the
SPM has fewer singularity problems and does not require detailed
knowledge of the 3D kinematics. We fully characterize the singu-
larities in the SPM and demonstrate tracking through singularities
using synthetic and real examples.

We demonstrate the application of our model to motion capture
from movies. Fred Astaire is tracked in a clip from the film “Shall We
Dance”. We also present the use of monocular hand tracking in a 3D
user-interface. These results demonstrate the benefits of the SPM in
tracking with a single source of video.
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1. Introduction

The kinematics of an articulated object provide the most fun-
damental constraint on its motion, and there has been a signif-
icant amount of research into the use of 3D kinematic models
for visual tracking of humans (Sidenbladh, Black, and Fleet
2000; Deutscher, Blake, and Reid 2000; DiFranco, Cham, and
Rehg 2001; Bregler and Malik 1998; Kakadiaris and Metaxas
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1996; Gavrila and Davis 1996; Rehg 1995; Yamamoto and
Koshikawa 1991; Hogg 1983). Kinematic models play two
roles in tracking. First, they define the desired output—a state
vector of joint angles that encodes the three-dimensional (3D)
configuration of the model. Secondly, they define the mapping
between states and image measurements that makes registra-
tion possible.

In situations where multiple camera views are available for
tracking an articulated object, the 3D kinematic constraint is
particularly powerful. With enough cameras, the state space
is fully observable, meaning that the available image mea-
surements are sufficient to determine an estimate for each
state in the model. As uncertainty in the 3D state estimate
is reduced, the 3D kinematic model provides an increasingly
powerful constraint on the image motion. Unfortunately in
certain tracking applications, such as 3D motion capture from
movie footage (Rehg 2000) or visual surveillance, only a sin-
gle (monocular) video source is available. The result is a loss
of observability and an increase in the uncertainty of the 3D
state (Shimada et al. 1998; Rehg 1995).

In many cases, the constraint on image motion due to the
3D kinematics is expressed as the visual kinematic Jacobian, a
linearized map from joint angles to image measurements. The
Jacobian is a key element in nonlinear least-squares tracking
algorithms (Kakadiaris and Metaxas 1996; Rehg and Kanade
1994b; Pentland and Horowitz 1991) as well as in techniques
for “accelerating” the convergence of stochastic tracking al-
gorithms based on particles (Heap and Hogg 1998) or kernels
(Cham and Rehg 1999). The singularities of this Jacobian
correspond to state space regions in which there is a local
loss of observability. Kinematic ambiguity in reconstructing
the 3D motion is compounded by other sources of ambiguity
including self-occlusions and background clutter.
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Recent approaches to monocular figure tracking have ad-
dressed these challenges through a variety of innovations,
including learned motion models (Sidenbladh, Black, and
Fleet 2000; Howe, Leventon, and Freeman 1999; Brand 1999;
Pavlović et al. 1999), efficient stochastic estimators for large
state spaces (Deutscher, Blake, and Reid 2000; MacCormick
and Isard 2000; Heap and Hogg 1998), and appearance mani-
folds (Toyama and Blake 2001). These algorithms can be seen
as defining the state-of-the-art for visual tracking in general,
as a result of their sophistication and their performance on
challenging problems.

In contrast to this recent progress, however, there has been
relatively little work done on analyzing systematically the
sources of error in articulated tracking, as well as the op-
timality of the many different components which make up
a successful tracking system. As a consequence, it is often
unclear what the best solution approach is for a given articu-
lated tracking problem. This paper represents an initial step in
addressing this deficiency. We analyze the effectiveness and
limitations of kinematic models in both two-dimensional (2D)
and 3D approaches to figure tracking.

This paper makes three main contributions. First, we char-
acterize the ambiguities that result in tracking with both 2D
and 3D kinematic models. This characterization includes an
analysis of the singularites of the visual kinematic Jacobian
in both cases. Secondly, we propose a novel scaled prismatic
model (SPM) for 2D figure registration. This model is derived
by projecting a 3D kinematic model into the image plane.
Thirdly, we present experimental results for tracking both fig-
ures and hands in 2D and 3D using a common framework for
the kinematics and appearance modeling. Our results include
a comparison between 2D and 3D models on real data. Pre-
liminary versions of this work appeared in Morris and Rehg
(1998), Rehg (1995) and Rehg and Kanade (1994a).

2. Appearance Models for 3D Articulated Object
Tracking

A key step in any tracking approach is to specify a likelihood
model p(z|x) which describes the appearance of the tracked
object in the image z conditioned on the state vector x. In prob-
abilistic tracking algorithms, this model is combined with a
prior modelp(x) using Bayes rule. Examples of this approach
include the extended Kalman filter and various particle filters.
In deterministic tracking algorithms, the likelihood is treated
as an objective function which is minimized numerically.1

In both deterministic and probabilistic tracking algorithms,
it is often useful to evaluate the gradient of the likelihood to
accelerate the convergence of the tracker. This is the standard

1. While deterministic trackers are limited by their inability to handle occlu-
sions and background clutter, they can still be useful in certain applications
where the background can be controlled. We will discuss one example in
Section 6.1.

approach in quasi-Newton and Newton methods for deter-
ministic tracking. It is also a common method of “accelerat-
ing” particle filter and kernel-based trackers (Cham and Rehg
1999; Heap and Hogg 1998). The gradient computation is ex-
pressed as a product of Jacobians which collectively map state
space velocities into the velocities of image features.

In this section we will analyze the structure of the likeli-
hood function and its gradient when x is the state vector for
a 3D kinematic model and z is modeled by template features.
This analysis has relevance to both probabilistic and deter-
ministic tracking algorithms. We will show that the structure
of the Jacobian is particularly useful in identifying ambigous
or ill-posed conditions for 3D tracking.

2.1. Template Plane Model of Link Appearance

In classical robotic kinematic analysis, the shape of each link
in a manipulator is abstracted away by the joint transform. In
kinematic analysis for visual tracking, however, the shape of
each link is intimately tied to its visual appearance. There-
fore, one of the key issues in any articulated tracking system
is the specification of the link appearance model. Various ap-
proaches are surveyed in Gavrila and Davis (1996).

Highly articulated objects such as the human body or a
robot manipulator tend to have links with simple shapes.
For example, finger phalanges and the limbs of the body are
approximately cylindrical. Even when there are significant
asymmetries due to clothing or soft tissue deformations, these
links typically have a central axis which is defined by a pair
of joint centers. Figure 1 illustrates the basic geometry. Link
i is attached to the kinematic chain via joints i and i + 1.
The vector âi which connects the two joint centers defines
the central axis for the link.2 For terminal links, âi can be de-
fined arbitrarily, and is usually set to the approximate axis of
symmetry for the link shape.

Many 3D articulated tracking systems have employed
cylinders, ellipsoids, or superquadrics to model the shape of
the links. In some cases, the occluding limbs of the shape
models are matched to image curves during tracking. In other
approaches, the link shapes are used to define an image-flow
or texture-based appearance model. In this section we will
describe and analyze the template plane appearance model
introduced in Rehg (1995) and Rehg and Kanade (1995). It
is a view-based representation of the link appearance with
respect to its central axis. It is arguably the simplest useful
appearance model for articulated tracking.

In the template plane model, the image appearance of the
kth link in a kinematic chain is modeled by the projection of
a view-dependent texture-mapped plane, which is embedded
in the joint coordinate frame for the link. The template plane
passes through the joint centers for the link and is oriented
towards the camera. “Pasted” onto the plane is a template of

2. We will write x̂ when x is a unit vector.
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Fig. 1. Schema of the projection of the template attached to link i along the camera axis âi . n̂i is constrained to lie in the plane
spanned by âi and ĉi so that the template faces the camera.

pixel measurements which models the appearance of the link
from a particular viewpoint. This is illustrated in Figure 1.

Let Ti be the template plane for link i with unit normal
vector n̂i . Let âi be the direction of the center axis for the
link and let ĉi denote the viewing direction. ĉi is directed
along the line connecting the ith joint center with the center
of projection of the camera. The geometry is illustrated in
Figure 1. In order for Ti to describe the appearance of the
link from any viewing direction ĉi , we require âi ∈ Ti (i.e.,
âi ⊥ n̂i). Note however that there is one viewing direction
for which the model is not defined: âi = ĉi . In this case the
camera is imaging the cross-section of the link and a view-
based model with the topology of the circle is not applicable.
In practice, non-terminal links will be occluded under these
viewing conditions, but it is an issue for the terminal links
(i.e., the fingertips). One strategy is to employ a view-based
representation based on the topology of the sphere rather than
the topology of the circle for these links. We will describe
this type of model in more detail later in the context of an
appearance model for the base link.

For a particular choice of ĉi �= âi , n̂i is chosen so as to
maximize n̂i · ĉi . Thus n̂i should lie in the plane spanned by âi

and ĉi (i.e., n̂i ⊥ âi × ĉi). An orthogonal basis for this plane is
given by âi and âi × ĉi × âi . Expanding ĉi with respect to this
basis, we have n̂i = arg maxn[(αâi + β(âi × ĉi × âi )) · n] =
âi × ĉi × âi . Note that when ĉi ⊥ âi → n̂i = ĉi . Intuitively
this means that while the axis of the template is constrained to
connect the joint centers, the template plane will orient itself
around this axis in such a way to maximize the area facing
the camera.

From a geometric viewpoint, the template plane approxi-
mation is reasonable when the depth variation along the link

is small compared to the distance to the camera. This is almost
always the case for the common scenarios of hand and figure
tracking. In addition, if a link is approximately cylindrical and
uniform in texture, then only a single template is required to
describe its appearance from all viewing directions. This is
often true for finger phalanges and limbs.

The template plane model describes the two most impor-
tant components of the motion flow field induced by a link
in a kinematic chain: the foreshortening effect as the link is
inclined towards or away from the camera, and the in-plane
component of the rotation and translation of the link with re-
spect to the camera. What the template plane model fails to
capture is motion due to a rotation around the vector âi (typ-
ically the axis of symmetry for an approximately symmetric
link). This motion is cancelled by the constraints which keep
the template plane oriented towards the camera.

The template plane model would be inaccurate for links
whose shading patterns or occluding limb contours change
in a complex way as a consequence of rotation around the
link axis. In these situations, we can retain the locally planar,
view-based nature of our framework by using the affine or
projective motion models described in Bergen et al. (1992).

The main benefit of the template plane model for links with
simple shapes is that it reduces the potentially complex rela-
tionship between surface points on the link and their image
plane projections to a homography between planes. In this
sense, it is a natural extension of the homographic motion
model to articulated objects. From this perspective, the (pos-
sibly restricted) homographic flows for a link are parametrized
by its degrees of freedom (DOFs) in the chain. Moreover, a
single joint in a kinematic chain will influence the flows for
all of the links it can actuate.
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There are three practical benefits of this template plane
representation, as follows.

• It greatly simplifies the computation of both the forward
visual kinematics (which specify a generative appear-
ance model for the object) and the visual Jacobian com-
putation for image flow (a key step in gradient-based
tracking).

• It simplifies the initialization of link appearance models
from image data. Given a segmented image patch, a
simple planar warp creates the texture map.

• Under a scaled orthographic projection model, the ho-
mographic flow for a link k is completely determined by
the instantaneous motion of the vector âi . This greatly
simplifies the analysis of ambiguities and singularities
by reducing the articulated object to its skeleton.

In our framework, each template has a support map which
describes the active pixel locations. This support map is ini-
tialized when the templates are acquired, typically by seg-
menting the pixels for each link using a rough rectangular
bounding box. Another possibility is to use the expectation–
maximization algorithm to estimate the support maps based
on the articulated motion, as described in Rowley and Rehg
(1997) and Bregler and Malik (1998). A more complex and ac-
curate appearance model based on texture-mapped cylinders
is described in Sidenbladh, De la Torre, and Black (2000).
A potential benefit of this model is that it can represent the
flow field component that results from rotations around the
cylinder axis. In practice, however, we have found that the
planar template model performs quite well on many typical
sequences, as we will demonstrate in Section 6.

2.2. Forward Visual Kinematics of the Template Plane
Model

We now derive the forward visual kinematics for links in a
kinematic chain using the planar template model. The visual
kinematics have three components. The first is the standard se-
rial kinematics that describe the 3D displacement of the links
as a function of the joint angles along the kinematic chain.
The second component, which is specific to visual tracking,
is the camera transform that projects pixels in template plane
coordinates into the image plane. The third component is the
likelihood function, which specifies the measurements that
can be obtained from the image pixels.

Any standard kinematics formulation can be employed to
compute the 3D displacement of the links. From the basic
forward kinematics we extract the locations of the joint centers
for the links, with respect to the camera coordinate frame.
For example, using the standard Denavit–Hartenberg (DH)
notation, the transform from the joint center at link i to the
joint center at link i + 1 is Ti+1

i (θi, di, ai, αi) (Spong 1989).
Let di

c
be the location of the joint center for link i in camera

coordinates. It is given by the translation component of the
product of displacements Ti

c
= Tb

c
T1
b
. . .Ti

i−1. Here Tb
c

maps
from the camera frame to the base frame of the chain. Note
that we number the links in a chain in increasing order, starting
at the base. Thus j < i implies that joint j actuates link i.

For consistency in treating terminal links, we define a vir-
tual terminal joint center which is located at the end of the
central axis of the terminal link. For example, a simple planar
model of the finger might have three links and three physical
joint centers.3 To this we add an additional virtual joint center
(with no DOFs) at the tip of the finger, so that each link lies
between two joint centers. The preceding analysis applies to
links in a kinematic chain, such as the phalanges and limbs
of the body. For base links, such as the palm and torso, we
employ a slightly different approach which will be described
below.

Given the vectors di
c

and di+1
c

computed using standard
forward kinematics, the forward visual kinematic function
for link i is computed as follows

âi = di+1
c

− di
c

‖di+1
c

− di
c
‖ (1)

ĉi = di
c

‖di
c
‖ (2)

b̂i = âi × ĉi (3)

Hi (u, v) = di

c
+ uâi + vb̂i (4)

Fi (u, v) = PHi (u, v) (5)

where Hi traces out the template plane for link i in three di-
mensions as a function of the template coordinates (u, v), P
is the camera projection matrix, and Fi maps a point (u, v) in
template plane i to a point (x, y) in the image plane. Equa-
tions (1)–(5) give a procedure for projecting the template plane
into the image plane as a function of the kinematic parame-
ters. The final component of the forward kinematics is the
likelihood function, which we will discuss in the context of
forming the visual Jacobian.

2.3. Visual Jacobian of the Template Plane Model

The visual Jacobian has three components. The first compo-
nent maps joint velocities into the 3D velocities of points in
the template plane. The second component projects these 3D
velocities according to the camera projection matrix to obtain
image flow fields. This is a linear transformation under the or-
thographic conditions which we assume for the purpose of this
paper. Taken together, these first two components describe the
instantaneous movement of the template plane pixels under
the action of the joints. The third component is derived from
the likelihood function and connects pixel motion to image

3. Moving out from the palm, they would be the metacarpophalangeal joint,
proximal phalange, proximal interphalangeal joint, middle phalange, distal
interphalangeal joint, and distal phalange.
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Fig. 2. Formation of the visual Jacobian. Pixel (u, v) in template i has 3D position Hi (u, v). An instantaneous rotation by θ̇j
at joint j induces the 3D velocity Ḣi (u, v). Projecting this velocity into the image plane yields the flow vector Ḟi

j
(u, v). For

an SSD likelihood function, the change in the residual Ṙj is given by projection of the flow along the image gradient.

measurements. The most basic step in constructing the Jaco-
bian is to compute the image plane velocity of a pixel with
template coordinates (u, v) in template plane i due to the ac-
tion of joint j , with j < i. The geometry is illustrated in
Figure 2.

From the definition of angular velocity and eqs. 4 and 5
we have

Ḟi

j
(u, v) = P

∂

∂t
Hi (u, v) (6)

= P(θ̇j n̂j

c
× (Hi (u, v)− dj

c
)) (7)

f i
j
(u, v) = ∂

∂θ̇j
Ḟi

j
(u, v) (8)

= P(n̂j

c
× (Hi (u, v)− dj

c
)) (9)

where n̂j
c

is the joint axis for joint j in camera coordinates
and θ̇j is the angular velocity of joint j . The function Ḟi

j
(u, v)

gives the image flow at Fi (u, v) due to the action of joint j .
The flow Jacobian f i

j
(u, v) is a 2-vector from which the full

Jacobian can be constructed.
We now illustrate the Jacobian computation for two

representative likelihood functions: point correspondences
and sum of squared differences (SSD) for pixel values.
The general form for the likelihood function is p(z|x) =
k exp(− 1

2
RT�−1R), where R(z, x) is the residual error vector

between the input image and state estimate, � is a covariance
weighting factor, and k is a normalizing constant.

In the case of point correspondences, R is a vector of dis-
tances in the image plane between a set of point measurements

{pk} and their corresponding points (in template coordinates)
on the articulated model. Let the feature point pk in the in-
put image correspond to point (uk, vk) in template plane mk.
The residual for this point measurement and its associated
Jacobian is given by

R(k) = Fmk (uk, vk)− pk (10)

Ṙ
mk

j (k) = Ḟmk

j (uk, vk) (11)

Jmk

j (k) = fmk

j (uk, vk) (12)

where Ṙ
mk

j (k) gives the change in the residual for point k
under the action of joint j . The j th column in the full Jacobian
matrix (corresponding to joint j ) is constructed by stacking
together M of the Jacobian components Jmk

j (k), one for each
of the feature points in the input image. Feature points which
correspond to template points that are not actuated by link j

will have an entry of zero.
In the case of SSD likelihoods, R is a vector of pixel dif-

ferences formed by comparing corresponding pixels in the
image and in the template models. The residual and Jacobian
components for pixel k can be written

R(k) = I (Fmk (uk, vk))− Imk (uk, vk) (13)

Ṙ
mk

j (k) = ∇ITḞmk

j (uk, vk) (14)

Jmk

j (k) = ∇ITfmk

j (uk, vk) (15)

where I (x, y) is the current image frame and Imk (uk, vk) is the
corresponding template location for pixel k. The last equation
follows from eq. 9.
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Column j in the full Jacobian, J, is constructed by stack-
ing together M of the Jacobian components from eq. 15, one
for each pixel in each template. If it were constructed explic-
itly, the Jacobian would have M rows and N columns, where
N is the number of states in the kinematic model and M is
the number of features (e.g., pixels) in the planar appearance
model. In practice, it is more efficient to directly construct the
smaller matrices involved in estimation directly, such as JTJ
and JTR, by scanning the template pixels in chain and raster
order.

2.4. Template Plane Model for Base Links

It is common for a branched kinematic chain to have a base
link with more complex shape than the individual links in
the chain. The torso of the figure and the palm of the hand
are two examples. While the motion of the base can often
be recovered by tracking with measurements from the chain
links only, it may be useful or necessary to include the base
link in the likelihood model.

The DOFs at the base are the six degrees of rotation and
translation of a rigid body. Computing the Jacobian contribu-
tions for these states due to the links in the chain is straight-
forward. The translation component affects all links equally
through the base. The spatial rotation can always be repre-
sented as a rotation around an axis. Thus, the same Jacobian
analysis for revolute joints applies in this case as well. In
practice we use quaternions (McCarthy 1990) to represent
the rotation of the base link.

There are many possible choices for the appearance model
of the base link, which can be treated as in any standard rigid
body tracking problem. The approach which might be closest
in spirit to our treatment of the links would be to employ an
affine or perspective flow approximation, following Bergen
(1992).

3. Ambiguities in Visual Tracking with 3D
Kinematic Models

A key issue in the performance of a 3D tracking system is
the number of camera viewpoints which are available simul-
taneously. For example, commercial optical motion capture
systems can provide extremely accurate reconstructions of
3D motion. These systems benefit from markers on the ac-
tor’s clothing which provide good features for tracking, and
multiple camera viewpoints which make it possible to localize
marker positions in 3D via triangulation. One of the earliest
examples of multi-view motion data is the Muybridge plates,
for which markerless 3D reconstructions have been obtained
(Bregler and Malik 1998).

In many interesting situations, however, only a single cam-
era view of an articulated motion may be available. For exam-
ple, the vast corpus of movie and television footage consists
primarily of monocular sequences of human motion. Much

of this footage is of historical or artistic significance, and it
would be extremely interesting to obtain 3D reconstructions
of famous dance sequences or sports events. In many of these
cases, monocular video is the only archival record available.
We have referred to this as the problem of motion capture
from movies (Rehg and Morris 1997; Rehg 2000).

The 3D reconstruction of human motion from uncon-
strained monocular video is an extremely challenging prob-
lem, which is significantly harder than multi-camera tracking
under laboratory conditions. The constraints on motion that
derive from a 3D kinematic model have proven to be impor-
tant in attempting monocular 3D tracking. In this section we
will demonstrate that significant ambiguities still remain even
when 3D kinematic models are available. We approach this
problem from two inter-related viewpoints. The first view-
point is a natural consequence of the well-known reflective
ambiguity under orthographic projection. The second view-
point comes from studying the singularities of the Jacobian
of the forward visual kinematics.

3.1. Reflective Ambiguities in 3D Tracking

In analyzing ambiguities of 3D reconstruction for articulated
objects, it would be convenient to find an abstraction for the
shapes of the links. Obtaining useful global results in kine-
matic analysis for objects with varying joint topologies is al-
ready challenging. Including the impact of arbitrary link shape
seems daunting. An intuitively obvious abstraction would be
to replace each link with its central axis, the 3D line segment
connecting its two joint centers. This effectively reduces the
articulated object to its “skeleton”. We now demonstrate that
this intuitive simplification is mathematically justifiable in the
case of template plane appearance models.

PROPOSITION 1. The image plane motion of pixels under the
template plane appearance model for an articulated object is
completely determined by the 3D position of the joint centers
and joint axes with respect to the camera. The only exception
occurs when the central axis for the link is parallel to the
viewing direction, and the template model is undefined.

Proof. It is enough to demonstrate the proposition for a single
link i under the action of a joint j . By substituting eqs. (1)–(4)
into eq. (5) we can make the dependency on the joint centers
di
c

and di+1
c

explicit

Fi (di

c
,di+1

c
, u, v) = P[di

c
+ u

ρ
(di+1

c
− di

c
)

+ v

ρ‖di
c
‖ (d

i+1
c

× di

c
)]

(16)

where we define ρ = ‖di+1
c

−di
c
‖. Thus the image plane posi-

tion of an arbitrary template plane point (u, v) is determined
by di

c
and di+1

c
. Similarly, we can modify eq. (9) to show the

dependence of Hi on di
c

and di+1
c

:
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f i
j
(di

c
,di+1

c
,dj

c
, n̂j

c
, u, v) = P(n̂j

c
× (Hi (di

c
,di+1

c
, u, v)− dj

c
).

(17)

The direction of flow at an arbitrary template plane point (u, v)
is determined by di

c
, di+1

c
, dj

c
, and n̂j

c
, while the magnitude is

proportional to θ̇j . The exception for cases where the cen-
tral axis is parallel to the viewing direction (i.e., âi = ĉi) is
necessary since n̂i is not uniquely defined in that case (see
Section 2.1). This establishes the result.

Proposition 1 shows that given the 3D joint centers we
can almost always obtain the template appearance. However,
given only the template appearance there is a common ambi-
guity in determining 3D positions. The reflective ambiguity
under orthographic projection leads to two possible solutions
for the 3D reconstruction of a “skeletal” link from its camera
projection. The basic ambiguity is illustrated in Figure 3(a).
This ambiguity has significant consequences for tracking with
3D models. While the two solutions, f and g, are indistin-
guishable from the standpoint of a single point measurement
and its velocity, they result in different kinematic constraints
on the motion. This is illustrated by the two velocity vectors in
the figure. Therefore it is important to identify the correct so-
lution (i.e., to distinguish between f and g) in order to exploit
the 3D constraint for tracking.

It is possible that other sources of information, such as
predictions from a dynamic model, could help in distinguish-
ing between these two cases. However, it is difficult to obtain
reliable predictions given the complexity of human move-
ment and the 30 Hz sampling rates of conventional monocular
video. Alternatively, a perspective projection model could in
principle resolve the ambiguity. However, perspective effects
at this scale are usually difficult to resolve in the presence of
noise, given the camera geometries which are common in fig-
ure and hand tracking. This is particularly true given the fact
that measurements of the projections of the joint centers can
only be obtained indirectly through contour and texture cues.

One solution, proposed in Shimada et al. (1998), is to use
multiple hypothesis tracking techniques to maintain separate
estimates of the different possible 3D configurations during
tracking. The idea is that over time certain solutions will be
ruled out by the global motion and constraints such as joint
angle limits. However, for a kinematic chain of N links there
will be 2N possible solutions for the 3D configuration of the
chain. This leads to significant complexity for an on-line track-
ing algorithm.

Another aspect of the reflective ambiguity is illustrated in
Figure 3(b), which shows a configuration of the link at which
the two ambiguous solutions merge into one. As we will show
in Section 3.2, these bifurcation points correspond to singu-
larities in the visual Jacobian which maps state velocities into
image velocities. In this singular configuration, the motion of
the link is directed along the camera axis and as a consequence
its projection into the image plane is zero. Singularities can

cause difficulties for standard gradient-based 3D tracking al-
gorithms which are based on inverting the visual Jacobian.

An alternative approach, which we develop in detail in Sec-
tion 4, is to modify the kinematic representation so it encodes
only the information contained in the image measurements.
This approach defers the question of 3D reconstruction to a
later stage of analysis. Figure 3(c) illustrates this representa-
tion for the single link case. By representing only the image
plane projection of the link we can avoid the ambiguity in 3D
reconstruction. This model for a link in a kinematic chain is
analogous to the camera model proposed by Koenderink and
van Doorn (1991) for affine reconstruction.

The affine link representation can be beneficial when com-
bined with stochastic tracking algorithms such as particle fil-
ters (Isard and Blake 1996; MacCormick and Blake 1999;
Deutscher, Blake, and Reid 2000). Particle filters address
background clutter and other sources of ambiguity during
tracking through a nonparametric representation of a multi-
modal density function. Figure 3(d) illustrates the application
of a particle filter to the single link example. In the case of
a 3D state space, the reflective ambiguity is lumped together
with all of the other sources of ambiguity. This results in the
two sets of particles labeled f ′ and g′. In contrast, the affine
representation requires only the single set h′, which addresses
the noise and clutter in the image data without attempting to
extrapolate it into 3D.

The advantage of the affine model in Figure 3(c) is its
lack of ambiguities, and its disadvantage is the loss of 3D
constraints on the image motion. However, by tracking with
an affine model we can aggregate measurements across an
image sequence before attempting 3D reconstruction. This
could make it easier to reject ambiguous hypotheses, leading
to more efficient 3D reconstruction. It also mirrors the decom-
position of 2D tracking followed by 3D reconstruction which
is common in structure-from-motion algorithms (Tomasi and
Kanade 1992).

3.2. Visual Singularities in 3D Tracking

The simplest non-probabilistic tracking algorithm consists of
using a nonlinear least-squares solver, such as the Levenberg–
Marquardt algorithm (Dennis and Schnabel 1983), to mini-
mize the error measure E(q) = 1

2
RTR, where the residual

vector R is formed, for example, using eq. (10) or eq. (13).
In this case the state vector q holds the joint angles and base
link displacement for a branched kinematic chain. The update
step in the Levenberg–Marquardt algorithm is given by

qk = qk−1 + dqk = qk−1 − (JTJ +")−1JTR, (18)

where " is a diagonal stabilizing matrix. The structure of the
Jacobian J is governed by eq. (9). It describes the projection
of a 3D velocity vector into the image plane. In the case of an
SSD residual, this projected vector is in turn projected onto
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Fig. 3. Ambiguity in estimating 3D pose of a single link given its orthographic projection. (a) The points f and g produce
the same image measurements but impose different kinematic constraints (arrows). (b) A singularity occurs when the link
velocity projects to zero. (c) An affine kinematic model gives the point h which encodes the image measurement. (d) Particle
representations produce the point sets f ′ and g′ in three dimensions, but requires only the single set h′ under the affine model.

the local image gradient, as given by eq. (15) and illustrated
in Figure 2.

From the figure it is clear that residual R(i) can provide
no information about qj if Jki

j (i) is zero. This would be the
case if the 3D point velocity Ḟki

j (ui, vi) were directed along
the optical axis (as in Figure 3(b) for example), or (in the SSD
residual case) if its non-zero projection acts perpendicular to
the image gradient.

The complete Jacobian J is formed by stacking up the
Jki
j (i) terms from each measurement. The result is a linear

map from state space to residual space. The nullspaces of
this mapping provide fundamental insight into its properties.
The left nullspace of the Jacobian, N(JT), defines the con-
straints inherent in the kinematic model. Residual velocities
in the left nullspace, Ṙ ⊆ N(JT), are excluded. An empty left
nullspace indicates that the kinematics do not constrain the
motion. In tracking there will typically be more image mea-
surements than parameters,M > N , resulting in a non-empty
left nullspace and rank(J) = N .

The right nullspace of the residual Jacobian defines the
visual singularities of the articulated object. State velocities in
the right nullspace, q̇ ⊆ N(J), do not affect the residual Ṙ and
so are termed singular directions. The right nullspace is non-
zero only when the Jacobian has lost rank, i.e., rank(J) < N .

It follows that if the projected velocities due to the action of
any joint j are zero for all template pixels, then there will be
a zero column in the Jacobian, leading to a loss of rank.

3.2.1. An Example of a Visual Singularity

We now present two simple examples which illustrate the
properties of the visual Jacobian and the existence of visual
singularities. Figure 4(a) shows a one-link revolute planar ma-
nipulator with a single DOF θ . The residual Jacobian for the
end-point feature is defined by

[
ẋ

ẏ

]
=

[
cos(θ)

− sin(θ)

] [
θ̇

]
, (19)

assuming that the camera and joint axes are parallel. The
kinematic constraint is given by the left nullspace: Ṙc =[

sin(θ) cos(θ)
]T

. The right nullspace is empty and there
are no observability singularities.

Next consider the manipulator in Figure 4(b), formed by
adding an additional DOF, φ, to Figure 4(a), which allows the
link plane to tilt out of the page. With the same point feature
and camera viewpoint we have

[
ẋ

ẏ

]
=

[ − sin(θ) sin(φ) cos(θ) cos(φ)
0 − sin(θ)

] [
φ̇

θ̇

]
. (20)
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Fig. 4. Examples of (a) 1-DOF and (b) 2-DOF manipulators.

Singularities now occur when sin(φ) = 0 and also when
sin(θ) = 0. In both cases the singular direction is q̇ = [1 0]T,
implying that changes in φ cannot be recovered in these two
configurations.

Singularities impact visual tracking through their effect on
error minimization. Consider tracking the model of Figure
4(b) using the Levenberg–Marquardt update step:

qk = qk−1 + dqk = qk−1 − (JTJ +")−1JTR. (21)

At the singularity sin(φ) = 0, the update step for all trajec-
tories has the form dqk = [0 C], implying that no updates to
φ will occur regardless of the measured feature motion. This
singularity arises physically when the link rotates through the
plane parallel to the image plane, resulting in a point velocity
in the direction of the camera axis.

Figure 5(a) illustrates the practical implications of singu-
larities for tracker performance. The stair-stepped curve cor-
responds to discrete steps in φ in a simulation of the 2-DOF
example model. In this example, the arm is planar with a
randomly textured template model. The solid curve shows
the state estimates produced by eq. (21) as a function of the
number of iterations of the solver. The loss of useful gradient
information and resulting slow convergence of the estimator
as the trajectory approaches the point φ = 0 is symptomatic
of tracking near singularities. In this example, the singular
state was never reached and the tracker continued in a direc-
tion opposite the true motion, as a consequence of the usual
reflective ambiguity under orthographic projection (shown by
the dashed line). Perspective projection also suffers from this
ambiguity for small motions.

These examples illustrate the significant implications of
singularities for visual tracking. If the search for feature mea-
surements is driven by prediction from the state estimates,
singularities could result in losing track of the target alto-
gether. Even when feature correspondences are always avail-
able, such as when markers are attached to the object, the
solver will slow down dramatically near singularities, since
each step has only a small effect on the residual. This is
analogous to the effect of classical kinematic singularities in
robotic manipulators (Nakamura 1991)—manipulator control
near singularities may require arbitrarily large forces; here
tracking near singularities may require arbitrarily large num-
bers of iterations!

It would be useful to obtain general conditions under which
singularities can arise in tracking with 3D kinematic models.
This is a challenging task due to the high dimensionality and
nonlinearity of kinematic models. Attempts have been made
to classify the singularities in robot manipulators from the
standpoint of both manipulator design (Pai 1988) and visual-
servoing control (Sharma and Hutchinson 1997).

From eq. (9) we can derive some sufficient conditions for
the existence of visual singularities for a template plane i and
joint j :

n̂i ‖ ĉi , (di
c
− dj

c
) ⊥ ĉi , n̂i

c
⊥ ĉi . (22)

Whether these are necessary conditions is a topic for future
research.

We can make two observations about eq. (22). First, use
of the planar appearance model makes it possible to greatly
simplify the singularity analysis for a link. More complex link
shape models may be less likely to generate visual singulari-
ties, but whether this is true in practice is a subject for further
investigation. Measuring subtle differences in velocity due to
subtle differences in shape can be difficult, particularly in un-
constrained video footage such as movies. Secondly, since
this analysis stems fundamentally from the orthographic pro-
jection model and the definition of angular velocity, it does not
depend upon any particular parametrization of the kinematic
DOFs. It should therefore apply to any specific kinematic rep-
resentation used in tracking.

4. A 2D Kinematic Model for Articulated Object
Registration

The previous section outlined the conditions under which sin-
gularities can occur in 3D kinematic models. Singularities
have two implications for 3D tracking with a single video
source. First, some additional source of information is re-
quired in order to estimate the unobservable parts of the state
space during singular configurations. For example, assump-
tions about object dynamics could be used in a Kalman filter
framework to extrapolate an estimated state trajectory across a
singular point. Secondly, the utility of the kinematic model for
image registration is reduced, since it will not always supply
a useful constraint on pixel motion.
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Fig. 5. Singularity example. (a) Tracking the 3D manipulator in example 2 through a singular point along the singular
direction. While the true angle φ continues to increase, the tracker loses track near the singularity and then picks up an
ambiguous path. (b) The 2D tracker from Section 4 is applied to the same motion as in (a), but here extension length rather
than angle is recovered, and this correctly increases and decreases without change in damping.

It is important here to distinguish two separate goals: a reg-
istration objective in which the model projections are aligned
with image pixels, and a reconstruction goal in which the
state trajectory for a 3D kinematic model is estimated. For
some applications, such as gesture recognition or video edit-
ing (Rehg, Kang, and Cham 2000), registration may be all
that is required. In other applications such as motion capture
it is desirable to reconstruct the 3D motion along with the
kinematic model parameters. Once the images have been reg-
istered, 3D reconstruction can be cast as a batch estimation
problem, since the registration step gives the complete cor-
respondence between model points and image coordinates in
each frame. The batch nature of the formulation is well suited
to our application of motion capture from movies, and makes
it possible to enforce smoothness constraints in both time di-
rections, improving the quality of the estimates. In Section 4.4
we describe this approach to reconstruction in more detail.

The remainder of this section focuses on the registration
step. Although we do not want to employ the full 3D model,
we would like to employ the strongest possible kinematic
constraints so as to improve robustness to image noise. We
will see that a novel 2D SPM formed by “projecting” the 3D
model into the image plane provides a useful constraint for
registration.

4.1. The Scaled Prismatic Model

The 2D SPM acts in a plane parallel to the plane of the camera
and simulates the image motion of the 3D model. Links have
the same connectivity as in the 3D model, rotate around their
base joint on an axis perpendicular to the plane, and scale
uniformly along their length. Each link is thus represented as

a line segment having two parameters: its angle of rotation θi
and lengthdi along its direction âi . As in the 3D case a template
is attached to each link which rotates and scales with the link.
Figure 6 shows both of these parameters for a link in the 2D
SPM.

In this section we briefly derive the kinematics of this
model class, we show that it can capture the projected mo-
tion of a 3D figure, and then we show that it is precisely in
the cases where the 3D model suffers from singularities that
the 2D SPM behaves well.

4.2. Kinematic Equations for a Chain of Links

The residual velocity can be expressed as the sum of the Ja-
cobian columns times their corresponding state parameter ve-
locity: Ṙ = ∑

i
Ji q̇i . Hence we can calculate individual Ja-

cobian columns for each state variable, qi independently and
then combine them. Since a column of the Jacobian, Ji , maps
the state velocity q̇i to a residual velocity, by finding the resid-
ual velocity in terms of this state we can obtain an expression
for Ji .

The components of the Jacobian can be obtained as fol-
lows. The first two parameters, x0 and y0, specify the origin
of the base link. As this point moves, all positions on the figure
move in the same manner. Hence a pixel p will have velocity
vp = ṙ0, implying that the Jacobian for this pixel is a 2 × 2
identity, I2. The two columns of the Jacobian relating each
pixel residual to the velocity of these parameters are formed
by stacking I2 in a column for each pixel.

Next we consider the Jacobian component due to a rotation
of a joint. If qi = θ is the angle of a revolute joint shown in
Figure 6(a), it will contribute an angular velocity component
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Fig. 6. 2D SPM chain showing residual velocities due to state velocities: (a) q̇i = θ̇ , and (b) q̇i = ḋ.

to links further along the chain given by ω = q̇w. Here w
is the axis of rotation which for the 2D model is just the z-
axis. Let r = (x, y, 0) be a point on the manipulator chain
measured with respect to the axis. The image velocity, vp, at
point r resulting from this rotation is given by

vp = P(ω × r) = P(w × r)q̇ = r2d q̇ (23)

where the orthographic projection P selects the x and y com-
ponents, and r2d = (−y, x) captures the pixel position. This
equation expresses the desired mapping from state velocities
of axis i to image velocities of point j on link k giving the
components of the column Jacobian, Ji :

Jji =
{

0 links k, where k < i

r2d links k, where k ≥ i
. (24)

The Jacobian due to extending links must also be consid-
ered. If qi = d refers to the extension of the scaled prismatic
link shown in Figure 6(b), along direction âi in the plane, its
derivative will contribute a velocity component to points on
link i proportional to their position on the link, bqi , where b
is the fractional position of the point over the total extension
qi . The velocity component for a point, p, on the link is thus
vp = bqiq̇i âi . Subsequent links, k > i, will be affected only
by the end-point extension of the link, and so have a veloc-
ity component from this joint given by vp = qiq̇i âi . Hence
the Jacobian element at point j on link k for an extension
parameter, qi , is given by

Jji =



0 links k, where k < i

bqi âi link i
qi âi links k, where k > i

. (25)

Finally we find the effect of using a weak perspective model
rather than the orthographic model which we have assumed up
to now. We first specify a new projection matrix incorporating
a global scale factor, µ, as

P = µ

[
1 0 0
0 1 0

.

]
. (26)

This means first that the Jacobian elements, Jji , in eqs. (24)
and (25) must be scaled by µ. Then if the 2D position of pixel
j is µrj with respect to the center of projection, its velocity

due to rescaling is rj µ̇. Hence if k is the index of µ in the
state vector q, the Jacobian elements for pixel j are

Jjk = rj . (27)

We show that, given certain modeling assumptions, the
2D SPM with the above specifications is flexible enough to
represent the projected image of any 3D model in any legal
configuration. We assume that a model consists of a branched
chain of links connected at their end-points by revolute joints.
We use the template plane model from Section 2.1 to describe
link appearance. We identify the link segment for a link k as
the 3D line segment connecting the link’s joint centers and
oriented in the direction of âk. The 3D model specifies the
figure position, the link lengths and the orientation of each
revolute joint axis, while in the SPM the link lengths vary
and the axis of each revolute joint is perpendicular to the
image plane. The state of a 3D model is thus a 3D posi-
tion of the origin of the base link plus a vector of joint an-
gles, qm = [ X Y Z φ1 φ2 . . . ]T, and the state of
a 2D SPM is a 2D position plus a vector of angles and joint
lengths, qn = [ x0 y0 θ1 d1 θ2 d2 . . . ]T. Since we
are only working with end-points, scale in 2D is captured by
link lengths without the need for an additional scale factor µ.
Then more formally:

PROPOSITION 2. The linear projection of the link segments
of a 3D kinematic model onto a plane and the assignment of
revolute joints with axes perpendicular to the plane between
each pair of connected links defines a many to one mapping
FM : M3 → M2 from the space of all 3D models M3 to 2D
models M2. Furthermore, for each pair of models, m ∈ M3

and n = FM(m), it defines another mapping FS : Q3
m

→ Q2
n

that maps every state of the 3D model qm ∈ QQQ3
m

to a state of
the 2D SPM qn ∈ QQQ2

n
.

Proof. Consider the graph, G, of a 3D model with each joint
represented by a vertex and each link by an edge. There may be
many 3D models with the same graph G since 3D joints may
have multiple revolute axes. When a 3D model in any state is
projected onto a plane under a linear projection, the new graph
G′ will have the same topology of vertices and edges, and the
projected edges will remain linear. Now interpret the graph,
G′, drawn in the plane as each straight edge representing an
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extensible link, and the intersection point of each connected
pair of edges as a revolute joint. This defines a unique 2D
model, and thus the mapping FM . The state of a 2D SPM
is specified by the 2D projection, (x0, y0), of the 3D point
(X, Y, Z), the distances in the plane between connected joints
(i.e., the link lengths di), and the angles between links that
share joints (i.e., θi) as illustrated in Figure 6. Now the state of
the 3D model determines, through the projection, the relative
positions of the vertices in two dimensions and thus the 2D
state. For any distribution of vertices in the plane here must
exist a 2D state qn that captures it since line segments can
join any two connected vertices, and any relative orientation
between two line segments can be described by a single angle.
There thus must exist a mapping FS for all 3D states. We
conclude that the 2D SPM class can capture any projected 3D
kinematic model in any configuration.

4.3. Singularity Analysis of the 2D SPM

An important advantage of the SPM is the location of its sin-
gularities. In the 3D model the singularities occur in the fre-
quently traversed region of configuration space in which links
pass through the image plane. The 2D SPM has all of its rota-
tion axes parallel to the camera axis and so never satisfies the
3D singularity conditions from eq. (22). Here we show that
the SPM only has singularities when di = 0, corresponding
to a 3D link pointing towards the camera, and that the singu-
lar direction is perpendicular to the entering velocity and so
usually does not affect tracking.

PROPOSITION 3. Given x and y measurements of end-points
of each joint in a linear chain scaled-prismatic manipulator,
observability singularities occur if and only if at least one of
the joint lengths is zero.

Proof. We define a state vector made of pairs of components
for each link: q = [

x0 y0 θ1 d1 . . . θn dn
]T

, and
the residual vector to be the error in x and y end-point po-
sitions of each link. We assume the proposition holds for an
n − 1 link manipulator with Jacobian J(n−1) whose elements
are defined as in eqs. (24) and (25). The Jacobian for the n

length manipulator is given by

J(n) =
[

J(n−1) A

B C

]
(28)

where J(n−1) is a square matrix of size 2n. Matrix A is of
size 2n × 2 and expresses the dependence of the nth link’s
parameters on the position of the other links positions and so
is zero. Matrix C and its square are given as

C =
[

cos(θT ) −dn sin(θT )
sin(θT ) dn cos(θT )

]
, (29)

CTC =
[

1 0
0 d2

n

]
(30)

where θT = ∑n

i=1 θi . From this we see that C has rank two if
and only if dn �= 0. If C has rank two, then the bottom two
rows of J(n) are linearly independent of all other rows and if
J(n−1) is full rank then J(n) must have rank 2n + 2. If C or if
J(n−1) do not have full rank, then J(n) will not have rank 2n+2,
and there will be an observability singularity. To complete the
proof we need only demonstrate that the proposition applies
to the base case, n = 0. Here the whole Jacobian is given by
I2 and thus the proposition is proven.

A mitigating property of the 2D singularities is that, unlike
in the 3D observability singularities where the singular direc-
tion is along the motion trajectory, the singular direction in the
2D case is always perpendicular to the direction in which the
singularity was entered. We can see this for the single arm ma-
nipulator described by a Jacobian equal toC in eq. (29). When
d = 0 the velocity direction is Ṙ = [

cos(θ) sin(θ)
]T

, but
the left nullspace is orthogonal to this by definition. Hence a
manipulator will typically pass through a 2D singularity with-
out the increased damping caused by moving along a singular
direction. Only if the link enters in one direction and leaves
orthogonally does the singularity obstruct tracking.

In our derivations we have only considered the case without
an explicit scale factor, µ. If we include this in our vector of
parameters it is easy to see that this introduces an additional
observability singularity. This is because scale is redundant in
specifying the 2D positions of the end-points, all of which can
be specified without µ. If it is included it introduces an extra
DOF, but without changing the expressivity of the model,
and hence it does not affect the tracking. (See recent work
on gage theory (Kanatani and Morris 2001) which has dealt
with the implications of these extra DOFs.) However, when
templates are included in our model, then this scale factor
is no longer redundant. This is because, while it does not
directly set the lengths of the templates which are free to
vary, it determines their widths. Thus templates add the extra
constraints to remove this DOF and the singularity.

The assumption that we have information on end-points is
equivalent to assuming there is sufficient texture or edge in-
formation on the link to obtain length and direction estimates.
When this assumption fails there may be more singularities
for both the 3D and 2D models. While both 2D and 3D model
classes can represent articulated motion, the 2D SPM provides
weaker constraints. It has the two advantages of avoiding the
singularities of the 3D model and relaxing the need for accu-
rate knowledge of link lengths and joint axes which is required
by the 3D model. Moreover, the 2D and 3D models are com-
plementary in that their singularities occur in different parts
of the state space.

4.4. 3D Tracking Based on 2D Registration and 3D
Reconstruction

The SPM representation of articulated motion supports a
decomposition of the 3D articulated tracking problem for
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monocular video into the interlinked steps of 2D registra-
tion and 3D reconstruction. The primary motivation for this
decomposition is illustrated in Figure 3(d). The direct appli-
cation of 3D kinematic models to monocular tracking requires
the joint representation of both the ambiguities resulting from
3D reconstruction and the ambiguities due to noise and back-
ground clutter that make registration challenging. In particu-
lar, each possible image plane location of the link (resulting
from a possibly spurious match between the model and im-
age) generates two possible solutions for 3D reconstruction.
Decoupling these two sources of ambiguity can potentially
yield more efficient probabilistic tracking algorithms, which
is particularly important given the large number of states that
are required by articulated objects.

One potential disadvantage of this decoupled approach is
that the registration step may examine link configurations
which could be ruled out by the application of 3D con-
straints such as the kinematic model or joint angle limits. Self-
occlusion, which is the occlusion of one link of the mecha-
nism by another during tracking, is another potential problem.
In Rehg and Kanade (1995), a layered template representa-
tion was employed to track self-occluding articulated objects.
Templates were ordered in depth based on predictions from
a 3D kinematic model. It is straightforward to incorporate
a layered template representation into the SPM framework.
However, in the absence of a 3D model the template ordering
will be unknown. One possibility is to approach the unknown
template order through data-association techniques (Cox and
Hingorani 1996). In this approach multiple trackers would
be used to explore different template orderings in situations
where templates overlap in the image.

Figure 7 illustrates a 3D monocular tracking framework
which combines 2D registration and 3D reconstruction. The
output of the registration module is a probability distribution
over possible 2D alignments of an SPM model and the image
sequence. This representation is then “lifted” into a distribu-
tion over 3D state trajectories by the reconstruction module.
This module can employ a wide range of constraints such as
a full 3D kinematic model, joint angle limits, and figure dy-
namics. Recently we have demonstrated results for both of
these modules: probabilistic tracking using the SPM model
in Cham and Rehg (1999) and non-probabilistic reconstruc-
tion of 3D state trajectories from SPM registration output in
DiFranco, Cham, and Rehg (2001).

The registration and reconstruction stages in Figure 7 can
be interleaved in several different ways. In the most strongly
decoupled case, SPM registration of the entire video sequence
could provide the inputs to a batch 3D reconstruction algo-
rithm. More interesting perhaps would be to interleave reg-
istration and reconstruction on a per-frame basis. In this ap-
proach, a probabilistic tracking algorithm could sample from
the SPM distribution in order to explore image matches. Only
the most promising samples would be evaluated using the 3D
kinematic model. The predicted 3D density could then be pro-

jected down into the SPM representation to initialize the next
round of sampling. We plan to explore strategies of this kind
in our future work.

5. Previous Work

There have been numerous papers on 3D and 2D tracking of
articulated objects. However, none of these has addressed the
question of singularities and their implications for tracking
with a monocular video source. The 3D kinematic analysis
in this paper is based primarily on our earlier work (Rehg
and Kanade 1994b, 1995). The SPM model first appeared in
a preliminary form in Morris and Rehg (1998).

The first works on articulated 3D tracking were by
O’Rourke and Badler (1980) and Hogg (1983). They em-
ployed the classical AI techniques of constraint propagation
and tree search, respectively, to estimate the state of the figure.
Hogg was the first to show results for a real image sequence.
A modern version of the discrete search strategy is employed
by Gavrila and Davis (1996), who use a hierarchical decom-
position of the state space to search for the pose of a full body
3D model.

Yamamoto and Koshikawa (1991) were the first to apply
modern kinematic models and gradient-based optimization
techniques to figure tracking. Their experimental results were
limited to 2D motion and they did not address kinematic mod-
eling issues in depth. The gradient-based tracking framework
was extended by Rehg and Kanade (1995) to handle self-
occlusions and applied to hand tracking (Rehg 1995). Early
work on figure tracking by Rohr is described in Rohr 1994).

The objective function used by Yamamoto et al. compares
measured image flow to the image flow predicted by the kine-
matic Jacobian of the figure. The same approach was explored
by Pentland and Horowitz (1991) for non-rigid motion anal-
ysis, which includes an example of figure tracking. Other ex-
amples include Bregler and Malik (1998) and Sidenbladh,
Black, and Fleet (2000). More recent work by Fablet and
Black (2002) uses learned probability distributions over flow
fields to detect and track walking motion.

A number of 3D tracking systems have used explicit shape
models for the limbs, usually some form of superquadric or
generalized cylinder. The system of Kakadiaris and Metaxas
is a more complete example, and addresses model acquisition
(Kakadiaris and Metaxas 1995) and self-occlusion handling
(Kakadiaris and Metaxas 1996). Related work by Goncalves
and Perona is described in Goncalves et al. (1995). Cylindri-
cal appearance models and their acquisition are discussed in
Sidenbladh, Black, and Fleet (2000); also see Delamarre and
Faugeras (2001).

Gradient-based search strategies have the crucial perfor-
mance advantage of exploiting information about the local
shape of the objective function to select good search direc-
tions. This leads to extremely fast search performance in high-
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Fig. 7. Architecture for 3D monocular tracking based on 2D registration and 3D reconstruction.

dimensional state spaces. For example, Rehg and Kanade
(1994b) demonstrated tracking of a 26 DOF hand model using
live video. Probabilistic tracking algorithms, such as particle
filters, can also exploit gradient information to improve search
performance. This was first demonstrated in Heap and Hogg
(1998) and Cham and Rehg (1999) and has been explored
more recently in Sminchisescu and Triggs (2001).

The work of Ju, Black, and Yacoob (1996) is perhaps the
closest to our 2D SPM. They model the image motion of rigid
links as affine flow patches with imposed attachment con-
straints. Their model can be viewed as an extension of classi-
cal patch tracking techniques, which incorporates constraints
between patches. In contrast, our model is derived from an ex-
plicit consideration of the effects of 3D kinematics on image
motion. As a consequence, it has a more direct connection to
the underlying 3D motion. We believe this property will be-
come important in reconstructing the 3D motion of the figure
from SPM measurements. The SPM also has fewer param-
eters than a patch-based description of flow. Other work on
monocular figure tracking is described in Wachter and Nagel
(1999).

Another relevant body of work from the standpoint of sin-
gularity analysis is the field of visual servo control of robot
manipulators, known as visual servoing (Weiss, Sanderson,
and Neuman 1987; Espiau, Chaumette, and Rives 1992; Pa-
panikolopoulos, Khosla, and Kanade 1993). There is an anal-
ogous visual Jacobian used in visual servoing which maps
changes in joint angles to changes in the position of visual
features. In eye-in-hand visual servoing approaches, the joints
are actuated so as to align the projection of 3D target features
in the robot’s environment with a 2D image model. In an alter-
native approach, one or more cameras in the environment ac-
quire images of an object which is gripped by the end-effector.
This latter approach is probably the closest to articulated ob-
ject tracking. In both cases, visual tracking of the object or
environment is used to drive servoing commands.

Singularity analysis for visual servoing problems was de-
scribed in in Nelson and Khosla (1994) and Sharma and

Hutchinson (1997). The context for this work was the problem
of sensor placement—determining how to position cameras in
a robot workspace so as to maximize the accuracy of the con-
troller in visual servoing tasks. Both the workspace geometry
and task requirements limit the range of possible end-effector
motions, making optimization of the sensor location feasible.

In contrast to the controlled environment of a robot work-
cell, figure tracking is inherently unconstrained. In applica-
tions such as motion capture from movies, both an articulated
figure and the camera itself can simultaneously undergo fairly
arbitrary motion. Another practical difference is that features
on the articulated object itself must be used for visual tracking,
as opposed to features on a manipulated part or in the robot’s
environment. As a consequence, it is often challenging to ob-
tain an adequate number of features and there are often serious
problems with noise and occlusions. A final difference is the
fact that, while accurate robot dynamic models are often avail-
able, dynamic models of the figure are either constrained to
very specific motions such as walking, or have limited predic-
tive ability. However, while the problem domains are different
in practice, the approach to singularity analysis is the same in
both cases.

6. Experimental Results

We present three sets of experimental results that demonstrate
the use of the template plane appearance model for 3D track-
ing, the use of the SPM model for 2D registration, and a com-
parison between their performance on a real image sequence.
The results include a 3D mouse cursor user-interface which is
based on 3D tracking, and a simple example of video-based
motion capture using 2D registration.

6.1. 3D Hand Tracking for a 3D Cursor Interface

The first experiment is based on a real-time 3D hand track-
ing system called DigitEyes that was developed by Rehg and
Kanade circa 1993 and is described in Rehg (1995) and Rehg
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and Kanade (1994b). We apply this system to a user-interface
task of tracking the first finger and palm of the hand and using
the hand motion to drive the motion of a cursor in a 3D graph-
ical interface (Rehg and Kanade 1994a). This experiment is
significant in the context of this paper for two reasons. First,
it provides experimental evidence for the utility of the planar
template model in hand tracking. Secondly, the experiment
demonstrates that when care is taken to avoid visual singular-
ities, good results can be obtained through direct 3D tracking.

6.1.1. A Kinematic Hand Model

We begin by describing the hand model which was employed
in the DigitEyes system. Kinematic models for visual tracking
need only describe motion which a camera can measure. As a
result, they can be considerably simpler than those developed
by the biomechanics community, which has a long history
of skeletal kinematic modeling and analysis. The palm, for
example, can be treated as a rigid body even though the four
major metacarpal bones lend subtle DOFs.

Attached to the palm are five kinematic chains of three links
each, comprising the four fingers and thumb. These chains and
their kinematics are illustrated in Figure 8. Each of the four
fingers are modeled as planar mechanisms with four DOFs.
The abduction DOF moves the plane of the finger relative to
the palm, while the remaining three DOFs determine the fin-
ger’s configuration within the plane. Each finger has an anchor
point, which is the position of the center of its metacarpopha-
langeal (MCP) joint in the frame of the palm. Finger chains
are built up from revolute joints, as illustrated in the figure.
The model for the user-interface experiment involves only the
first and fourth finger and the thumb from the full hand model.

We employed the standard DH model to parametrize the
kinematic DOFs in the model. The frame for link i is chosen
so that the DH parameter θi is the revolute joint angle, and
the negative x-axis is aligned with âi . With this choice of
coordinates, the DH kinematic parameters di and αi are zero,
and ai equals the link length. The complete revolute joint
transform is given by

Ti+1
i

= Rotz(θi)Transx(Li) , (31)

where Li is the length of the ith link. The link lengths are the
fixed parameters in the kinematic model. The full kinematic
parameters for the hand model are described in the Appendix.

Like the fingers, the thumb model is also constructed from
the revolute joints of eq. (31). The thumb is the most difficult
digit to model, due to its great dexterity and intricate actua-
tion. It has five DOFs, but one DOF at the trapeziometacarpal
joint is dependent on the others. It acts to rotate the thumb
longitudinally, bringing it into opposition with the fingers
during grasping. Although the visual effect of this rotation
is not pronounced, it is included in the current hand model for
completeness. This effect is modeled by placing an additional
revolute DOF at the thumb MP joint, as shown in Figure 8.

Placing the oppositional DOF there, rather than at the base,
helps limit its impact on the model.

Our choice of thumb model was motivated by the experi-
ence of Rijpkema and Girard (1991) in their grasp modeling
system. They employed a similar thumb model and obtained
realistic computer graphic animations of hand grasps. Aside
from this extra joint, the thumb model is quite similar to that
of the fingers, with two DOFs at the trapeziometacarpal joint
and one each at the thumb MP and IP joints.

Real hands deviate from the above modeling assumptions
in three main ways. First, most fingers are slightly nonplanar.
This deviation could be modeled by allowing nonparallel joint
axes, but the planar approximation has proved to be adequate
in practice. Secondly, the last two joints of the finger (the
distal and proximal interphalangeal joints) are driven by the
same tendon and are not capable of independent actuation.
It is simpler to include these DOFs separately, however, than
to model the complicated angular relationship between them.
The third deviation stems from the rigid palm assumption,
which ignores the metacarpocarpal joints at the base of fingers
4 and 5. When gripping an object, such as a baseball, these
joints permit the palm to conform to its surface, causing the
anchor points to move by tens of millimeters. For free motions
of the hand in space, however, this deviation is small enough
to ignore.

Calibration of the fixed parameters of the hand kinematic
model followed a two step process. First, link lengths for the
first author’s hand were measured using a ruler. Secondly,
projections of the 3D kinematic model in canonical poses
were rendered as on overlay on a live video stream. Alignment
of the real hand with the overlaid skeleton revealed errors in
the model which were manually adjusted. See Rehg (1995)
for a detailed description of this process. The location of the
camera relative to the workspace for the user-interface task
was determined by off-line calibration, using the procedure
described in Robert (1995).

6.1.2. 3D Mouse User-Interface

Hand motion estimated in real time by the DigitEyes sys-
tem using a simplified hand model was employed to drive a
3D mouse interface (Rehg and Kanade 1993, 1994a). Figure 9
shows an example of a simple 3D graphical environment, con-
sisting of a ground plane, a 3D cursor (drawn as a pole, with
the cursor at the top), and a spherical object (for manipula-
tion.) Shadows generate additional depth cues. The interface
problem is to provide the user with control of the cursor’s
three DOFs, and thereby the means to manipulate objects in
the environment.

In the standard “mouse pole” solution, the 3D cursor po-
sition is controlled by clever use of a standard 2D physical
mouse. Normal mouse motion controls the base position of
the pole on the ground plane. Depressing one of the mouse
buttons switches reference planes, causing mouse motion in
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Fig. 9. A sample graphical environment for a 3D mouse. The 3D cursor is at the tip of the “mouse pole”, which sits atop the
ground plane (in the foreground, at the right). The sphere is an example of an object to be manipulated, and the line drawn
from the mouse to the sphere indicates its selection for manipulation.
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one direction to control the pole (cursor) height. By switch-
ing between planes, the user can place the cursor arbitrarily.
Commanding continuous motion with this interface is awk-
ward, however, and tracing an arbitrary, smooth space curve
is nearly impossible. DigitEyes was used to develop a 3D vir-
tual mouse, that permitted simultaneous hand-based control
of the cursor’s DOFs.

In the DigitEyes solution to the 3D mouse problem, the
three input DOFs are derived from a partial hand model, which
consists of the first and fourth fingers of the hand, along with
the thumb. The palm is constrained to lie in the plane of the
table used in the interface, and thus has three DOFs. The first
finger has three articulated DOFs, while the fourth finger and
thumb each have a single DOF allowing them to rotate in
the plan of the table (abduct). The hand model is illustrated
in Figure 10. A single camera oriented at approximately 45
degrees to the table top acquires the images used in tracking.
The palm position in the plane controls the base position of
the pole, while the height of the index finger above the table
controls the height of the cursor. This particular mapping has
the important advantage of decoupling the controlled DOFs,
while making it possible to operate them simultaneously. For
example, the user can change the pole height while leaving
the base position constant. The fourth finger and thumb have
abduction DOFs in the plane, and are used as “buttons”.

Figures 11–13 give experimental results from a 500 frame
motion sequence in which the estimated hand state was used
to drive the 3D mouse interface. Figures 11 and 12 show the
estimated hand state for each frame in the image sequence.
Frames were acquired at 100 ms sampling intervals. The pole
height and base position derived from the hand state by the 3D
mouse interface are also depicted in Figure 12. The motion
sequence has four phases. In the first phase (frame 0 to 150),
the user’s finger is raised and lowered twice, producing two
peaks in the pole height, with a small variation in the estimated
pole position. Secondly, around frame 150 the finger is raised
again and kept elevated, while the thumb is actuated, as for
a “button event”. The actuation period is from frame 150 to
frame 200, and results in some change in the pole height, but
negligible change in pole position. Thirdly, from frame 200 to
350, the pole height is held constant while the pole position is
varied. Finally, from frame 350 to the end of the sequence all
states are varied simultaneously. Sample mouse pole positions
throughout the sequence are illustrated in Figure 13. This is the
same scene as in Figure 9, except that the mouse pole height
and position change as a function of the estimated hand state.

6.1.3. Evaluation of 3D Mouse Performance

Following extensive experimentation with the 3D mouse in-
terface, three important attributes of the hand tracker’s per-
formance were identified. These factors seemed to have the
largest impact on the successful use of the interface:

• sampling rate;

• sensitivity;

• latency.

The quality of the interface as a whole seemed to depend on
another set of three properties, which are closely linked to the
tracker attributes above:

• maximum hand speed;

• transient DOF coupling;

• resolution.

To illustrate the impact of the tracker’s performance on
an application, each of the above issues is examined in turn.
The maximum possible speed of the user’s hand across the
table top is a function of the sampling rate of the estimation
algorithm, in relation to the error surface properties of the
residual. In the specific case of the virtual mouse interface,
the tracker could tolerate hand motions of about 2.5 in s−1

before track loss began. This was measured experimentally
by timing repeated hand translations in the plane, keeping the
tracker on the edge of convergence by observing the real-time
overlay of the backprojected model and images.

Transient coupling between DOFs is a second factor that is
affected by the sampling rate. State coupling is a natural con-
sequence of the kinematic constraints which make tracking
possible. These constraints lead to transient effects in the es-
timator, however, that can negatively impact performance. An
example of transient coupling occurs around frame 150 in the
button state and mouse pole interface plots from Figures 11
and 12. When the thumb is actuated for a button event, the
pole height drops initially, and then rises back to its previous
level over the course of about 20 frames. This behavior is the
result of an initial tendency of the estimator to spread residual
error over all of the states that can reduce it. Only after the
thumb has had time to rotate, and absorb most of its resid-
ual error, are the other residuals able to reassert their control
over their own DOFs. The duration of these transient effects
is primarily a result of the sampling rate. More iterations per
second make the estimator “stiffer”, and reduce the effect of
these disturbances.4 Interestingly, very similar experimental
observations have been made in the domain of robot control
(Khosla 1986).

The last property of the interface, the resolution with which
the cursor position can be controlled, is largely a function of
the estimator sensitivity. As described in Section 3, the sen-
sitivity of a state varies with position in the state space. The
large-scale effect of this is that the ease of use of the interface
depends strongly on the palm orientation relative to the cam-
era. Consider rotating the palm on the table as the pole height

4. Note that the results in this section were obtained from an implementation
on a Sun workstation in the early 1990s. An implementation on a modern
CPU should yield significant performance increases.
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Fig. 10. The hand model used in the 3D mouse application is illustrated for frame 200 in the motion sequence from Figure 12.
The vertical line shows the height of the tip above the ground plane. The input hand image (frame 200) demonstrates the
finger motion used in extending the cursor height.
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is varied. The orientation at which the plane of the finger con-
tains the camera is a singular configuration, and pole height
becomes extremely difficult to measure. The sensitivity of the
estimator to the finger motion decreases as this singularity is
approached. The effective resolution in the cursor position
is determined by the state sensitivity. The more sensitive the
state, the larger the range of image displacements that are
produced by a given range of state space motion. This in turn
leads to a larger resolution in state space, and greater ability
to control the cursor at a fine level of detail.

The effects of latency were not studied in detail for the
virtual 3D mouse problem, as they were not extremely signif-
icant. Latency refers to the time delay between hand motion
and the response of the interface. Long latency times make
control of the interface impossible. As a result of the virtual
3D mouse interface design, the total latency was determined
by the estimator cycle time, the communication delay to the
graphics workstation, and the model rendering time. These
last two additional effects added around 30 ms to the 100 ms
cycle time. The effect of the total latency was noticeable, but
did not make the cursor uncontrollable.

6.2. Comparison between 2D and 3D Models

The second set of experiments compare the performance of
2D and 3D models when tracking through visual singularities.
Figures 14(a) and 14(b) show the starting and ending frames of
a 30 frame sequence of an arm moving through a singularity. In
this example the arm remains rigid, approximating the model
of Figure 4(b), but with the addition of a base link capable of

translation in the image plane. The trajectory of the arm was
similar to the simulation in Figure 5, but with the addition
of a non-zero θ component. Overlaid on the images are the
positions of the 2D SPM resulting from the state estimates.
The longer part of the “T” shape on the arm is the prismatic
joint axis. The second link superimposed on the torso has X
and Y translation DOFs, which were negligible.

We conducted three experiments in which the sequence in
Figure 14 was tracked with an SPM and two 3D kinematic
models with different damping factors ". In each case, the
tracker was given a budget of twenty iterations with which to
follow the motion in a given frame. By analogy to the simula-
tion example, we would expect the 3D models to lose ground
in the vicinity of a singularity. Figures 15(a)–(c) compare the
relative performance of the 2D and 3D models. Figure 15(a)
shows the length of the arm link projected into the image plane
for the three trackers. As expected, the 2D SPM tracker is un-
affected by the singularity and exhibits uniform convergence
rates throughout the trajectory. The extension of the arm cor-
responds to the prismatic state d1 in the SPM model, which is
plotted with large dots in the figure.

The under-damped 3D tracker drawn with dashed lines in
Figure 15(a) performs well until it approaches the singularity,
upon which it begins oscillating wildly. These oscillations in
projected arm length are the result of fluctuations in the out-
of-plane rotation angle, which is shown in Figure 15(b). Once
the arm leaves the singular configuration, the under-damped
tracker recovers and tracks the remainder of the sequence.
In contrast, the well-damped tracker plotted with a solid line
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Fig. 13. The mouse pole cursor at six positions during the motion sequence of Figure 11. The pole is the vertical line with a
horizontal shadow, and is the only thing moving in the sequence. Samples were taken at frames 0, 30, 75, 260, 300, and 370
(chosen to illustrate the range of motion).
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Fig. 14. Test sequence. Frames 15 (a) and 36 (b) from the test
sequence for singularity comparison, showing the 2D SPM
estimates.

in Figure 15(a) does not oscillate at the singularity. It does,
however, have more difficulty escaping from it and lags
the SPM tracker by several pixels over several frames of
measurements.

In a real application, an algorithm such as the Levenberg–
Marquardt algorithm would be used to automatically adapt the
amount of damping. It is clear, however, that any 3D tracker
will be forced to do a significant amount of work in the vicinity
of the singularity to avoid poor performance. Unfortunately, in
spite of this effort the 3D tracker will be quite sensitive to both
image noise and errors in the kinematic model parameters,
such as link lengths, during this part of the trajectory.

Figure 15(b) shows the out-of-plane rotation angle, φ, for
the two 3D models. The divergence of the two curves fol-
lowing the singularity is a consequence of the usual ortho-
graphic ambiguity. Figure 15(c) shows the in-plane rotation
angle, θ , which is essentially the same for all of the models.
In summary, the 2D SPM exhibits more consistent and uni-
form registration performance, as expected. The performance
of the 3D model depends critically on determining the correct
amount of damping.

6.3. Motion Capture from Movies

For the third experiment, we developed a 2D SPM for the
human figure and applied it to a short dance sequence by
Fred Astaire. Figure 16 shows stills from the movie “Shall
We Dance”, overlaid with their associated state estimates. The
tracker was initialized on the first frame of the video sequence
by manually aligning a skeletal SPM with the torso, limbs, and
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Fig. 15. Tracking results for 2D SPM and 3D kinematic
models using the motion sequence in Figure 14. 2D SPM
data are shown by large dots, while 3D model data are shown
by a solid curve in the well-damped case and a dashed line
in the under-damped case. (a) (Top) Displacement in pixels
corresponding to the length of the arm link after projection
into image plane using the estimated state. (b) (Middle)
Angle φ of 3D trackers. (c) (Bottom) In-plane rotation θ of
each model.
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Fig. 16. Fred Astaire tracked in an image sequence using the SPM-based tracker. Images (a)–(f) correspond to frames 1, 5, 9,
11, 15, and 19 from the input sequence.
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Table 1. DH Kinematic Model for the First Author’s Right Hand

Frame Geometry θ d a α Shape (in mm) Next
0 Palm 0.0 0.0 0.0 0.0 x 56.0, y 86.0, z 15.0 1 8 15 22 29
1 π/2 0.0 38.0 −π/2 2
2 0.0 −31.0 0.0 π/2 3
3 q7 0.0 0.0 π/2 4
4 Finger 1 Link 0 q8 0.0 45.0 0.0 Rad 10.0 5
5 Finger 1 Link 1 q9 0.0 26.0 0.0 Rad 10.0 6
6 Finger 1 Link 2 q10 0.0 24.0 0.0 Rad 9.0 7
7 Finger 1 Tip 0.0 0.0 0.0 0.0 Rad 9.0 –
8 π/2 0.0 37.0 −π/2 9
9 0.0 -9.0 0.0 π/2 10

10 q11 0.0 0.0 π/2 11
11 Finger 2 Link 0 q12 0.0 56.0 0.0 Rad 10.0 12
12 Finger 2 Link 1 q13 0.0 27.0 0.0 Rad 10.0 13
13 Finger 2 Link 2 q14 0.0 22.0 0.0 Rad 9.0 14
14 Finger 2 Tip 0.0 0.0 0.0 0.0 Rad 7.0 –
15 π/2 0.0 33.0 −π/2 16
16 0.0 6.0 0.0 π/2 17
17 q15 0.0 0.0 π/2 18
18 Finger 3 Link 0 q16 0.0 53.0 0.0 Rad 9.0 19
19 Finger 3 Link 1 q17 0.0 25.0 0.0 Rad 9.0 20
20 Finger 3 Link 2 q18 0.0 20.0 0.0 Rad 8.0 21
21 Finger 3 Tip 0.0 0.0 0.0 0.0 Rad 7.0 –
22 π/2 0.0 30.0 −π/2 23
23 0.0 26.0 0.0 π/2 24
24 q19 0.0 0.0 π/2 25
25 Finger 4 Link 0 q20 0.0 38.0 0.0 Rad 9.0 26
26 Finger 4 Link 1 q21 0.0 19.0 0.0 Rad 8.0 27
27 Finger 4 Link 2 q22 0.0 17.0 0.0 Rad 7.0 28
28 Finger 4 Tip 0.0 0.0 0.0 0.0 Rad 6.0 –
29 −π/2 15.0 43.0 −π/2 30
30 −π 38.0 0.0 0.0 31
31 q23 0.0 0.0 π/2 32
32 Thumb Link 0 q24 0.0 46.0 −π/2 Rad 14.0 33
33 q25 0.0 0.0 π/2 34
34 Thumb Link 1 q25 0.0 34.0 0.0 Rad 10.0 35
35 Thumb Link 2 q26 0.0 25.0 0.0 Rad 10.0 36
36 Thumb Tip 0.0 0.0 0.0 0.0 Rad 8.0 –

head of Fred Astaire. A fixed width for each of the link tem-
plates was determined manually. Templates models for each
link were acquired from the first frame and used throughout
the sequence. We used the standard SSD likelihood model in
which the probability of a particular configuration of the SPM
model is determined by the squared pixel error between the
set of templates and the image. This objective function was
minimized using standard Levenberg–Marquardt techniques.
As a preprocessing step, we used standard image stabilization
techniques (Irani, Rousso, and Peleg 1994) to compensate for

the camera motion so that the figure is the only moving object
in the scene.

The overall quality of the registration in Figure 16 is good,
especially considering the low contrast between figure and
background. Frames (b) and (c) exhibit the most artifacts,
some of which could be fixed by integration with a 3D kine-
matic model. Note that while probabilistic tracking techniques
could possibly improve the tracking performance, our goal
here is simply to demonstrate the ease with which the SPM
model can be applied to a complex motion sequence.
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7. Conclusions

While kinematic models provide powerful constraints for
gradient-based tracking algorithms, we have shown that track-
ers utilizing 3D kinematic models suffer from singularities
when motion is directed along the viewing axis of a single
camera. This results in greater sensitivity to noise and possi-
ble loss of registration.

We have introduced a 2D SPM which captures the image
plane motion of a large class of 3D kinematic models. The
SPM has the following three advantages. First, it has fewer
singularity problems than 3D kinematic models. In addition,
unlike the general 3D model, its singularities can be fully
characterized enabling it to be used only in appropriate situa-
tions. Secondly, the SPM does not require the specification of
link lengths and joint axes, which can sometimes be difficult.
In cases where 3D information is unnecessary, the SPM alone
may provide sufficient motion estimation. Thirdly, when 3D
motion estimates are desired, they can be obtained from SPM
motion estimates using a batch estimation approach.

We have proposed an alternative to the direct 3D tracking
approach, based on decomposing figure tracking into sepa-
rate image registration and 3D reconstruction stages. This is
consistent with standard approaches to structure from motion
problems (Tomasi and Kanade 1992). This decomposition has
two potential benefits. First, the registration stage can employ
simple 2D figure models which avoid most of the singularity
problems associated with 3D tracking in the case of a single
video source. Secondly, the reconstruction stage can simulta-
neously estimate both dynamic state parameters, such as joint
angles, and static parameters, such as link lengths. This would
remove the need to specify an accurate figure model for 3D
tracking.

We have demonstrated direct 3D tracking results for a
mouse cursor user-interface. This result demonstrates the util-
ity of the 3D kinematic constraint when visual singularities
can be avoided. We have also used the SPM to track Fred As-
taire in a video clip taken from the movie “Shall We Dance”.

Appendix: Whole Hand DH Model

Table 1 gives the full DH model for the first author’s right
hand, which was used in the mouse pole user-interface
experiment.
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