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Abstract 

In this article, we develop a model that permits a decision maker's preferences to depend on the decision 
maker's ambiguity about the probability of an event that is relevant for decision-making purposes. We deal 
with ambiguity through preference modeling, with ambiguity leading to modifications in the utilities of out- 
comes. The behavior of ambiguity premiums and probability premiums as the payoffs are varied depends on 
the nature of the modifications in utilities. Particular forms of the model that arise under different sets of 
assumptions about preferences include additive, bilinear, and ratio forms. We conclude with a brief example 
and some thoughts about potential generalizations and implications of the model. 

Dist inctions be tween cases in which probabil i t ies  are "known" and cases in which we feel 

ambiguous or  vague about  probabi l i t ies  da te  back at least  to Knight  (1921), with his risk 

vs. uncer ta in ty  dichotomy. Such distinctions have no role in normat ive  decision theories 

based  on the Savage (1954) and de Finet t i  (1937) approaches  to subjective probabili ty.  

Indeed,  such distinctions suggest that  " t rue"  probabi l i t ies  for events exist, a not ion that  

de Finet t i  denies  in no uncer ta in  terms with his s ta tement  that  "probabi l i ty  does not 

exist" (de  Finet t i ,  1974, p. x). However ,  the famous Ellsberg paradox  (Ellsberg, 1961) 

demons t ra tes  empirical ly that  ambiguity does  mat te r  to many individuals. It appears ,  at 

least descriptively, that  ambiguity about probabilities can affect decision-making behavior. 

One  version of  the Ellsberg paradox  involves two urns. Urn  I (the ambiguous urn) 

contains 100 balls, each of  which is e i ther  red or  black, but  you do not  know the propor -  

tion of  each color; urn II  ( the unambiguous  urn) contains exactly 50 red  and 50 black 

balls. Bet t ing on Red i  means  that  a ball  will be drawn at r andom from urn I and you will 

win a prize if the ball  is red  and nothing if it is black; Blackb R e d n ,  and Blackii  are  
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defined similarly. Most people are indifferent between Redi and Blacki and likewise for 

Redii and Blackli. In choosing between Redi and Redn, however, many take Redii, 

preferring to deal with the unambiguous urn. 

Under the standard expected utility model, the expected utility of a bet on event E 

(e.g., Redi) is simplypu(prize) + (1 - p)u(no prize), wherep is the individual's subjec- 

tive probability that E will occur and u represents the individual's utility function. Indif- 

ference between Redi and Blacki implies that each color has probability one half of 

occurring in a draw from urn I, and similarly for urn II. But then Redi and Redli both 

have probability one half, and the model prescribes indifference between urns. 

We distinguish between two approaches that might be taken in attempting to modify 

the standard model to allow for strict preference between ambiguous and unambiguous 

urns in the Ellsberg situation. One approach is to modify the probabilities in some 

manner to allow for ambiguity about the probabilities. We call this approach probability- 

based because of its focus on the probabilities or modified probabilities, which are often 

called decision weights and which may not obey the usual rules of probability. In con- 

trast, we consider a preference-based approach in which the utilities are modified to 

allow for any preference an individual may have for or against ambiguous situations. 

If probabilities and utilities are treated simply as functions without some basic under- 

lying interpretation, then it may be a matter of taste whether ambiguity aversion is 

explained through modified utilities or through modified probabilities (decision weights). 

In a prescriptive setting, however, the distinction between the two approaches is crucial. 

If in a class of decision situations, the decision maker is suspicious of the probability of 

winning (e.g., see Bordley and Hazen, 1991; Kadane, 1992), then the appropriate model 

may indeed be to modify probabilities. In contrast, when a decision maker avoids ambi- 

guity because of regret or self-blame, a utility-modification approach may be more suit- 

able in a prescriptive analysis. In our view the two approaches are complementary, and 

together they permit a wider application of decision analysis in settings where it is felt 

that psychological attributes such as regret should be incorporated in an analysis. 

It is important to note that by appropriate redefinition, probability-modification and 

utility-modification approaches can be made to look alike. For example, in prospect 

theory the decision weight function "rr(p) could be labeled a utility modifier by defining 

modified utility to be ['rr(p)/p]V(x). The modified utility is now lottery dependent, but this 

reformulation provides no insight or useful interpretation in a prescriptive analysis. In 

fact, it complicates decision analysis by destroying the separation of probabilities from 

utilities. The original interpretation of ~(p) as a decision weight and V(x) as a value 

function in prospect theory is more appropriate from an intuitive perspective as well as 

for any prescriptive purposes. 
Our objective in this article is to develop a model that permits a decision maker's 

preferences to depend on the ambiguity about the probability of an event that is relevant 

for decision-making purposes. We deal with ambiguity through preference modeling, 

with ambiguity leading to modifications of the utilities of outcomes. The key idea is that 

utilities depend not only on the payoff that is received but also on the payoff that might 

have been received but was not. 

This article is organized as follows. In section 1 we briefly summarize some models, 
both descriptive and normative, that are capable of dealing with ambiguity. The basic 
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structure of our preference-based model is presented in section 2. Particular forms of the 

model that arise under different sets of assumptions about preferences are developed in 

sections 3 to 5. An example is given in section 6, followed in section 7 by a summary and 

some concluding comments. 

1. Approaches to modeling ambiguity 

Most efforts to allow for ambiguity formally in decision-making models have focused on 

the probabilities. These probability-based models have generally led to modified proba- 

bilities, or decision weights, that do not necessarily obey the rules of probability. In 

particular, the modified probabilities are typically not additive. We distinguish between 

models that are descriptive in orientation and those that are normative in nature. Also, 

since our concern is with models for dealing with ambiguity, we do not attempt to review 

the large body of literature that discusses ambiguity or presents experimental results 

related to ambiguity but does not get into serious modeling efforts. 

On the descriptive side, Einhorn and Hogarth (1985) suggest a model designed spe- 

cifically to deal with ambiguity (see also Einhorn and Hogarth, 1986; Kunreuther and 

Hogarth, 1989; Hogarth and Einhorn, 1990). Their model involves an anchoring and 

adjustment process in which an individual anchors on an estimate of a probability and 

then adjusts by imagining other possible values of the probability. The resulting adjusted 

probabilities are not additive. Kahneman and Tversky (1979) do not focus on ambiguity 

in their development of decision weights, but they mention that ambiguity could influ- 

ence decision weights, which are not additive. 

Other models with modified probabilities have been developed from a normative 

perspective, usually by modifying the standard axioms of decision theory..For example, 

Schmeidler (1989) weakens the independence axiom of Anscombe and Aumann (1963) 

and generates a model with nonadditive probabilities. Gilboa (1987) takes a similar tack 

based on the Savage (1954) axioms instead of those of Anscombe and Aumann (see also 

Wakker, 1989; Sarin and Wakker, 1992). Segal (1987) builds on Quiggin (1982) and 

Yaari (1987), using anticipated utility theory and relaxing the reduction of compound 

lotteries to arrive at a model with probabilities that do not necessarily obey the standard 

rules. Fishburn (1983, 1986) also develops models with nonadditive probabilities (see 

Fishburn, 1988, chapter 8 for a discussion of a variety of generalizations of additive 

expected utility, including theories with nonadditive probabilities). In contrast, Hazen 

(1987) develops an axiomatized subjectively weighted linear utility model in which prob- 

abilities are allowed to depend on the consequences associated with events; the resulting 

"effective probabilities" do obey the standard rules (see also Hazen, 1989; Hazen and 

Lee, 1989). In the dual bilinear utility model of Luce and Narens (1985), the probability 

of an event takes on one of three possible values depending on the consequences. Fi- 

nally, as noted above, Bordley and Hazen (1991) and Kadane (1992) discuss the modifi- 

cation of probabilities as a result of suspicion, which can be handled within the usual 

probability rules by appropriate conditioning. 

Yet another approach is to allow indeterminate probabilities in response to ambiguity 

instead of requiring sharp probabilities. Nau (1990, 1992) develops a normative theory of 



392 RAKESH K• SARIN/ROBERT L. WINKLER 

confidence-weighted probabilities (and utilities) in this vein by relaxing completeness. 

Examples of earlier axiomatic models of interval-valued probabilities can be found in 

Smith (1961) and Walley (1982) (see also Walley, 1991). Others, such as Good (1962), 

have represented uncertainty about probabilities in terms of second- or higher-order 

probabilities. 

In many decision situations, it seems more natural to model the effects of ambiguity 

through adjustments in utility than through adjustments in probability. Intuitively, ambi- 

guity about the probability of an event seems to be akin to an increase in the riskiness of 

a course of action with consequences related to that event. Reactions to ambiguity might 

thus be viewed as related to attitudes toward risk, which are modeled in the expected 

utility approach through utilities, not probabilities. Fellner (1961) notes that ambiguity 

can be thought of in terms of modifications of utility as well as modifications of probabil- 

ity, but he does not pursue this notion. Roberts (1963, p. 332) also comments on this line 

of attack: 

Ellsberg's analysis of his paradox is based on the assumption that the utilities of 

outcomes are a function only of the monetary consequences. But this is not necessar- 

ily the assumption that the subject was making• As just one illustration (for another in 

the same vein, the subject may fear that Urn I might contribute to an ulcer, regardless 

of what a rational analysis of other aspects of the problem may suggest), the subject 

might feel that his choice of Redl could lead to unpleasant second guesses by some- 

one who observed the experiment: he could be criticized, however unfairly, for not 

taking an apparently "safe" course of action (Redii) if he lost by taking an "unsafe" 

one (Redi). An analysis of utility, formal or informal, might reveal the reason for the 

subject's unwillingness to pay more for Redii than Redi,~and similarly for Blackii over 

Blackb 

Smith (1969, p. 325) agrees, noting that subjects 

merely violate the axioms, without the necessity for the probabilistic interpretation. 

• . .  As I see it, it is much more plausible to say that violators in "nonstandard process" 

contingencies, such as the stock price example, suffer utility losses (or gains) relative 

to what is experienced in less controversial "standard process" contingencies, such as 

dice games . . . .  an individual may have a low psychological tolerance for the "ambi- 

guity" associated with nonstandard process events, which we can very reasonably and 

naturally describe in terms of "utility losses." 

Smith goes on to develop a simple model with the utility u(x) of a consequence x 

reduced in the presence of ambiguity by )t(x), a "utility loss due to ambiguity." This 

approach is appealing intuitively, but it has some undesirable implications, such as vio- 

lations of dominance. In this article, we develop a more general model with the same 

motivation as Smith's model. In our model, we preserve the separation between proba- 

bilities and utilities. Probabilities are quantified by "relative likelihood judgments" (see 

DeGroot, 1970), and utilities are based on preferences for both the consequence ob- 

tained and the regret or rejoicing due to the consequence that could have been received. 
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As Raiffa (1985, p. 113) notes with respect to prescriptive analysis, "The analyst can 

query the decision maker about what are his or her real concerns and if these cognitive 

concerns loom large, they can be incorporated into the analysis." To the extent that such 

effects are preference related, models developed in this article represent a step in the 

direction of improving the sophistication of decision analysis in dealing with psychologi- 

cal concerns. 

A natural question that arises is why we do not treat consequences and regret as two 

attributes and simply use existing results from multiattribute utility theory to obtain the 

desired effects. The problem is that standard assumptions such as a marginality condi- 

tion or utility independence (see Keeney and Raiffa, 1976) cannot be operationalized in 

our setting. This presumably was the difficultly Bell (1982, 1985) also faced in developing 

his models. We therefore use an indirect approach in which verifiable assumptions on 

the decision maker's preferences over bets lead to a model that is interpretable as a 

two-attribute model. 

2. A preference-based model 

We will work within the framework of a simple bet B that yields monetary payoff x if 

event E occurs andy ifE does not occur. Without loss of generality, we assume thatx > 

y by defining the event associated with a higher payoff as E. Suppose that a decision 

maker's assessed probability for E is p. Then the expected utility of B to the decision 

maker is 

u W )  = pu(x )  + (1 - p )u (y ) ,  (1) 

where u represents the decision maker's von Neumann-Morgenstern (1947) utility 

function. 

Suppose, however, that the decision maker feels ambiguous about p. Then, in our 

preference-based model, the utilities are replaced with "modified utilities" v[u(x) I u~v)] 

and v[u(y) ] u(x)]. The modified utility function v depends on the degree of ambiguity in 

the event probability. Notationally, this dependence of v on E is suppressed. To simplify 

the notation, we express the modified utilities as v(x ] y) and v(y ] x), respectively, except 

where the full notation is needed for clarity in proofs. The expectation of the modified 

utilities is 

V(B) = pv(x l Y) + (1 - p)v(y Ix). (2) 

In contrast to probability-based models, the modifications due to ambiguity are reflected 

not in the probabilities but in the utilities. We assume throughout this article that V(B) is 

defined as in equation (2). 

The modified utilities differ from u in two important ways. First, each v term depends 

not only on the payoff that is received but also on the payoff that might have been 

received but was not. We anticipate that the concern about ambiguity is related to both 

potential payoffs. In particular, as x - y approaches zero, v(x I y) approaches u(x) and 
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v(y ] x) approaches u(y); when the payoffs are very close, ambiguity about the probabil- 

ity of E really does not matter. Ifx andy are quite different, on the other hand, ambiguity 

may be relevant to the decision maker. The decision maker, in receiving the lower payoff 

y, feels not just the utility u(y) but also a sense of regret because of a feeling that the 

assessed probabilityp might have been too optimistic. (With a Bayesian revision using a 

second-order distribution on the probability of E, this notion could be formalized.) 

When the higher payoffx is received, there may be some sense of elation at having come 

through the ambiguous situation in good shape. To some degree, such reactions might be 

felt by decision makers in any situations, but they would seem to be heightened and 

especially salient when ambiguit 3, is present. 

In some ways, the notions of regret and elation as used here are related in spirit to 

ideas of regret and disappointment developed in Bell (1982, 1985) and Loomes and 

Sugden (1982). But there are important differences as well. Regret as defined by Bell 

and Loomes and Sugden compares what is received with what could have been received 

if a different action had been taken and the same event occurred, whereas we are 

working only with a single action at a time and comparing what is received with what 

could have been received with the same action if a different event occurred. The effect 

resulting from ambiguity seems closer in nature to Bell's disappointment, which involves 

comparisons of alternative payoffs under a single action. 

A second way in which the modified utilities differ from u is that they will be influenced 

by the degree of ambiguity. For instance, as the degree of ambiguity is reduced and B 

approaches an unambiguous lottery, v(x [ y) and v(y ] x) will approach u(x) and u(y), 
respectively. The greater the degree of ambiguity, the greater the potential impact on v. 

Because of the ambiguity about the probability of E, we must be careful about the 

assessment of this probability. The separation of probability elicitation from utilities is a 

tricky issue (see Kadane and Winkler, 1988). If ambiguity influences choices, which is the 

premise underlying our model, then probability assessments obtained by using proce- 

dures involving lotteries, scoring rules, or bets can be influenced by the ambiguity. We 

assume that p is assessed not through techniques that involve choices and payoffs, but 

through techniques using comparisons of events to see which one is more likely. 

DeGroot (1970, p. 75) recommends "making, whenever possible, a direct comparison of 

the relative likelihoods of two events without considering consequences which depend 

on their occurrence or nonoccurrence." We assume thatp is assessed in this manner. 

3. An additive model 

The basic structure of our preference-based model is given by equation (2). The form of 

V(B), v(x ] y), and v(y ] x) under various assumptions of interest, just as the form of 

single-attribute or multiattribute utility functions under certain assumptions (risk pre- 

mium constant as wealth changes, additive independence, etc.) has received consider- 

able attention. In this section we develop an additive form, and in the following sections 

we present assumptions that lead to multilinear and ratio forms. 
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Fishburn (1991) develops a theory with the ambiguity relation as a primitive. Along 

these lines, two events E and F belong to the same equivalence class for a decision maker 

i rE and F are judged to be equally ambiguous. We focus on an event E, and we assume 

throughout this article that the equivalence class containing E has at least one other 

element F such thatp(E) = p(F) .  Moreover, bets involving different events in an equiv- 

alence class are assumed to be evaluated by the same modified utilities v. For example, 

bets for the equivalence class containing all nonambiguous lotteries are evaluated via the 

standard utility function u. 

Some assumptions of interest involve comparisons of ambiguous lotteries with unam- 

biguous lotteries. Therefore, we assume the existence of an external device such as a 

roulette wheel (see Pratt, Raiffa, and Schlaifer, 1964) that can be used to specify any 

unambiguous probabilities. Our development relies on comparisons of roulette wheel 

lotteries with bets contingent on events. Thus, the roulette wheel is employed conceptu- 

ally as a measuring device. We denote the bet B yielding payoffx if event E occurs andy 

irE does not occur by (x E y ) .  A roulette wheel lottery that yieldsx with probability w and 

y with probability 1 - w is represented as (x, w ,y ) .  Finally, we use - to denote indiffer- 

ence. With this notation, our first assumption is as follows: 

Assumption 1. I f  (x E y ) ~ (x, w, y ) for somex > y, then (x' E y ' )  - (x', w , y ' )  for any 

(x ' , y ' )  such that u(x')  - u (y ' )  = u(x) - u (y ) .  

To interpret assumption 1, suppose that the assessed probability of event E isp. Then 

p - w may be interpreted as a probability premium for ambiguity, the amount of prob- 

ability the decision maker is willing to give up (ifp - w is positive) or insists on gaining (if 

p - w is negative) to avoid the ambiguity associated with event E in the context of bet B. 

In these terms, assumption 1 states that the probability premium for ambiguity associ- 

ated with bet B is unchanged if the amountsx andy are changed, as long as the difference 

between x and y in utility terms remains constant. To obtain (x', y ' )  such that u(x')  - 

u (y ' )  = u(x) - u (y ) ,  we can choose anyx' and then findy' such that (x, .5,y') - (x', .5, 

y). In the special case of a risk-neutral decision maker, assumption 1 implies that (x + A 

E y + A) ~ (x + A, w, y + A ) f o r  all k provided (x E y ) ~ (x, w, y ). 

Theorem 1. Assumption 1 implies that v(x ]y) and v(y  Ix) are of the form 

l y )  = u(x) + f l u ( x )  - . ( y ) ]  
and (3) 

v(y lx ) = u (y )  + f [ u ( y )  - u(x)], 

wheref(O) = O. 

In theorem 1, assuming the functionsfand u are continuous, asy ---,x, v(x [y) --+ u(x), 

and asx ---, y, v(y [ x) --+ u(y); therefore, V(B)  -~ U(B). The functionf depends on the 

payoffsx andy as well as the degree of ambiguity about the probability orE.  
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In equations (3) above, the assessment of the functionfis considerably simplified if we 

assume it to be linear. That is, 

f [ u ( x )  - u ( y ) ]  = c[u(x)  - u ( y ) l  

and (4) 

f l u ( y )  - u(x)]  = d [ u ( y )  - u(x)] .  

The following assumption requires that the probability premium p - w associated 

with bet B be independent of the payoffsx andy. Interestingly, the linear form (4) for the 

regret function f implies the stronger assumption 2. This relationship is formalized in 

theorem 2. 

Assumption 2. If (x Ey)  ~ (x, w, y) for some x > y, then (x E y) - (x, w, y) for allx > y. 

Theorem 2. Assumption 2 implies that 

v ( 8 )  = p u ( x )  + (1 - p ) u ( y )  + [pc  - (1 - p ) d l [ u ( x )  - u ( y ) l .  (5) 

An alternative way to write equation (5) provides an intuitive decision-weight inter- 

pretation: 

v ( ~ )  = ,~ (p )u (x )  + [i  - ~ ( p ) l u ( y ) ,  

where 

(6) 

~ ( p )  = p + p c  - (1 - p ) d .  (7) 

It is easy to see that the model given by equation(5) is also satisfied if equation (4) holds 

(i.e., the regret/elation function f is linear). 

In many decision-weight models (e.g., see Einhorn and Hogarth, 1985; Schmeidler, 

1989), the ambiguity premium does not depend on payoffs. In contrast, models such as 

those of Hazen (1987) and Hogarth and Einhorn (1990) permit dependence on payoffs 

of ambiguity premiums. Allowing dependence on the payoffs seems reasonable. For 

instance, even if ambiguity matters to a decision maker whenx is very favorable andy is 

very unfavorable, we would be surprised if it would matter as much when we let x - y 

approach zero. Forcing the attitude toward ambiguity to be the same as long as the 

difference between x and y in utility terms remains constant seems much less restrictive. 

If one thinks off[u(x) - u(y)] andf[u(y) - u(x)] as measuring some type of"regret," 

then the attributes "utility of payoff received" and "regret" are additive in the models 

developed in this section. In the next section we examine forms for v(x I Y) and v(y I x) 
that permit interaction between these two attributes. 
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4. A bilinear model 

Here we present assumptions that lead to bilinear forms, which provide greater flexibility 

in accommodating preferences in decision-making situations with ambiguity present. 

For simplicity in exposition, we assume throughout this section that u(x) = x. We also 

introduce exchanges between bets to reflect strength of preference (see Dyer and Sarin, 

1979). Further, the strength of preference function and the utility function are assumed 

to be identical (see Sarin, 1982). Loosely speaking, we may think of an indifference 

between exchanging B for B' and B" for B" as being willing to pay the same price to switch 

from B to B' as to switch from B" to B". 

Assumption 3. For anyx, y,x ' ,  andy '  such thatx - y = x' - y' and for any A, an 

exchange of (x' Ey ' )  for (xEy)  is indifferent to an exchange of (x' + A Ey '  + A) for 

(x + A E y  + A). 

Theorem 3. Assumption 3 implies that v(x I Y) and v(y I x) in equation (2) are of the 

form 

v(x ]y) = x[1 + g(x - y)] + f(x - y) 

and (8) 

v(y Ix) = y[1 + g ( y  - x)l + f (y  - x), 

wheref(O) = g(O) = O. 

Theorem 4. If Assumption 3 is satisfied for any (x',y') (not requiringx - y = x' - y'), 

then v(x I y) and v(y ] x) are given by equations (3). 

Thus, assumption 3 leads to a general bilinear form. Furthermore, with a stronger 

version of assumption 3, we obtain equations (3) (with the linear utility assumed in this 

section) as a special case of equations (8). Note that in equations (8), there are two free 

functionsfandg. In order to obtain the more conventional bilinear form, we impose an 

additional assumption. 

Assumption 4. The preference ordering between exchanges of (x Ey)  for (x Ey ' )  and 

(x E y") for (x E y'") does not depend on x. 

Theorem 5. Assumptions 3 and 4 imply that 

v(x l y) = x + f ( x  - y) + ~ ( x  - y) 
and (9) 

v(y Ix) = y + f(y  - x) + kyf(y - x), 

wheref(O) = O. 
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If we further strengthen assumption 4, then we obtain a linear f i n  equations (9). 

Assumption 5. For any x, y, and y' and any A, an exchange of (x E y) for (x E y') is 

indifferent to an exchange o f ( x E y  + A) for (xEy'  + A). 

Theorem 6. Assumptions 3 and 5 imply the form of equations (9) withflinear. 

The results of this section permit the dependence of the "probability equivalent" w of 

an ambiguous probabilityp of an event E on payoffs and "regret" so that the two at- 

tributes are nonadditive. Intuitively, this seems to be a useful generalization of the addi- 

tive model. Of course, whether such nonadditivity is useful in predicting an individual's 

behavior toward ambiguity is an open empirical question. 

5. A ratio form 

The key strategy employed in obtaining several of the results in sections 3 and 4 is to 

make some assumptions about the invariance of the probability equivalent w with re- 

spect to additions in payoffs. Now, suppose the payoffs are multiplied by a constant and 

we assume invariance of w with respect to the multiplicative transformation of payoffs. 

Assumption 6. If (x E y ) ~ (x, w, y ), then (x ' E y ' )  ~ (x' w, y ' )  for any (x', y') such that 

u(x')/u(y') = u(x)/u(y), where u is strictly positive. 

Theorem 7. Assumption 6 implies that v(x I Y) and v(y t x) in equation (2) are of the 

form 

v(x ly)  : u(x)f[u(x)/u(y)l 
and (10) 

v(y I x) = .(y)f[u(y)/.(x)], 

where f(1) = 1. 

We emphasize that assumption 6 is particularly strong in that it requires that u be 

scaled so that it is strictly positive and that ratio comparisons of utilities can be made. We 

present the ratio form to note that behaviorally, "regret" is governed by the difference 

u(x) - u(y) in the additive form and by the ratio u(x)/u(y) in equations (10). 

6. An example 

Since the Ellsberg paradox has stimulated much of the interest in decision making under 

ambiguity and should be familiar to many readers, our example involves the version of 
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the Ellsberg situation described in this article's opening paragraphs.  In this situation, 

y = 0, and we assume that  red and black are judged to be equally likely in the ambiguous 

urn. Without  loss of  generality, suppose that  the prize x is contingent upon the ball being 

red. The  choice of  the ambiguous urn can therefore be expressed as a bet  (x E 0), where  

E = " the  ball drawn is red"  a n d p  = 0.5. The  unambiguous urn can be viewed as a lottery 

with w = 0.5: (x, 0.5, 0). 

To isolate ambiguity concerns as opposed  to s tandard risk concerns, we assume that  

u(x) = x. Moreover ,  suppose that  the decision maker ' s  atti tude toward ambiguity is such 

that  assumption 2 is applicable. Using equation (1), we have 

U(Unambiguous  Urn) = 0.5x + 0.5(0) = 0.5x. 

F rom theorem 2, 

V(Ambiguous Urn) = 0.5x + 0.5(c - d)x. 

The  ambiguity p remium for the ambiguous urn is 

U(Unambiguous  Urn) - V(Ambiguous Urn) = - 0 . 5 ( c  - d)x, 

and the probabili ty p remium is 0.5 - w, where  w is the solution to 0.5x + 0.5(c - d)x  = 

wx. This solution is w = 0.5(1 + c - d), and the probability p remium associated with the 

ambiguous urn is therefore - 0.5@ - d). If c - d < 0, then ambiguity-averse behavior  

consistent with the Ellsberg paradox is implied by the model. Ambiguity-preferring be- 

havior is suggested if c - d > 0, and c - d = 0 implies ambiguity-neutral  behavior. 

To  investigate the implications of  a bilinear model  in this situation, suppose that  

assumptions 3 and 4 apply instead of  assumption 2. From theorem 5, then, v(x ] y)  and 

v(y [ x) are given by equations (9), and 

V(Ambiguous Urn) = 0.5[x + f(x) + kaf(x)] + 0.5[0 + f ( - x )  + k(O)f ( -x)]  

= 0.5Ix + f(x)  + f ( - x )  + 

Suppose fur ther  that  

f(x - y)  = 1 - e-° '°m(x-Y) 

and 

f(y - x) = - 1 + e o.ool(x-y). 

Then 

V(Ambiguous Urn) = 0.5[x + kx(1 - e-°.°°t~)]. 
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The ambiguity premium for the ambiguous urn when compared with the unambiguous 

urn for this risk-neutral decision maker is 

U(Unambiguous Urn) - V(Ambiguous Urn) = - 0.5/oc(1 - e - 0.00ix). 

The probability premium associated with the unambiguous urn can be found by equating 

V(Ambiguous Urn) with wx, the expected utility of (x, w, 0), and solving for w, in which 

case the probability premium is 0.5 - w. In our example, 

probability premium = - 0.5k(1 - e-°-°°lx). 

Plots of the ambiguity premium and probability premium as a function of x for 

selected values of k are shown in Figures 1 and 2, respectively. Note that for a given k, 

both the ambiguity premium and probability premium start at zero whenx = 0 and shift 

Figure 1. 
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monotonically as x increases, approaching -0.5kx and -0.5k, respectively, as x ~ ~ .  

The signs of both the ambiguity premium and the probability premium are the opposite 

of the sign ofk. A negative k implies ambiguity-averse behavior in the example, whereas 

a positive k implies ambiguity-preferring behavior. 

We speculate that the increasing magnitude (in a positive sense for ambiguity-averse 

decision makers and in a negative sense for ambiguity-preferring decision makers) of the 

ambiguity premium and the probability premium as x increases is reasonable for many 

decision makers. Some preliminary support for this conjecture is provided in Hogarth 

and Einhorn (1990). This question should be further investigated experimentally from a 

descriptive standpoint. In any event, different forms for the function f would lead to 

different shapes for the ambiguity premium and probability premium as functions ofx. 

As we saw above, under the very strong assumption 2 the ambiguity premium is linear in 

x and the probability premium associated with the ambiguous urn does not depend on x. 

Moreover, different assumptions would lead to different forms for v(x I Y) and v(y I x) 
and hence for V(Ambiguous Urn). 
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7. Summary 

The general model developed in this article permits a decision maker's preferences to 

depend on the ambiguity about the probability of an event that is relevant for decision- 

making purposes. The idea behind our approach is that the influence, if any, of ambiguity 

on an individual's decisions often has its basis in the individual's preferences. For exam- 

ple, feelings of anxiety and discomfort that might be associated with ambiguous situa- 

tions are, in a very real sense, part of the overall set of consequences. Therefore, we 

model ambiguous decision-making situations through modifications in the utilities rather 

than through modifications in the decision maker's probabilities. 

Our model allows the ambiguity premium and the probability premium associated 

with ambiguity to depend on the payoffs. The behavior of the ambiguity and probability 

premiums as the payoffs are varied depends on the nature of the modifications in utili- 

ties. Particular forms of the model that arise under different sets of assumptions about 

preferences are developed in sections 3 to 5, and an example with ambiguity and proba- 

bility premiums increasing in magnitude as the stakes increase in the Ellsberg situation is 

shown in section 6. 

The primary contribution of this article is to argue that ambiguity effects are fre- 

quently preference related and to present a model that allows such effects to be ex- 

pressed formally through the modeling of preferences. Like many probability-based 

approaches to decision making under ambiguity, our model represents a first step in the 

sense of dealing with simple (e.g., single-event) situations and requires further generali- 

zation to be valuable as a practical tool in the decision analyst's kit. First, it is event 

specific, a restriction that might be relaxed by developing a procedure to measure the 

ambiguity felt by a person about a probability in an uncertain situation. Modifications in 

utilities might then be modeled as a function of the degree of ambiguity. Special cases 
that index modifications to values of the probability p might also be useful. Second, it 

deals only with single-probability situations, where the uncertainty is about an event and 

its complement. Extensions to multiple-event situations would greatly enlarge the poten- 

tial scope of applicability of the model. Third, any hope of dealing with ambiguity in 

dynamic decision making rests on procedures to deal with the propagation of ambiguity 

in sequential events, something more complicated than ambiguity in individual single- 

event or multiple-event situations. 

Our model raises a variety of descriptive questions that could be studied empirically or 

experimentally. In the spirit of Camerer (1988), the ability of our model to explain actual 

choices can be investigated. Assumptions such as those presented in sections 3 to 5 are 
empirically testable. Such descriptive work would not only provide information about the 

descriptive validity of our model and potential assumptions that lead to special cases, but 

would also shed more light on the nature of decision makers' reactions to ambiguity. 

With respect to normative considerations, we caution that modifications of utilities 

should certainly not be taken lightly. Further work is needed on the specific impact of 

ambiguity on decision makers in realistic situations (as opposed to the artificial Ellsberg 
situation, for example). But to the extent that ambiguity has tangible effects (e.g., anxiety 

and sleeplessness for ambiguity avoiders, ~hrills and exdtement for ambiguity lovers), it 
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may be reasonable for models of decision making under ambiguity to attempt to allow 

for these effects. Furthermore, since the effects are often preference related, one logical 

strategy for considering them in modeling is through the preference side of decision 

modeling. Trying to incorporate a feature like ambiguity in decision analysis raises some 

difficult questions (see Winkler, 1991), much as the consideration of equity does in 
decisions involving multiple actors (e.g., Fishburn, 1984; Keeney and Winkler, 1985; 

Satin, 1985). There seem to be compelling reasons for taking account of equity, and 
although the case is not as compelling with ambiguity, evidence suggests that some 
individuals would like to incorporate ambiguity considerations in some manner in nor- 

mative/prescriptive models of their decision-making problems. Our model has some 

limitations (e.g., single-event, single-stage situations), but it represents a step in this 

direction. 

Appendix 

Proof  o f  theorem 1. Suppose that (x E y )  ~ (x, w, y) .  Then, from equation (2), 

pv[u(x) l . ( y ) ]  + (1 -p)v[u(y) lu(x)]  : wu(x)  + (1 - w)u(y) .  (A1) 

By assumption 1, (x' E y ' )  ~ (x', w ,y ' ) .  Hence, from equation (2) again, 

pv[u(x')  l u(y')] + (1 -p)v[u(y ') lu(x ')]  = wu(x')  + (1 - w)u(y ') .  (A2)  

Subtracting equation (A1) from equation (A2) yields 

p(v[u(x ' )  l u(Y')] - v[u(x) [ u(y)]) + (1 -p)(v[u(Y')lu(x')] 
- v[u(y) l . (x )] )  -- ~, (A3) 

where ~ = u(x')  - u(x) = u(y')  - u(y)  by assumption 1. 
Since the equivalence class containing E has at least one other event with probability q 

= p, equation (A3) holds with q replacingp. Therefore, 

o r  

v[u(x') l u(y')] - v[u(x) l u(y)] : ~,, 

v[u(x) + ~ I u(v) + ~] - v[u(x) lu(y) l  : ~. 

From Aczel (1966, p. 231), 

v[u(x) I u(y)] = . (x )  + f [u(x)  - u(y)]. 

Similarly, v[u(y) [u(x)] : u(y)  + f l u ( y )  - u(x)]. 
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Proof of  Theorem 2. By assumption 2, 

V(B) = pu(x) + pf[u(x) - u(y)] + (1 - p ) u ( y )  + (1 - p ) f [ u ( y )  - u(x)] 

= wu(x) + (1 - w)u(y) for  allx > y. 

Rearranging and setting u(x) - u(y) = t yieldspf(t) + (1 - p ) f ( - t )  = at, where ~ = 

w - p. Substituting in V(B) gives the desired result. 

Proof of  theorem 3. Setx '  = x + d a n d y '  = y + d. By assumption 3, 

p[v(x  + d l y  + d)  - v(x I y)] + (1 - p ) [ ~ y  + d l x  + d)  - ~(y I x)] 
= pv(x  + d + ±IY + d + A) - v(x + ZXIy + ZX)] 
+ (1 - p)[v(y  + cl + A I x  + d + A) - v(y + A I x + zX). 

By a similar argument as in the proof  of theorem 1, 

v(x + d l y  + d) - v ( x l y  ) = v(x + d + A ly + d + A) - v(x + A ly + A).(A4) 

Le tx  - y = t, and define v(x ]y)  = v(x, t). Thus, equation (A4) can be rewritten as 

v(x + d, t) - v(x, t) = v(x + d + a,  0 - v(x + a,  t). (AS )  

For a fixed t, the conditional function v(., t) is linear by equation (A5). Alternatively, one 

may interpret the first component  to be utility independent  of the second. Thus, 

~(x,t)-~(o,t) 
v(1, t ) -v(0, t )  - x, where v(1, 0) = 1 and v(0, 0) = 0. 

Therefore,  

v(x, t) = x IvO,  t) - v(o, t)] + v(0, t), 

which can be expressed as 

v(x, t) = x[1 + g(t)] + f(t), 

or  

v(x ]y)  = x[1 + g(x - y)] + f(x - y), 

as desired. Similarly, 

v(y Ix) = y[1 + g(y - x)] + f(y - x). 

Proof o f  theorem 4. From equation (A4) in the proof  of theorem 3, we obtain 



AMBIGUITY AND DECISION MODELING: A PREFERENCE-BASED APPROACH 405 

v(x' + A l y' ÷ A) - v(x' l Y') = v(x +mx I Y 4- A) - v(x l Y). (A6) 

Since equation (A6) holds for any (x ' ,y ' ) ,  as assumed in theorem 4, 

v(x + ~ l y  + A) - v(x ty)  = h(A). (A7) 

Settingx = y and observing that v(x [ x)  = x, we obtain h(~)  = A. Now, equation (A7) 

will yield the additive form as shown in the proof of theorem 1. 

Proof  o f  &eorem 5. As shown in the proof of theorem 3, v(x, t) = x[v(1, t) - v(0, t)] + v(0, 

t). By assumption 4, v(x, t) - v(x, t ')  = v(x, t") - v(x, t"') for allx. Thus, v(x, t) is utility 

independent ofx. Hence, v(1, t) = a + by(O, t), where a = 1 since v(1, 0) = 1 and v(0, 0) = 

0. Thus, 

v(x, t) = x[1 + (b - 1)v(0, t)] + v(0, t) 

= x[1 + kf(t)] + f ( t )  

= x + f (x  - y )  + kxf(x - y) ,  as desired. 

Proof  o f  theorern 6. By assumption 5, 

[x + f (x  - y )  + kxf(x - y)] - [x + f ( x  - y ' )  + kxf(x - y')] 
= [x + f ( x  - y  - A) +/crf(x - y  - k)] - [x + f ( x  - y '  - A) 

+ Icrf(x - y '  - A)]. 

Letx  - y = t a n d x  - y '  = t ' ;  t h e n f ( t )  - f ( t ' )  = f ( t  - A )  - f ( t '  - -  zX) ,  which implies that 

f ( t )  = t. 

Proof  o f  theorem 7. Assumption 6 implies that 

pv[u(x) [ u(y)]  + (1 - p ) v [ u ( y ) [ u ( x ) ]  = wu(x)  + (1 - w)u(y ) ,  

and 

W[u(x ' )  l u(y ' )]  + (1 - p ) v [ u ( y ' ) l u ( x ' ) ]  = wu(x ' )  + (1 - w)u(y ' ) .  

Dividing the above two equations and using a similar argument as in the proof of theo- 

rem 1, we obtain 

v [ u ( x ' ) l u ( y ' ) ]  _ u ( x ' )  u(y')  
- -  - -  - -  - -  r .  

v{u(x) lu(y)] u(x) u(y) 

Thus, 

v[u(x') ] u(y ' )]  = rv[u(x) [ u (y ) l ,  
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or  

v[ru(x) l ru(y)] = rv[u(x) l u(y)]. 

Now,  f r o m  A c z e l  (1966, p. 229), 

v[u(x) lu(y) ]  -- u(x)f[u(x)/u(y)] for u(x), u(y) > O. 

Similarly,  

v[u(y)  l u(x)] = u(y ) f [u(y ) /u (x )] .  
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