
Ambiguity and Constraint in Mathematical Expression Recognition

Erik G. Miller and Paul A. Viola
Massachusetts Institute of Technology

Artificial Intelligence Laboratory
545 Technology Square, Office 707

Cambridge, MA 02139
emiller@ai.mit.edu violaQai.mit.edu

Abstract

The problem of recognizing mathematical expressions
differs significantly from the recognition of standard
prose. While in prose significant constraints can be put
on the interpretation of a character by the characters
immediately preceding and following it, few such sim-
ple constraints are present in a mathematical expres-
sion. In order to make the problem tractable, effective
methods of recognizing mathematical expressions will
need to put intelligent constraints on the possible in-
terpretations. The authors present preliminary results
on a system for the recognition of both handwritten
and typeset mathematical expressions. While previous
systems perform character recognition out of context,
the current system maintains ambiguity of the char-
acters until context can be used to disambiguate the
interpretatiom In addition, the system limits the num-
ber of potentially valid interpretations by decomposing
the expressions into a sequence of compatible convex
regions. The system uses A-star to search for the best
possible interpretation of an expression. We provide
a new lower bound estimate on the cost to goal that
improves performance significantly.

Introduction

Handwriting recognition has greatly improved in recent
years, in both the handprinting and cursive domains,
yielding commercial systems for a wide variety of appli-
cations (for example (Yaeger, Lyon, & Webb 1995)).
may appear that the problem of mathematical expres-
sion recognition is essentially equivalent to the recog-
nition of standard prose, but there are critical differ-
ences which distinguish the two problems and preclude
us from applying the standard solutions of handwriting
recognition to mathematical expressions.

Mathematical Expression Recognition

A mathematical expression is a binary image in which
collections of black pixels represent symbols which are
at different scales and positions:

Copyright @1998, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Our goal is to take a mathematical expression and re-
turn a semantic interpretation:

12 * (e x)]
This representation can be used for document retrieval
or an interactive algebraic manipulation system(Fate-
man & Tokuyasu 1996; Okamoto & Miyazawa 1992;
Lee & Wang 1997; Lee & Lee 1994; Lavirotte & Pottier
1997; Martin 1967).

We adopt a generative model approach for the
recognition of mathematical expressions. Several au-
thors (Winkler, Fahrner, & Lang 1995; Hull 1996;
Chou 1989) have noted that stochastic context-free
grammars (SCFG’s) represent a good generative model
for most types of mathematical expressions I. SCFG’s
enable modeling of many types of relationships such as
the pairing of parentheses, braces, and brackets, and
the association of an integral sign (f) with its differen-
tial such as dx. In order to model the spatial layout of
symbols in a mathematical expression, the spatial lay-
out rules for various productions (like exponentiation)
must be also specified, as in (Hull 1996). Recognition
inverts the generative process and produce the appro-
priate semantics2.

Context-free grammars have proven to be very useful
in the parsing of programming languages (Hopcroft
Ullman 1979). Recently stochastic context free gram-
mars have also been applied successfully to the parsing
of natural languages (Charniak 1993). In a program-
ming language the symbols are perfectly unambiguous
and linearly ordered. But in an image of a mathemati-
cal expression each symbol is ambiguous and there is no
natural ordering. As we will see, both ambiguity and
ordering are critical issues which, if not handled effec-
tively, will lead to algorithms which are intractable.

In this paper we present a new approach for limiting
the number of possible parses. We also present a new
method for dealing with character ambiguity so that
characters can be interpreted in context rather than

1A stochastic context free grammar associates a proba-
bility with each production and as a result every valid ex-
pression can be assigned a non-zero probability.

2Others have used stochastic grammars as models of
generic problems in visual recognition (Mjolsness 1990).

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

in isolation, and so that no probability threshold must
be applied in the character recognition process. The
search for the most likely interpretation is performed
using A-star search (following the work of (Hull 1996)).
We propose a new underestimate to the goal that sig-
nificantly reduces computation time.

Polynomial Time Parsing

The parsing of programming languages is a solved
problem. The Cocke-Younger-Kasami (CYK) algo-
rithm (Hopcroft & Ullman 1979), a dynamic program-
ming algorithm, is cubic in the number of characters.
The first step of CYK is to build a table (or "chart")
with one entry for every sub-sequence of symbols. Each
sub-sequence can be indexed by its starting symbol, a
number between 1 and N, and its ending symbol, also

N2
between 1 and N. There are approximately -~ such
entries. The algorithm then attempts to find the most
likely interpretation for each sub-sequence, an inher-
ently recursive process in which the interpretation of
a long sequence is dependent on the interpretation of
shorter constituent sub-sequences. The key to compu-
tational efficiency is the observation that a particular
sub-sequence will be the constituent of many larger sub-
sequences, yet the computation need only be done once.

The computational efficiency afforded by the CYK
algorithm depends on the existence of a decomposition
of the problem into a polynomial number of unique sub-
problems. This polynomial nature is a direct result of
the linear ordering of text. If such a linear sequence ex-
ists we can with impunity limit the set of sub-problems
to the set of all consecutive sub-sequences of charac-
ters. Mathematical expressions, which are collections
of symbols arranged in two dimensions, do not have a
straightforward decomposition into a polynomial num-
ber of subsets.

Take for example the expression shown in Figure 1.
Written out in Matlab syntax, which relies on a linear
ordering of symbols, it would be "e ^ x * (A / B)".
the linear form we can conclude that ’x’ is part of the
exponential because it is separated from the fraction
by a parenthesis. In the graphical form ’x’ is equally
close to the ’A’ and the ’e’. There is almost no local
information from which we can conclude attachment.
In this case we must rely on contextual information, in
the form of a graphical SCFG, to make the attachment.
Like CYK parsing, in order to find the best possible
parse of a mathematical expression we must enumerate
all possible subsets of symbols. Since there is no simple
linear constraint we must find some other constraints
on the number of allowable subsets. Other authors have
dealt with this issue in several ways.

Rectilinear mathematical expressions

Chou (Chou 1989) presents a system in which expres-
sions are represented as rectangular arrays of terminal
symbols. He limits the number of potential parses dra-
matically by requiring that the baselines of characters

Figure 1: A simple expression which is difficult to de-
compose into a small number of subsets.

be within one pixel of their expected location. While
this works well for the simulated data presented, it can-
not be expected to extend to handwritten input, since
the variation in handwritten input is frequently more
than a pixel.

A recognizer with moderate positional
flexibility

Winkler et al. (Winkler, Fahrner, & Lang 1995) de-
scribe a more flexible system in which two subexpres-
sions can be considered as part of a larger expression
as long as the second expression is within certain pre-
defined regions relative to the first expression. However,
this system imposes severe limits on the distance which
a symbol can be from another symbol while still being
part of a common subexpression. We wish to avoid this
type of limit, as we believe it will rule out the true an-
swer in some situations. This system also decides on
characters out of context, which has problems that are
discussed below.

Modeling positions of characters as
Gaussian variables

Hull (Hull 1996) comes closer to our desired goal, by al-
lowing more general positioning of terminals and subex-
pressions relative to each other. The probability that
two subexpressions are in a particular relationship rela-
tive to each other (e.g. one is the subscript of the other)
is defined by a two dimensional Ganssian distribution
around the expected position of the second expression.
Hence, the further the second expression is from the
center of the Gaussian defining that relationship, the
lower the probability of that particular operation.

With this more flexible model of character positions,
there are no rigid geometric constraints which can be
used to automatically prune away the exponential num-
ber of symbol subsets. Instead Hull’s algorithm at-
tempts to enumerate all possible subsets, and prunes
away those that are very unlikely. Because of the po-
tentiaily exponential number of subsets, Hull uses A-
star search to order the enumeration of subsets. Our
implementation also uses an implementation of A-star
search, explained below.

A-Star Search A-star search is similar to best-first
search, but in addition requires that one produce an un-
derestimate of the "distance" to the goal (a full parse)
from a given sub-parse. To apply A-star in a proba-

b2 +b3 b2, +b3
.-’."

A+B+C ,~-g-B+C

Figure 2: An expression where convex hulls are useful
for pruning interpretations. Note that the probability
that the enclosed characters are in fact the expression
Az is reasonable. But this subset is eliminated because
their convex hull intersects the fraction symbol.

bilistic setting, one conventionally uses the negative log
likelihood as the notion of distance. The probability
of an interpretation of an image is the product of the
unconditional terminal probabilities multiplied by the
probabilities which stem from the geometry rules. The
unconditional terminal probabilities are an underesti-
mate of the cost to achieve the final goal - an interpre-
tation of the entire image. This underestimate is added
to the negative log likelihood of a sub-parse in order to
evaluate whether the sub-parse is a good candidate for
expansion.

We compute the A-star estimate by accumulating
maximum likelihood estimates of the terminals. Hence,
the A-star penalty is computed as:

~min (- In Pr (c = t))
tET

cE¢

where C is the set of uninterpreted connected compo-
nents (terminals) and 7- represents all possible charac-
ters in the grammar.

Convex Hulls: A new pruning criterion
As a second method for pruning the search space of
parses, we attempt to prune away possible subsets
based on a simple geometric test: a subset of characters
is not allowed if the convex hull of the subset contains
a character that is not part of the subset3. We define
the convex hull of the character to be the smallest con-
vex polygon that contains all of the pixels which define
the character (for handwritten text the convex hull is
the smallest convex polygon which contains all of the
strokes defining the character). The convex hull of
set of characters is the convex hull of the union of the
convex hulls of each character in the set (see Figure 2).

There are several justifications for this criterion:

* It is consistent with the layout rules for typeset ex-
pressions and is not violated for any of our test data.
In fact, we are unaware of a typeset expression for
which the constraint is violated.

¯ For linear text this criteria is identical to the con-
straint that subsets must contain consecutive sym-
bols. Any non-consecutive subset will have a convex
hull that contains a character which is not in the set.

3This rigid rule could be converted to a soft constraint
in our probabilistic framework.

¯ The algorithms necessary for computing with convex
hulls are very efficient. A convex hull of a point set
can be computed in O(nlogn), where n is the num-
ber of points (Cormen, Leiserson, & Rivest 1991).
Computing the convex hull union of two convex hulls
is O(m + l), where l and m are the number of vertices
in the convex hulls. The intersection of two convex
hulls can be found in O(m + l) also.
Unfortunately it is possible to construct an artificial

arrangement of two dimensional symbols for which this
criterion yields no pruning4. But, for many two dimen-
sional mathematical expressions there are roughly N3

allowable subsets.
Furthermore, some valid expressions violate the con-

vex hull rule described above. This could be at
least partially remedied by eroding characters a small
amount before the convex hull test is performed. The
preliminary convex hull results are encouraging (See
Figure 8).

Maintaining ambiguity of character
identification

In addition to dealing with all of the possible arrange-
ments of symbols and deducing the operations based on
relative positions, we must tackle the problem of disam-
biguating individual characters. As already suggested,
ambiguity makes recognition of the whole expression
difficult. We categorize the problems caused by ambi-
guity into three groups.

The first we call the "q-9" problem, and it is illus-
trated in Figure 3. There are pairs of characters which
are, without context, impossible to distinguish. Ac-
curate recognition requires that multiple character hy-
potheses be maintained until the ambiguity can be re-
solved from context. There are many examples of con-
fusable characters, even when the characters are writ-
ten quite carefully. For sloppily handwritten text the
overlap among character classes becomes quite large.

The second type of problem caused by ambiguity we
call the "threshold problem". This is illustrated in Fig-
ure 4. It shows an example of a situation in which
the constraints provided by the grammar could allow
us to successfully interpret the ’+’, even though out
of context, it would appear extremely unlikely to be a
’+’. Any system which discards hypotheses based on a
probability threshold runs the risk of missing a correct
recognition in such cases.

The third type of problem arising from ambiguity is
"interpretation explosion". When multiple hypotheses
are maintained for a single character the number of pos-
sible parses grows rapidly. For example, the geometric
measures of grammar classes such as "exponentiation
expression" depend upon the baseline of the base of the
exponent. When we maintain ambiguity in the individ-
ual characters we must also maintain ambiguity in these

aTake a set of very small symbols arranged uniformly on
the circumference of a very large circle. The convex hull of
every possible subset of symbols is allowable.

A

q
B

9
c

Figure 3: A. The isolated analysis of a character has
inherent ambiguities which cannot be resolved without
context. B. Clearly the context here suggests that the
character is the letter ’q’. C. The context in this figure
suggests the character is the digit ’9’.

dependent higher level classes. This causes the size of
the grammar to grow by a factor which is roughly equal
to the number of character classes for which we main-
tain ambiguity. This can make the grammar imprac-
tically large. Below, we discuss a compromise between
committing to a character out of context (to be avoided)
and maintaining all possible character hypotheses dur-
ing the parsing process (too complex).

Returning for a moment to previous work, we note
that Hull performs a pre-processing step that recognizes
each of the characters in the expression. Because this
recognition takes place before parsing, it does not make
use of available contextual information. He is thus vul-
nerable to the "q-9" problem discussed above.

The following simple analysis demonstrates the ne-
cessity of maintaining multiple character hypotheses in
developing a robust system. Suppose we have a system
for which isolated character recognition is correct with
probability R. If an expression consists of t characters,
we have probability Rt of correctly recognizing all of
the characters without contextual information. With
R = 0.95 and t = 20, we obtain a surprisingly low
probability, 0.9520 ~, 0.36, of getting every character
right. This is an upper bound on the probability we
will correctly parse the entire expression (it is possible
that the parse might fail for other reasons). Obviously,
this upper bound will only shrink if we recognize larger
expressions or allow a more varied set of characters.

The system described in (Chou 1989) maintains am-
biguity, but in a limited sense. For each character it
retains only those interpretations which are above a cer-
tain likelihood. His character models are Gaussian; he
proposes a threshold at three standard deviations from
the mean. While this may seem like a conservative
threshold, a similar analysis shows that in a 20 char-
acter expression, on average one correct character will
be eliminated for more than 5 percent of expressions,
since 1 - 99.7420 ~ 0.0507. Also, this scheme may lead
to keeping around large number of character hypotheses
in handwriting recognition, where the characters have
large variations.

Figure 4: An example of an expression with a very noisy
character. The ’+’ is very difficult to interpret correctly
without the context, but with constraints provided by
the grammar could potentially be correctly identified.

A Compromise: Maintaining a Hypothesis for
Each Character Class Many of the terminals in our
grammar are in the same syntactic class. As a result
a grammatical analysis can never resolve ambiguity be-
tween them. So for example if a character is slightly
more likely to be a ’b’ than an ’h’ there is no syntactic
information that can resolve this ambiguity5. We can
save a lot of effort by simply deciding at the outset that
the terminal is a ’b’. On the other hand, as we saw in
Figure 4 the ambiguity in the central symbol can be
resolved through syntactical analysis. In this case it is
important that multiple hypotheses be maintained.

As a middle ground, between maintaining hypotheses
for all possible terminal symbols and committing to the
single most likely character, we define classes of charac-
ters which play the same syntactic role in the grammar.
Since the characters in these classes are grammatically
equivalent, no constraint from the SCFG can ever be
used to disambiguate members of the class. Only the
single most likely interpretation for each syntactic class
need be maintained.

The concept of syntactic class must be expanded to
account for the fact that characters which are tradi-
tionally considered syntactically equivalent (like ’p’ and
’P’) may behave differently with respect to the geomet-
ric aspects of the grammar. An exaznple is shown in
Figure 5, where the most likely out o/context interpre-
tation of the leftmost character is lowercase ’p’. There
is no advantage in maintaining the hypothesis that the
character is a ’q’; it has low probability and all of the
important spatial properties of the glyph as a ’p’ (its
baseline, for example) are the same as if it were a ’q’.
This is not true for the interpretation as a ’P’ however,
since the baseline under this interpretation would be
higher. And in this case, it turns out that the most
likely context-dependent interpretation is as a ’P’, not
as a ’p’.

This leads to/our terminal classes of letters (a single
class traditionally) for which we maintain hypotheses
throughout the interpretation process. These classes
are ascending letters, descending letters, small letters
(neither ascending nor descending), and large letters
(both ascending and descending). "P", "p", "e", and
"Q" represent examples from each respective class.
Other authors have used similar classes but not to

5Other forms of contextual information might be useful
for this sort of problem. We axe currently exploring this
possibility.

Figure 5: The first character (a "p" or a "P"?) can
only be resolved by considering its relationship to the
subsequent character.

maintain different classification hypotheses (Winkler,
Fahrner, & Lang 1995).

In addition to these separate letter classes which
are based strictly on their geometric properties, other
classes were defined based on their non-spatial role in
the grammar. For example, other syntactic terminal
classes include: "zero", non-zero digits, left parenthe-
ses, right parentheses, and fractions. Each of these
plays a distinctively different role in the grammar of
a mathematical expression. In all, a separate hypothe-
sis for each of the 14 different terminal classes is main-
tained.

A New Approach
Hence, our approach contains three innovations. The
first is the geometric convex hull constraint, which lim-
its the growth of the number of possible parses of the
expression. The second is a new (but still conservative)
A-star completion estimate. The third is the bookkeep-
ing necessary to maintain an hypothesis for each charac-
ter class, which allows us to interpret individual char-
acters using greater contextual information. We now
describe some implementation details of a preliminary
system.

Implementation
Certain assumptions were made in order to get a pre-
liminary system working. In the typeset version of the
system, it is assumed that all characters are distinct
and do not overlap. We make no attempt to deal with
scanner distortion. In fact, all of the typeset examples
in this paper were generated on-line and are essentially
distortion-free.

Overview
The typeset system takes a binary image as input. A
simple connected components algorithm is run on the
image, generating a list of terminals. A character rec-
ognizer based on the Hausdorff distance (Huttenlocher,
Klanderman, &: Rucklidge 1993) is used to generate
probabilities that each connected component or pair of
connected components is a particular character. The
set of terminals for the initial system is, according to
class:

¯ ascender letters: b, d, h, i, k, l, t, ~, A-Z (except Q),
¯ descender letters: g, p, q, y, %

¯ small letters: a, c, e, m, n, o, r, s, u, v, w, x, z, a,

¯ ascender/descenders: f, j, Q,/~,

¯ binary operators: +,-,=,

¯ zero: 0,

¯ non-zero digits: 1-9,

¯ other symbols (each its own class): (,), [,], {, }, frac-
tion symbol.

While the grammar is much too large to include here
(80 classes, 200 productions), it is worth mentioning the
following:

¯ It is represented in Chomsky Normal Form. This
facilitates the coding of the grammar.

¯ It contains productions supporting exponentiation,
subscripting, fractions, "loose" concatenation (multi-
plication), and "tight" concatenation (the appending
of digits in a number).

¯ The a priori probability of each operation is the same.
Probabilities of operations are assigned only accord-
ing to the geometry of the layout and the probability
of their sub-parses.

After the program has calculated the probability of
each character being in each class, the program starts
the dynamic programming process which is closely re-
lated to the CYK algorithm mentioned before. The
first step in this process is to build the previously men-
tioned "table" in which there is one entry for every sub-
sequence of characters. This can be done in order from
the shorter sequences to the longer sequences, by first
computing the probability of each sequence of length
1, then from these computing the probability of each
sequence of length 2, and so on.

In our implementation, we limit the size of the parse
table using a very conservative restriction on the dis-
tance between sub-sequences as an initial filter and the
convex hull criterion described previously as a second
filter. When we finish building the table, the entry
which has the full number of characters and the high-
est probability represents the best legal parse of the
given mathematical expression.

Building the Table

Figure 6 shows how the parse table is generated for a
sample mathematical expression show in Figure 7. The
table contains one column for each subset of terminals,
and one row for each possible interpretation for that
subset. The input to the parsing algorithm is a set of
connected components. Associated with each compo-
nent is a probability vector, containing the conditional
probability for each possible terminal symbol. As a first
step only the most likely terminal from each syntactic
class is retained. For example, the most likely interpre-
tation for the leftmost component is as an ’a’. Never-
theless several other hypotheses are maintained: as an
ascender it is most likely to be an ’O’; as a descender
it is most likely to be a ’q’; as an ascender/descender

Trmnl 1 Trmnl 2 Trmnl 3 Trmnls 1,2 Trmnls 2,3 Trmnls 1-3

Global proper-
ties of the con-

Min x, max x, Minx, maxx, Min x, max x, Min x, max x, Min x, max x, Min x, max x,
nected compo- min y, max y, min y, max y, min y, max y, min y, max y, min y, max y, min y, max y,
nent set centroid centroid centroid centroid centroid centroid

As a small let- Prob: 0.1 Prob: 0.05 Prob: 0.05 Prob: 0.0 Prob: 0.0 Prob: 0.0
ter Baseline: 47 Baseline: 55 Baseline: 52 Baseline: 0.0 Baseline: 0.0 Baseline: 0.0

Pt-size: 12 Pt-size: 13 Pt-size: i0 Pt-size: 0.0 Pt-size: 0.0 Pt-size: 0.0

As a large let-
Prob: 0.01 Prob: 0.02 Prob: 0.01 Prob: 0.0 Prob: 0.0 Prob: 0.0

ter Baseline: 45 Baseline: 53 Baseline: 50 Baseline: 0.0 Baseline: 0.0 Baseline: 0.0

Pt-size: 8 Pt-size: 9 Pt-size: 9 Pt-size: 0.0 Pt-size: 0.0 Pt-size: 0.0

As a digit Prob: 0.03 Prob: 0.02 Prob: 0.01 Prob: 0.0 Prob: 0.0 Prob: 0.0

Baseline: 47 Baseline: 55 Baseline: 52 Baseline: 0.0 Baseline: 0.0 Baseline: 0.0

Pt-size: 9 Pt-size: 11 Pt-size: 11 Pt-size: 0.0 Pt-size: 0.0 Pt-size: 0.0

As an exponen- Prob: 0.0 Prob: 0.0 Prob: 0.0 Prob: 0.001 Prob: 0.00007 Prob: 0.0003
tiation Baseline: 0.0 Baseline: 0.0 Baseline: 0.0 Baseline: 47 Baseline: 55 Baseline: 47

Pt-size: 0.0 Pt-size: 0.0 Pt-size: 0.0 Pt-size: 12 Pt-size: 13 Pt-size: 12

As subscript Prob: 0.0 Prob: 0.0 Prob: 0.0 Prob: 0.00005 Prob: 0.002 Prob:

Baseline: 0.0 Baseline: 0.0 Baseline: 0.0 Baseline: 47 Baseline: 55 0.00000043

Pt-size: 0.0 Pt-size: 0.0 Pt-size: 0.0 Pt-size: 12 Pt-size: 13 Baseline: 47
Pt-size: 12

Figure 6: Part of a parse table used to do dynamic programming.

it is most likely to be a ,Q,6, and so on. In addi-
tion to computing these probabilities, we compute cer-
tain interpretation-dependent quantities of the charac-
ters such as the baseline and the point size. They are
interpretation-dependent since they are different for dif-
ferent rows of the table. Finally, we also compute global
properties of the current connected component group.
These properties include the minimum and maximum
coordinates, the centroid, the convex hull, and so forth.
These global properties only need to be computed once
per connected component group, since they are invari-
ant to the interpretation of the group.

In addition to the terminal classes there are rows in
the table for compound expressions made up of mul-
tiple terminals (e.g. exponentiation, fractions, binary
operations, etc.) There is zero probability that these
expressions can generate an output with a single com-
ponent.

The initial state of the system is shown in the first
three columns of the table. There is one entry for each
distinct component in the image. Parsing is a process
by which new columns are added to the table, each
describing a valid subset of components from the orig-
inal image. The table is expanded toward the right,
as large collections of components are enumerated and
evaluated.

There are three possible two-character combinations

8This is a very unlikely hypothesis, but it is the best in
that class.

bd

Figure 7: The sample mathematical expression used in
the description of table building. Notice that no entry
was made in the table for the two-character combina-
tion of characters "a" and "d". This is because the a-d
pair do not fit the convex hull criterion.

of the three characters. However, if the two characters
fail the convex hull test described above, as with the
"a" and the "d" in our example, then an entry in the
table will not be made. Since the two component groups
cannot be interpreted as a single terminal, these rows
axe flagged as impossible. As new columns are added
to the table, the interpretation-dependent and global
properties of the group are computed.

The final column in the table shows probabilities
of interpretations of the entire expression. Column 6
shows that the correct interpretation (as an exponenti-
ation at the highest level) has the highest probability,
so in this case the procedure worked properly.

Experiments

To verify the basic functionality of the system, we per-
formed a simple series of tests. For each letter x in
the system, the following expressions were used as in-
puts to the system: x~, x~, x~=, ~. Where allowed by
the grammar, the digits were also used in these tests.
All of these test images were evaluated correctly by the
system.

We attempted to evaluate the effectiveness both of
the the convex hull pruning constraint and A-star
search using our underestimate of the distance to goal.
Without using either type of heuristic, parse times were
very long - on the order of minutes. Using both crite-
ria parse times are in the seconds. In order to quantify
this we created a series of expressions of varying com-
plexity from 3 terminals to 20 terminals. On the left of
Figure 8 is the performance of the A-star system with
and without the convex hull constraint. On the right is
the performance using the convex hull constraint with
and without the A-star heuristic 7 . There is signifi-
cant improvement in performance using either of these
heuristics, and even greater improvement when both
are used. We collected data from the system running
without either heuristic, but this curve quickly exists
the top of the graph.

It is interesting to note how the system performed on
"illegal" images, for example the expression 0°°. This
input is considered illegal since our grammar provided
no mechanism for subscripting a number. As a re-
sult the system recognized the input as the expression
"600". This can be understood as follows: since the sys-
tem could not generate 0o, it apparently concluded that
the last two zeroes were effectively the same size. How-
ever, the output 0°° would also be illegal since a two
digit number cannot begin with a 0. The system’s fix
was to consider all three digits as being approximately
the same size, and then using a much less likely, but
legal interpretation of the first digit, it settled on "600"
as the best interpretation. This example illustrates a
good deal about the system’s flexibility in generating
reasonable answers in tough situations.

Anecdotal examples of expressions which the system
successfully parsed are given in Figure 9. The actual
time spent parsing these expressions on a 266MHz Pen-
tium Pro was approximately 4, 0.2, 16, and 25 seconds.
This does not include the time to generate character hy-
potheses for the connected components. These exam-
ples are not difficult, but they validate the basic method
and show that it is feasible to do the extra bookkeep-
ing which we have incorporated in this system. The
only failures in the current typeset system were due to
mis-recognition of characters.

7The points on the two graphs are the same set of ex-
pressions, the graph on the left contains fewer points because
the computation time for A-star without convex hull prun-
ing grows far too rapidly for us to measure. We simply gave
up after many minutes of run time.

Convex Hull Constraint
14o0 ’ ¯ ̄ i ¯ . . n ̄ - ¯ , ̄ ̄ ̄ , , ¯ ̄ ,i. ¯ ̄

/

1200 ~ mithout constraint /~

O with constraint 1/
i000 /

aoo

~ e110
. ..-’"

/ / .

400 / _..-’"0

/ ,0"
EO0 ~ o-- ’"

. ~- ~ .~’o
o ,,,n ,..,,,..,...

2 4 6 e 1o 12
Characters in Expression

A-star Constraint
5000 , * i

= 4000
3000

2000

tooo

~(without constralnt f~ i
with constraint /

/

//

!
/

/

/ /
-¢

..-"
~.--’3"

ft. ~..--
~.o- " o

~.~,r~-~.
5 to 15 20

Charaete~ in Expression

Figure 8: The left graph shows the pruning of the search
space by the convex hull criterion. The right graph
shows the performance gained by adding the A-star
constraint. The algorithm reduces to best-first search
without the A-star constraint.

a +o5

k~+ 2
e6 + Z7

123
2

4567 + a+K+Cd

Figure 9: Some of the expressions successfully recog-
nized by the system.

Future Work
A major focus in developing this system was to pre-
pare for the migration to handwritten mathematical
expressions. Our preliminary work with handwritten
expressions is illustrated in Figure 10. We show three
examples, the first of which was parsed correctly, the
second of which contains a geometry-based error, and
the third of which contains a character-identification
error. We hope that by improving the character rec-
ognizer and learning the parameters of our geometry
models that we can significantly improve the perfor-
mance of the system in the future. While the accuracy
of the current system needs great improvement, we feel
we have laid the groundwork for a practical system’s
implementation.

Acknowledgments
We would like to thank Tom Rikert and Nicholas Mat-
sakis for contributions and discussions related to this
work.

References
Charniak, E. 1993. Statistical Language Learning.
Cambridge, MA: MIT Press.
Chou, P. A. 1989. Recognition of equations using a
two-dimensional stochastic context-free grammar. In

I -51
t+a+v

Figure 10: Some examples of handwriting and their
parses.

SPIE Vol. 1199 Visual Communications and Image
Processing, SPIE, 852-863. Murray Hill, N J: SPIE.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L.
1991. Introduction to Algorithms. Cambridge, Mass.:
MIT Press.

Fateman, R. J., and Tokuyasu, T. 1996. Progress in
recognizing typeset mathematics. In Document Recog-
nition III, SPIE Volume 2660, 37-50. Murray Hill, N J:
SPIE.

Hopcroft, J. E., and Ullman, J. D. 1979. Introduc-
tion to Automata Theory, Languages, and Computa-
tion. Reading, Mass.: Addison-Wesley.

Hull, J. F. 1996. Recognition of mathematics using a
two-dimensional trainable context-free grammar. Mas-
ter’s thesis, Massachusetts Institute of Technology, De-
partment of Electrical Engineering and Computer Sci-
ence.

Huttenlocher, D. P.; Klanderman, G. A.; and Ruck-
lidge, W. J. 1993. Comparing images using the haus-
dorff distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence 15(9):850-863.

Lavirotte, S., and Pottier, L. 1997. Optical for-
mula recognition. In Fourth International Conference
on Document Analysis and Recognition, ICDAR, 357-
361. Ulm, Germany: IEEE.

Lee, H.-J., and Lee, M.-C. 1994. Understanding math-
ematical expressions using procedure-oriented trans-
formation. Pattern Recognition 27(3):447--457.

Lee, H.-J., and Wang, J.-S. 1997. Design of a math-
ematical expression understanding system. Pattern
Recognition Letters 18:289-298.

Martin, W. A. 1967. A fast parsing scheme for
hand-printed mathematical expressions. MIT AI
Project Memo 145, Massachusetts Institute of Tech-
nology, Computer Science Department, MIT, Cam-
bridge, MA.

Mjolsness, E. 1990. Bayesian inference on visual gram-
mars by neural nets that optimize. Technical Report
854, Yale University, Department of Computer Sci-

ence, Computer Science Department, Yale University,
New Haven, CT.
Okamoto, M., and Miyazawa, A. 1992. An exper-
imental implementation of a document recognition
system for papers containing mathematical expres-
sions. In Baird, H. S.; Bunke, H.; and Yamamoto,
K., eds., Structured Document Image Analysis. Berlin:
Springer-Verlag. 36-63.
Winkler, H. J.; Fahrner, H.; and Lang, M. 1995. A
soft-decision approach for structural analysis of hand-
written mathematical expressions. In International
Conference on Acoustics, Speech, and Signal Process-
ing.
Yaeger, L.; Lyon, R.; and Webb, B. 1995. Effec-
tive training of a neural network character classifier
for word recognition. In Mozer, M.; Jordan, M.;
and Petsche, T., eds., Advances in Neural Informa-
tion Processing, volume 9. Denver 1996: MIT Press,
Cambridge.

