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Abstract

Anscombe and Aumann (1963) is a classic characterization of subjective expected
utility theory. This paper employs the same domain for preference and a closely re-
lated (but weaker) set of axioms to characterize preferences that use second-order
beliefs (beliefs over probability measures). Such preferences are of interest because
they accommodate Ellsberg-type behavior.
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1 Introduction

The Ellsberg (1961) Paradox has raised questions about the subjective expected utility model
and has stimulated development of a number of more general theories. In one version of the
paradox (Ellsberg (2001, p.151)), there is an urn known to contain 200 balls of 4 colors -
RI , BI , RII and BII . RI and RII denote two di¤erent shades of red; similarly, BI and BII
denote two di¤erent shades of blue. The urn is known to contain 50 RII balls and 50 BII
balls. But the number of RI (or BI) balls is unknown. One ball is to be drawn from the
urn. Consider the following 6 bets on the color of the ball that is drawn.

100 50 50
RI BI RII BII

A $100 $0 $0 $0
B $0 $100 $0 $0
C $0 $0 $100 $0
D $0 $0 $0 $100
AB $100 $100 $0 $0
CD $0 $0 $100 $100

Bet A gives $100 if the drawn ball is RI and $0 otherwise. The other bets are interpreted
similarly. Many subjects rank C � D � A � B and AB � CD. Subjective Expected Utility
(SEU) cannot accommodate this behavior.
One explanation of this behavior is that the DM has in mind a second-order belief, or

a probability measure on probability measures. The DM subjectively forms a belief on the
proportion of the RI balls, or the type of the urn. Klibano¤, Marinacci and Mukerji (2005)
(henceforth KMM) and Ergin and Gul (2004) propose a utility representation of preference
involving a second-order belief, that can accommodate the above ranking.1

Models of preference typically model the ranking not only of bets, but also of all other
acts - an act over a state space S is a (measurable) function from S into the set of outcomes.
In the Ellsberg case, the natural state space is

SE = fRI ; BI ; RII ; BIIg

and bets are binary acts over SE. I use the Ellsberg setting to highlight a feature of these
models - the domain of preference - that distinguishes them from the model in this paper.

1Nau (2006) adopts a domain similar to that of Ergin and Gul. The remarks below apply also to his
paper.
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KMM assume two subdomains and two corresponding preferences. One subdomain con-
sists of acts on SE and a preference is given over this set of acts. For the other subdomain,
they introduce another state space �(SE), the set of all probability measures over SE. Each
probability measure over SE corresponds to a particular number of RI balls in the Ellsberg
urn. KMM call an act over �(SE) a second-order act. They assume that the preference over
second-order acts is an SEU preference, which leads immediately to second-order belief.
Ergin and Gul permit issue preference. They assume two issues and their state space

is a product space. In the Ellsberg context, one issue is which ball is drawn and the other
is what color is each ball. The second issue determines the type of the urn and hence a
probability measure over SE. Given preference on acts over the product state space, they
prove a representation involving a second-order belief.
Therefore, both KMM and Ergin-Gul assume state spaces bigger than SE. They presume

that the analyst can observe more than just the ranking of acts over the color of the drawn
ball - the ranking of acts over the �type of the urn�must also be observable. Similar remarks
apply to their model in general (not only Ellsbergian) settings.
The importance of the domain assumption can be illustrated in the context of an asset

market. Consider a simple model where the asset price may go up (H) or go down (L). In
this setting, a bet on H corresponds to buying the asset and a bet on L to selling the asset
- decisions that are observed in many data sets. On the other hand, a second-order act (or
a bet on the second issue) is a bet on the true nature of the market - the probability that
the price goes up. But we do not observe bets on the true probability; that is, the payo¤s of
real-world securities depend on realizations of prices, and not separately on the mechanism
that generates these realizations.
This paper adopts a domain consisting of lotteries over acts de�ned over a basic state

space - which is SE in the Ellsberg case. Arguably, this domain is closer to the set of choices
involved in the Ellsberg Paradox than are the domains of KMM and Ergin-Gul. Besides,
the domain in this paper is the same as that in Anscombe and Aumann (1963), one of the
classic papers on SEU. Frequently, �the Anscombe-Aumann domain�is taken to be the set
of all acts whose prizes are lotteries (see Kreps (1988), for example). Note, however, that in
their paper, Anscombe-Aumann use the set of all lotteries over such acts.
The model in this paper, referred to as Second Order Subjective Expected Utility (SOSEU),
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has the following representation:2

V (P ) =

Z
U(f)dP (f) and U(f) =

Z
�(S)

v

�Z
S

u(f)d�

�
dm(�);

where P is a lottery over acts, f is an act and m is a second-order belief (a probability
measure on �(S)). Degenerate lotteries can be identi�ed with acts and thus V induces the
utility function U over acts. When v is linear V collapses to Anscombe-Aumann�s SEU.
SOSEU has di¤erent axiomatic foundations from SEU. In their characterization of SEU,

Anscombe and Aumann assume Order, Continuity, Independence, Reversal of Order and
Dominance. I drop Reversal of Order (and modify Dominance) to characterize SOSEU.
The domain in this paper makes it possible to analyze attitudes toward ambiguity and

two-stage lotteries at the same time. Speci�cally, SOSEU has the property that if the DM
reduces two-stage lotteries into one-stage lotteries in the usual way, then he does not exhibit
Ellsberg-type behavior. This prediction is con�rmed in the experiment by Halevy (2005).
He claims that a descriptive theory of ambiguity aversion �should account - at the same time
- for violation of reduction of compound objective lotteries.�
The violation of Reduction and the recursive structure of utility in the present model

bring to mind the closely related model of Kreps and Porteus (1978). They provide axiomatic
foundations for recursive expected utility with objective temporal lotteries. Their model not
only has a similar functional form to SOSEU, but also takes a similar approach - Kreps
and Porteus assume Independence at each stage and relax Reduction. However, precise
probabilities are not given in most real world problems. Klibano¤ and Ozdenoren (2005)
incorporate subjective uncertainty to characterize subjective recursive expected utility, which
does not deal with ambiguity. SOSEU is also de�ned on a domain involving subjective
uncertainty but features second-order beliefs that can accommodate Ellsbergian behavior.
The paper is organized as follows: Section 2 introduces the setup. In Section 3, Anscombe

and Aumann�s axioms and theorem are presented. Section 4 motivates dropping their axiom
Reversal of Order, and modifying Dominance. This leads to the SOSEU representation theo-
rem. Section 5 examines the connection between nonindi¤erence to ambiguity and violation
of reduction of two-stage lotteries. Proofs are contained in appendices.

2Technical details are provided later.
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2 The Setup

For any topological space X, let �(X) be the set of all Borel probability measures on X,
and let Cb(X) be the set of all bounded continuous functionals on X. Endow �(X) with
the weak convergence topology, i.e., for �n; � 2 �(X), �n ! � if

R
�d�n !

R
�d� for every

� 2 Cb(X). If X is a separable metric space, so is �(X). (See Aliprantis and Border (1999,
p.482); these authors are henceforth AB.) Let BX denote the Borel �-algebra on X and
denote by �x 2 �(X) a point mass on X, de�ned by �x(A) = 0 if x =2 A and �x(A) = 1 if
x 2 A.
Let S = fs1; s2; :::; sjSjg be a �nite set of states. Let Z denote a set of outcomes or prizes,

where Z is a separable metric space. An act f is a function from S into �(Z). Let H be
the set of all acts endowed with the product topology. Preference � is de�ned on �(H).
I refer to an element in �(Z) as a one-stage lottery and to an element in �(� (Z)) as a

two-stage lottery (or a compound lottery). A constant act (an act taking the same value for
every s 2 S) is viewed also as a one-stage lottery. Moreover, any act f is identi�ed with �f .
Then, it is immediate that �(Z) � H � �(H) and hence �(� (Z)) � �(H). Therefore
the preference � induces rankings on H, �(Z) and �(� (Z)).
Typical elements in �(H) are denoted by P , Q and R. I use f , g and h for elements in

H. In addition, �P , �Q and �R are typical elements for �(� (Z)) and, p, q and r for �(Z).
Denote by (x1; �1; :::;xn; �n) a lottery that gives x1 with probability �1 and so on, where
x1; x2; :::; xn can be outcomes, lotteries or acts.
A typical object P in �(H) is depicted in Fig. 1.

3 The Anscombe-Aumann Model

Preference having an SEU form on �(H) is characterized by Anscombe and Aumann (1963)
(henceforth AA). Using the notations and de�nitions of this paper, AA�s axioms and theorem
can be restated.3

Axiom 1 (Order) � is complete and transitive.

3Actually, they didn�t state the �rst 4 axioms - Order, Continuity, Second-Stage Independence and First-
Stage Independence. Instead, they assumed expected utility functions on �(H) and �(Z), respectively.
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Figure 1: A typical element in �(H). The �rst and the last nodes are governed by objective
probabilities �; a1; a2; b1 and b2. The second node is selected according to the realized state
s1 or s2.

Axiom 2 (Continuity) � is continuous.

De�nition 1 For f; g 2 H and � 2 [0; 1], �f � (1� �)g 2 H is a component-wise mixture,
i.e., for every s 2 S and every B 2 BZ, (�f � (1� �)g) (s)(B) = �f(s)(B)+(1��)g(s)(B).
This operation is referred to as a second-stage mixture.

Axiom 3 (Second-Stage Independence) For any � 2 (0; 1] and one-stage lotteries p; q; r 2
�(Z),

�p� (1� �)r � �q � (1� �)r () p � q.

Consider two lotteries �p � (1 � �)r and �q � (1 � �)r. Both give the same prize r
with probability (1� �). The two lotteries di¤er only in the �-probability event. So it is
intuitive that the DM�s ranking between them depends only on the ranking between p and
q, regardless of the common prize r.
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Figure 2: Examples of mixture operations: f 2 H gives $100 if s1 is realized, and $0 if s2 is
realized; g 2 H gives $0 for s1 and $100 for s2. The second-stage mixture �f � (1��)g 2 H
is an act that gives the lottery ($100; �; $0; 1� �) for s1 and the lottery ($0; �; $100; 1� �)
for s2. The �rst-stage mixture �f + (1� �)g 2 �(H) is the lottery (f; �; g; 1� �).

De�nition 2 For P;Q 2 �(H) and � 2 [0; 1], �P + (1 � �)Q 2 �(H) is a lottery such
that (�P + (1 � �)Q)(B) = �P (B) + (1 � �)Q(B) for B 2 BH. This operation is called a
�rst-stage mixture. For simplicity, I write �f +(1� �) g instead of ��f +(1� �) �g for any
act f and g.

Axiom 4 (First-Stage Independence) For any � 2 (0; 1] and lotteries P;Q;R 2 �(H),

�P + (1� �)R � �Q+ (1� �)R() P � Q:

First-Stage Independence can be interpreted in a way similar to Second-Stage Indepen-
dence.
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Axiom 5 (Reversal of Order) For every f; g 2 H and � 2 [0; 1],
�f � (1� �)g � �f + (1� �)g.

Reversal of Order assumes that the DM is not concerned about whether the mixture
operation is taken before or after the realization of the state. Later, I will discuss an argument
against this axiom.

Axiom 6 (AA-Dominance) Let f; g 2 H and s 2 S. If f(s0) = g(s0) for all s0 6= s and
f(s) � g(s), then f � g.

This axiom says that when two acts give the identical prizes except in one state s, the
prizes in state s determine the DM�s ranking between the two acts.

De�nition 3 An SEU representation is a bounded continuous mixture linear function u :
�(Z)! R and a probability measure � 2 �(S) such that V AA represents � on �(H), where

V AA(P ) =

Z
UAA(f)dP (f) and UAA(f) =

Z
u(f)d�:

AA�s theorem can be restated.4

Theorem 3.1 (AA (1963)) Preference � on �(H) satis�es Order, Continuity, Second-
Stage Independence, First-Stage Independence, Reversal of Order and AA-Dominance if and
only if it has an SEU representation.

An SEU representation cannot accommodate Ellsberg-type behavior. Therefore, I pro-
ceed to develop a generalization of this model.

4Under Reversal of Order, one of the two Independence axioms is redundant. I leave both of them to
compare with the next section.
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Figure 3: One ball is randomly drawn from the Ellsberg urn which contains 200 balls that
are either red or blue. The exact number of red (or blue) balls is unknown. An act f is a
bet on red and g is a bet on blue. The second-stage mixture 1

2
f � 1

2
g is unambiguous but

the �rst-stage mixture is not.

4 Main Representation Theorem

Here I show that by dropping Reversal of Order and modifying AA-Dominance, one obtains
a model of preference that can accommodate nonindi¤erence to ambiguity.
Consider the following example that illustrates that Reversal of Order is problematic

given ambiguity. In the Ellsberg example described in the Introduction, let f be the act
that gives $100 if the chosen ball is red (RI or RII), and nothing otherwise; g gives $100 if
the ball drawn is blue (BI or BII), and nothing otherwise. Let p be ($100; 1=2; $0; 1=2). As
Ellsberg predicted and later experiments con�rmed, many people feel indi¤erent between f
and g, but strictly prefer p to f and p to g.
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Compare 1
2
f + 1

2
g and 1

2
f � 1

2
g (see Figure 3). The �rst-stage mixture 1

2
f + 1

2
g gives

ambiguous acts f or g. If the DM strictly prefers p to f and p to g, it is reasonable to
assume that he strictly prefers p to 1

2
f + 1

2
g by the intuition of First-Stage Independence.

On the other hand, the second-stage mixture 1
2
f� 1

2
g has no ambiguity and can be identi�ed

with p because it yields the lottery p whichever state is realized. Therefore the DM will
strictly prefer 1

2
f � 1

2
g to 1

2
f + 1

2
g. Under Reversal of Order, 1

2
f � 1

2
g and 1

2
f + 1

2
g must be

indi¤erent. This illustrates the intuition against adopting Reversal of Order.5

However one may think in a di¤erent way. For any number of blue balls in the urn, the
�nal probability of getting $100 is 1/2 not only for 1

2
f � 1

2
g but also for 1

2
f + 1

2
g. Hence the

DM may be indi¤erent between 1
2
f � 1

2
g and 1

2
f + 1

2
g; while preferring 1

2
f � 1

2
g to f and g.

Implicit in this argument is that 1
2
f + 1

2
g becomes a two-stage lottery when the number of

blue balls is given and that the DM reduces the two-stage lottery to a one-stage lottery.6

The preceding argument supporting Reversal of Order is normatively appealing. But
Halevy (2005) reports that most people who reduce compound lotteries are ambiguity neutral
(see the next section). Since the argument to maintain Reversal of Order requires reduction,
it may not be acceptable at a descriptive level. In this paper, I drop Reversal of Order and
suggest a descriptive model to explain Ellsberg-type behavior.

Recall that AA-Dominance deals only with H, not with �(H). Under Reversal of Order,
stating properties on H is enough to describe properties on �(H). Since I drop Reversal of
Order, AA-Dominance must be modi�ed.
Each f 2 H and � 2 �(S) induce a one-stage lottery, namely 	(f; �) � �(s1)f(s1) �

�(s2)f(s2) � ::: � �(sjSj)f(sjSj) 2 �(Z). For P 2 �(H), de�ne 	(P; �) 2 �(�(Z)) by
	(P; �)(B) = P (ff 2 H : 	 (f; �) 2 Bg) for each B 2 BH. See Figure 4.

Axiom 7 (Dominance) For any P;Q 2 �(H) ; if 	(P; �) � 	(Q;�) for all � 2 �(S),
then P � Q.

To interpret Dominance, consider a DM who is not certain of the true probability law over
states, but who believes that there is a true law. Now suppose that 	(P; �) � 	(Q;�) for

5The preceding intuition translates to the present setting Gilboa and Schmeidler(1989)�s rationale for
their axiom �Uncertainty Aversion�, namely, that �hedging�across ambiguous states can increase utility.

6See Ellsberg (2001, p.230) for a similar argument by Pratt and Rai¤a.
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Figure 4: If � is assumed to be the true probability law, the DM translates P to 	(P; �).

every � 2 �(S), that is, for every probability law, he prefers the two-stage lottery induced
by P to the one induced by Q. Then he must prefer P to Q.7

It is instructive to compare Dominance with AA-Dominance. Since the latter deals only
with acts in H, restrict Dominance to degenerate lotteries f and g. Under AA-Dominance,
f � g if 	(f; �) � 	(g; �) for all Dirac measures � = �s, s 2 S. Dominance posits
the stronger hypothesis that 	(f; �) � 	(g; �) for all measures � in �(S). Thus (when
restricted to acts) Dominance is weaker than AA-Dominance.
A more complete and formal comparison of Dominance and AA-Dominance is provided

in the next lemma.

Lemma 4.1 (i) Order, Continuity, Reversal of Order and AA-Dominance imply Domi-
nance.
(ii) Dominance and Second-Stage Independence imply AA-Dominance.

The main utility representation is de�ned.
7When the probability law is given, one may interpret the object as a three-stage lottery which is out

of the domain. Dominance implicitly assumes that the DM reduces the three-stage lottery to a two-stage
lottery.
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De�nition 4 A Second Order Subjective Expected Utility (SOSEU) representation is a prob-
ability measure m 2 �(�(S)), a bounded continuous mixture linear function u : �(Z)! R,
and a bounded continuous and strictly increasing function v : u (� (Z)) ! R, such that V
represents � on �(H), where

V (P ) =

Z
U (f) dP (f) and U (f) =

Z
v

�Z
u (f) d�

�
dm (�) :

The probability measure m is called a second-order belief.

SOSEU can accommodate nonindi¤erence to ambiguity. When the second-order belief m
is nondegenerate and v is nonlinear, the implied behavior cannot be explained by a unique
(subjective) probability on S. Instead the DM behaves as though he has multiple priors on
S and assigns a probability to each prior on S. SEU is the special case when v is linear.8

The new representation theorem follows.

Theorem 4.2 Preference � on �(H) satis�es Order, Continuity, Second-Stage Indepen-
dence, First-Stage Independence and Dominance if and only if it has an SOSEU representa-
tion.

Appendix A provides a sketch of the proof and also some examples to demonstrate the
tightness of the theorem. The complete proof is in Appendix B.

Lemma 4.1 suggests that Reversal of Order is the crucial di¤erence between an SEU
representation and an SOSEU representation. This is summarized in the next corollary.

Corollary 4.3 Preference � on �(H) has an SEU representation if and only if it has an
SOSEU representation and satis�es Reversal of Order.

AA assume Reversal of Order. Under Reversal of Order, the DM does not care when
the objective uncertainty is resolved and he collapses the two objective uncertainties into

8The functional form of an SOSEU representation is much similar to that of KMM(2005). Many properties
of the functional form are investigated in their paper.
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one objective uncertainty. Thus the above corollary says that if the DM collapses the two
objective probabilities into one, he also collapses the second-order belief (on �(S)) into the
belief (on S).

Finally, consider brie�y uniqueness of the representation in Theorem 4.2. It is easy to
show that u and v � u are unique up to a positive a¢ ne transformation (see Appendix C).
The second-order belief m is unique in some special cases - for example, if v (z) = exp (z),
the representation has a similar form to a moment generating function and m is unique.
However, m is not unique in general. For example, suppose that v is linear. Then, any
second-order belief that has the same �rst moment will show the same behavior. Similarly,
a polynomial v of degree n implies that if two second-order beliefs, m and m0, represent
the same preference, they have the same moments up to n-th order. See Appendix C for a
characterization of the uniqueness class of measures for any given u and v.

5 Ambiguity and Compound Lotteries

Here I discuss the relations between ambiguity attitude and a two-stage lottery. A two-stage
lottery deals only with objective probabilities and ambiguity attitude deals with the situation
where objective probabilities are unknown. The two may seem conceptually distinct, but in
an SOSEU representation, they are closely related.
An axiom on compound lotteries is introduced.

Axiom 8 (Reduction of Compound Lotteries or ROCL) For any p; q 2 �(Z) and � 2 [0; 1],
�p� (1� �)q � �p+ (1� �)q.

Since p and q are one-stage lotteries, �p+(1��)q constitutes a two-stage lottery. Observe
that �p� (1��)q and �p+(1��)q have the same �nal outcome distribution. Thus, under
ROCL, the DM considers only the �nal distribution and he does not care about the timing
of risk resolution.
An SOSEU representation does not satisfy ROCL unless v is linear. When v is nonlinear,

V (�p+ (1� �) q) = �v (u (p)) + (1� �) v (u (q))
6= v (�u (p) + (1� �)u (q))
= V (�p� (1� �) q) .
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Under SOSEU, the utility of any act f is given by U(f) =
R
v
�R
u(f)d�

�
dm(�); which

suggests the interpretation that the DM processes an act in a two-stage fashion. This suggests
further a connection between the evaluations of acts and two-stage lotteries. In the following,
I will show that, given other axioms, ROCL is equivalent to Reversal of Order and that ROCL
implies neutrality to ambiguity.

Lemma 5.1 ROCL and Reversal of Order are equivalent under Dominance.

Proof. Since �(Z) � H, it is straightforward that Reversal of Order implies ROCL.
Conversely, assume ROCL. Then, for any � 2 �(S),

	(�f + (1� �) g; �) = �	(f; �) + (1� �)	 (g; �)
� �	(f; �)� (1� �)	 (g; �)
= 	 (�f � (1� �) g; �) :

Applying Dominance leads to �f + (1� �) g � �f � (1� �) g.

Corollary 5.2 Preference � has an SEU representation if and only if it has an SOSEU
representation and satis�es ROCL.

Proof. By Lemma 5.1 and Corollary 4.3, this is straightforward.

An SOSEU representation reduces to SEU if and only if ROCL is satis�ed. In particular,
ROCL implies neutrality to ambiguity. This is consistent with Halevy�s (2005) experimental
�ndings.
Halevy designs the following experiment. There are 3 urns, each containing 10 balls which

can be red or black9. One ball is to be drawn. Urn 1 contains 5 red balls and 5 black balls.
In Urn 2, the proportion is unknown. For Urn 3, a ticket is drawn from a bag containing 11
tickets with numbers 0 to 10 written on them. The number on the drawn ticket determines
the number of red balls in Urn 3. Each participant is asked to place a bet on the color of
the drawn ball from each urn. Before any ball is drawn, the participant is given the option
to sell each bet. The subject is asked the minimal price at which he/she is willing to sell the
bet. Let Vi be the reservation price for urn i, i = 1; 2; 3.

9In his experiment, there were 4 urns. The fourth urn is omitted here because it is not relevant to my
point.
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Ambiguity neutrality implies V1 = V2 and ROCL implies V1 = V3. In Halevy�s experi-
ment, 18 subjects set V1 = V3 and 17 out of them set V1 = V2. Moreover, out of 86 subjects
who show V1 6= V3, 80 show V1 6= V2. He concludes that �there is a very tight association
between ambiguity neutrality and reduction of compound lotteries�and that �a descriptive
theory that accounts for ambiguity aversion should account - at the same time - for violation
of reduction of compound objective lotteries.�The domain in this paper includes both acts
and two-stage lotteries, and an SOSEU representation relates ambiguity attitude to ROCL.10

A Appendix : Proof Sketch and Examples

This section sketches the su¢ ciency proof of Theorem 4.2 and provides examples to demon-
strate the tightness of the theorem.

Proof sketch : First-Stage Independence implies that preference can be represented by
V (P ) =

R
U (f) dP (f). Let bU be the restriction of U to �(Z). By Second-Stage Inde-

pendence, bU = v � u where u is a mixture linear function on �(Z) and v is a strictly
increasing function on u (� (Z)). The key part of the proof is to construct the second-order
belief m.
It su¢ ces to show that there exists m 2 �(�(S)) satisfyingZ

�(S)

v � u �	(f; �) dm (�) = U (f) for all f 2 H.

For intuition about existence of such a measure m, consider the discretized version, Am = b

where

A =

0B@v � u �	(f1; �1) � � � v � u �	(f1; �k)
...

. . .
...

v � u �	(fn; �1) � � � v � u �	(fn; �k)

1CA
m =

0B@m1
...
mk

1CA , b =
0B@U (f1)...
U (fn)

1CA .
10Klibano¤, Marinacci and Mukerji(2005) deal with acts but not with compound lotteries. Segal�s (1990)

model has two-stage lotteries but no acts.
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By Farkas�Lemma, Am = b has a nonnegative solution m if and only if, for all y 2 Rn,

ATy � 0
=) bTy � 0 :

By the in�nite dimensional version of Farkas�Lemma (see Theorem B.1), it su¢ ces to show
that, for all t0 2 ca (H), Z

v � u �	(f; �) dt0 (f) � 0 for all � 2 �(S) (A.1)

=)
Z
U (f) dt0 � 0 . (A.2)

Finally, show that under Dominance, (A.1) implies (A.2). Note that t0 can be decomposed
into �P ��Q where P;Q 2 �(H) are in the domain of objects of choice and �; � � 0. Then,
rearranging (A.1) gives

�

Z
(v � u) d	(P; �) � �

Z
(v � u) d	(Q; �) for all � 2 �(S): (A.3)

Normalize U such that
R
Ud �R = 0 for some �R 2 �(�(Z)): Consider the case � > � � 0.

Other cases can be proved similarly. Recall that �P 7�!
R
(v � u) d �P represents preference on

�(�(Z)). Then, (A.3) implies

	(P; �) � �

�
	(Q;�) +

�
1� �

�

�
	
�
�R; �

�
= 	

�
�

�
Q+

�
1� �

�

�
�R; �

�
for all � 2 �(S).

Now apply Dominance to get

P � �

�
Q+

�
1� �

�

�
�R.

Since V (P ) =
R
U (f) dP (f) represents preference, (A.2) follows and thus a second-order

belief m exists.

Examples for the tightness of Theorem 4.2 : Each example satis�es all but one of the axioms
characterizing an SOSEU representation.
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Example 1 All but Second-Stage Independence : let

V (P ) =

Z �Z
u(f)d�

�
dP (f)

for some �xed � 2 �(S) and a bounded continuous but non-mixture-linear u : �(Z)! R.

Example 2 All but First-Stage Independence : let

V (P ) = min
�2C

Z �Z
u (f) d�

�
dP (f)

where u is bounded, continuous, mixture-linear and C � �(S) is a closed subset. To show
Dominance, note that

	(P; �) � 	(Q;�) for all � 2 �(S)

=)
Z �Z

u (f) d�

�
dP (f) �

Z �Z
u (f) d�

�
dQ(f) for all � 2 �(S)

=) min
�2C

Z �Z
u (f) d�

�
dP (f) � min

�2C

Z �Z
u (f) d�

�
dQ(f) :

Example 3 All but Dominance : modify Example 2 by taking

V (P ) =

Z �
min
�2C

Z
u (f) d�

�
dP (f):

This violates (only) Dominance. Let S = f1; 2g, P = 1
2
f + 1

2
g; Q = �h, u (f (1)) = 1,

u (f (2)) = 2, u (g (1)) = 1, u (g (2)) = 0, u (h (1)) = 1, u (h (2)) = 1 and C = �(� (S)).
Then, V (	 (P; �)) = 1 = V (	 (Q; �)) for all � 2 �(S) but V (P ) = 1=2 < 1 = V (Q).
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B Appendix : Proofs

B.1 Preliminaries

Notations and de�nitions follow AB (1999) and Craven and Koliha (1977).
For any real vector spaceM, letM# be the algebraic dual ofM, i.e., the set of all linear

functionals on M. Denote by


m;m#

�
an evaluation of m# 2 M# at the point m 2 M.

Suppose that A : M ! T is a linear map between two vector spaces M and T . The
algebraic adjoint A# : T # !M# of A is the linear map satisfying


m;A#t#
�
=


Am; t#

�
for all m 2M and t# 2 T #.

A dual pair is a pair hM;M0i of two vector spaces together with a function (m;m0) 7�!
hm;m0i, fromM�M0 into R, satisfying 1) m 7�! hm;m0i is linear, 2) m0 7�! hm;m0i is
linear, 3) if hm;m0i = 0 for eachm0 2M0, thenm = 0, and 4) if hm;m0i = 0 for eachm 2M,
then m0 = 0. I will refer to 3) and 4) as separation properties. Given a dual pair hM;M0i,
the weak topology onM is denoted by �(M;M0). Under �(M;M0); a sequence mn 2 M
converges to m 2 M if and only if hmn;m

0i ! hm;m0i for all m0 2 M0. It is well known
that the topological dual of (M; �(M;M0)) may be identi�ed withM0. In other words, for
each �(M;M0)-continuous linear functional � onM, there is a unique m0 2 M0 such that
�(m) = hm;m0i for all m 2 M. The weak topology �(M0;M) is de�ned symmetrically for
M0. From now on, for any dual pair hM;M0i, M and M0 are topological vector spaces
equipped with the weak topologies.
Given dual pairs hM;M0i and hT ; T 0i, the continuity of a linear mapping A :M! T

can be checked by using A# ; A is continuous if and only if A#(T 0) � M0. The restriction
A0 of A# to T 0 is called the topological adjoint of A with respect to hM;M0i and hT ; T 0i,
or simply the adjoint of A.
A nonempty set K � M is called a convex cone if K +K � K and �K � K for every

� � 0. The polar cone K 0 � M0 of the convex cone K � M is de�ned as K 0 = fm0 :

hm;m0i � 0 for all m 2 Kg.
The main tool used in the paper is the following result from Craven and Koliha (1977,

Theorem 2):

Theorem B.1 (Generalized Farkas Theorem) Let hM;M0i and hT ; T 0i be dual pairs, let
K be a convex cone in M, and let A :M ! T be a continuous linear map. Let A(K) be
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closed and � 2 T . Then the following conditions are equivalent.11
(a) The equation Am = � has a solution m 2 K:
(b) A0t0 2 K 0 =) h� ; t0i � 0:

B.2 Proof of Theorem 4.2

Lemma B.2 The map (f; �) 7�! 	(f; �) from H��(S) into �(Z) is continuous.

Proof. Suppose that (fn; �n) converges to (f; �) in the product space H � �(S). Note
that S is �nite. Then, for any � 2 Cb(Z);Z

Z

�d	(fn; �n) =

Z
Z

�d
�
�n(s1)fn(s1)� �n(s2)fn(s2)� :::� �n(sjSj)fn(sjSj)

�
=

X
s2S

�
�n(s)

Z
Z

�dfn(s)

�
!

X
s2S

�
�(s)

Z
Z

�df(s)

�
=

Z
Z

�d	(f; �):

Proof. Necessity: Completeness, transitivity and continuity are clear.
Second-Stage Independence : For p 2 �(Z), V (p) = v (u(p)) because p does not depend

on the probability measure m 2 �(� (S)). Since v is strictly increasing, preference on �(Z)
is represented by u. Thus Second-Stage Independence is satis�ed because u is mixture linear.
First-Stage Independence : Let � 2 (0; 1] and P;R 2 �(H). Then, it is easy to see that

V (�P + (1� �)R) = �V (P ) + (1� �)V (R):

First-Stage Independence is clear.
Dominance : Let P be any element in �(H). By Lemma B.2 and continuity of v � u,

v [u(	(f; �))] is jointly continuous on H ��(S) and hence P �m-measurable. Since v � u
11It is easy to see (a))(b). Suppose that Am = � ; m 2 K and A0t0 2 K 0. Then h� ; t0i = hAm; t0i =

hm;A0t0i � 0, because A0t0 2 K 0.
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is bounded, v [u(	(f; �))] is P �m-integrable. Then, apply the Fubini Theorem (AB (1999,
p.411)) to get

V (P ) =

Z
H

Z
�(S)

v

�Z
u(f)d�

�
dm(�)dP (f)

=

Z
H

Z
�(S)

v [u(	(f; �))] dm(�)dP (f)

=

Z
�(S)

Z
H
v [u(	(f; �))] dP (f)dm(�):

Note that by the Change of Variables Theorem (AB (1999, p.452)),Z
H
v [u (	 (f; �))] dP (f) =

Z
�(Z)

v � u (p) d	(P; �) (p) = V (	 (P; �)) :

Thus,

V (P ) =

Z
�(S)

V (	 (P; �)) dm(�):

Since m is a nonnegative measure, this completes the proof.

Turn to su¢ ciency. When P � Q for all P;Q 2 �(H), the representation is trivial. Thus
assume that � satis�es :

Axiom 9 (Nondegeneracy) P � Q for some P;Q 2 �(H).

Follow these Lemmas to prove su¢ ciency.

Lemma B.3 (i) Preference � restricted to �(Z) is represented by a bounded continuous
mixture linear function u : � (Z)! R. Moreover, u is unique up to positive a¢ ne transfor-
mation.
(ii) Preference � is represented on �(H) by

V (P ) =

Z
U(f)dP (f)

for P 2 �(H), where U : H ! R is a bounded continuous function and unique up to positive
a¢ ne transformation.
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Proof. (i) Since H is a metric space, the mapping f 7! �f from H into �(H) is an
embedding (AB (1999, p.480)). Moreover, H is a product space of �(Z)�s. Thus, the weak
convergence topology on �(Z) coincides with the relative topology on �(Z) induced by
�(H). Hence, Continuity implies that the restriction of � to �(Z) is continuous under the
weak convergence topology on �(Z).
Moreover, preference � restricted to �(Z) satis�es Order and (Second-Stage) Indepen-

dence. Therefore (i) holds (see Grandmont (1972), for example).
(ii) can be proved in a similar way.

Let bU be the restriction of U to �(Z).
Lemma B.4 There exist p; q 2 �(Z) such that p � q. Consequently, there is a one-stage
lottery p such that bU(p) 6= 0.
Proof. Suppose that p � q for all p and q in �(Z). This means that �P � �Q for all
�P and �Q in �(�(Z)), by Lemma B.3(ii). Then, for any P;Q 2 �(H) and � 2 �(S),
	(P; �) � 	(Q; �) because 	(P; �);	(Q;�) 2 �(�(Z)). By Dominance axiom, P � Q for
all P;Q 2 �(H), contradicting to Nondegeneracy.

In order to apply the Generalized Farkas Theorem, let

M = ca(�(S)),M0 = Cb(�(S)) and

T = Cb(H), T 0 = ca(H)

where ca(X) denotes the set of all Borel signed measures on X having bounded variation.
Both of hM;M0i and hT ; T 0i are dual pairs with bilinear operations hm;m0i =

R
m0dm and

ht; t0i =
R
tdt0 for m 2M; m0 2M0, t 2 T and t0 2 T 0 (AB (1999, p.475)). Let

K = ca+(�(S))

be the subset of M consisting of all nonnegative Borel measures on �(S). K is clearly a
convex cone. Recall that bU is the restriction of U to �(Z) and de�ne a linear mapping A
fromM into the set of all functionals on H by

(Am)(f) =

Z
�(S)

bU �	(f; �)dm(�) for f 2 H: (B.1)

The premises of the Generalized Farkas Theorem will be veri�ed.
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Lemma B.5 The mapping A is a linear mapping fromM into T .

Proof. It su¢ ces to show that A(M) � T = Cb(H). Let m 2M and assume that fn ! f

for fn; f 2 H. Note that bU is bounded and bU � 	(fn; �)! bU � 	(f; �) by Lemma B.2. By
the Lebesgue Dominated Convergence Theorem,

R bU �	(fn; �)dm(�)! R bU �	(f; �)dm(�).
Hence f 7! (Am) (f) is continuous. Boundedness of f 7! (Am) (f) comes from boundedness
of bU .
Lemma B.6 The mapping A is continuous.

Proof. It su¢ ces to show that A#(T 0) � M0. Let t0 2 T 0. Then A#t0 lies in M#, i.e.,
A#t0 is a linear functional onM. Hence,


m;A#t0
�
= hAm; t0i =

Z
H
(Am) (f)dt0(f)

=

Z
�(S)

Z
H
bU �	(f; �)dt0(f)dm(�) = hm;m0i

where m0 2 M# is de�ned by m0(�) =
R bU � 	(f; �)dt0(f). The order of integration has

changed in the third equality by the Fubini Theorem. Since bU � 	 is bounded continuous,bU �	 is t0 �m-integrable and the Fubini Theorem can be applied.
Now, it su¢ ces to show that m0 2 M0 = Cb(�(S)). Since bU � 	 is bounded, m0 is

bounded. To see continuity, let �n ! � for �n; � 2 �(S). Since � 7! bU � 	(f; �) is
continuous for each f 2 H, it follows that bU �	(f; �n)! bU �	(f; �). Observing that bU �	
is bounded,

m0(�n) =

Z
H
bU �	(f; �n)dt0(f)! Z

H
bU �	(f; �)dt0(f) = m0(�)

by the Lebesgue Dominated Convergence Theorem. Hence m0 2M0.

Lemma B.7 A(K) is closed.

Proof. Suppose that �n = A(�nmn) 2 A(K) converges to � 2 T , where �n 2 R+ and
mn 2 �(�(S)):
Step 1. mn has a subsequence mk(n) that converges to some m 2 �(� (S)) : Since S is

�nite, �(S) is a compact metric space and so is �(�(S)) (AB (1999, p.482)). Hence, mn

has a converging subsequence.
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Step 2.


Amk(n); t

0� ! hAm; t0i for any t0 2 T 0 : By Step 1 and the continuity of A,
Amk(n) ! Am. Thus this step is proved.
Step 3. �k(n) converges to some � � 0 : By Lemma B.4, take p 2 �(Z) such thatbU �	(p; �) = bU (p) 6= 0 for any � 2 �(S). Then,

(Am)(p) =

Z
�(S)

bU �	(p; �)dm(�) = bU (p) 6= 0;
which implies thatAm 6= 0. Therefore, by the separation property of a dual pair, hAm; �t0i 6= 0
for some �t0 2 T 0. Note that �k(n)



Amk(n); �t

0� = 
�k(n); �t0�! h�; �t0i. Then by Step 2, it follows
that �k(n) ! � � h�; �t0i = hAm; �t0i. Since �n � 0 for all n, � � 0.
Step 4. � 2 A (K) : For all t0 2 T 0,



�k(n); t

0� = �k(n)


Amk(n); t

0� ! � hAm; t0i =
hA(�m); t0i. Moreover, by the hypothesis,



�k(n); t

0� ! h�; t0i for all t0 2 T 0. Note that

�k(n); t

0� is a sequence in R and converges to at most one point. Thus, hA(�m); t0i = h�; t0i
for all t0 2 T 0, and � = A(�m) 2 A(K) by the separation property of a dual pair.

The following Lemma uses the Generalized Farkas Theorem to prove the existence of
second-order belief.

Lemma B.8 There exists m 2 �(�(S)) such that
R
�(S)

bU � 	(f; �)dm(�) = U (f) for all
f 2 H.

Proof. It is enough to show that Am = U for some m 2 �(�(S)), where A is de�ned in
(B.1).
First, I will prove that there exists m 2 K = ca+(�(S)) solving Am = U . I have already

shown in Lemmas B.5 - B.7, that the premises of the Generalized Farkas Theorem are
satis�ed. Therefore, it su¢ ces to show that if hm;A0t0i � 0 for all m 2 K, then hU; t0i � 0:
Assume that hm;A0t0i � 0 for all m 2 K and show that

hU; t0i � 0: (B.2)

By the hypothesis, hm;A0t0i = hAm; t0i =
R
Amdt0 =

R R bU �	(f; �)dm(�)dt0(f) � 0 for all
m 2 K. Since �� 2 K for each � 2 �(S), it follows thatZ bU �	(f; �)dt0(f) � 0 for all � 2 �(S): (B.3)
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Let t0 = �P��Q by the Hahn Decomposition Theorem, where �; � � 0 and P;Q 2 �(H).
Let � � �. The other case, � < �; can be proved similarly. If � = 0, the statement (B.2) is
trivial because � = � = 0.
Let � > 0. Note that (B.3) impliesZ bU �	(f; �)dP (f) �  Z bU �	(f; �)dQ(f) for all � 2 �(S); (B.4)

where  = �=�.
Recall Lemma B.3(ii) that U is unique up to positive a¢ ne transformation. Normalize

U such that
R
Ud �R = 0 for some �R 2 �(�(Z)): Since bU is the restriction of U , R bUd �R = 0.

Observe that, for all B 2 BH and � 2 �(S),

	( �R; �)(B) = �R (ff 2 H : 	 (f; �) 2 Bg)
= �R (fp 2 �(Z) : p 2 Bg)
= �R (B \�(Z)) = �R(B).

The second equality comes from the fact that �R assigns zero probability outside of �(Z).
Thus, �R = 	( �R; �) and

R bUd	( �R; �) = 0 for all � 2 �(S). Then (B.4) implies12Z bUd	(P; �) �  Z bUd	(Q;�) + (1� )Z bUd	( �R; �) for all � 2 �(S):
Hence by Lemma B.3(ii), it follows that

	(P; �) � 	(Q;�) + (1� )	( �R; �) for all � 2 �(S): (B.5)

Moreover, for any B 2 BH,�
	(Q; �) + (1� )	( �R; �)

�
(B)

= 	(Q;�)(B) + (1� )	( �R; �)(B)
=  �Q (ff 2 H : 	 (f; �) 2 Bg) + (1� ) � �R (ff 2 H : 	 (f; �) 2 Bg)
= (Q+ (1� ) �R) (ff 2 H : 	 (f; �) 2 Bg)
= 	(Q+ (1� ) �R; �)(B).

12Recall that 	(P; �)(B) = P (ff 2 H : 	 (f; �) 2 Bg) for B 2 BH. Thus, by the Change of Variables
Theorem, Z

�(�(Z))

bU (p) d	(P; �) (p) = Z
H
bU �	(f; �)dP (f):

The same is true for Q.
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Therefore, by (B.5),

	(P; �) � 	(Q+ (1� ) �R; �) for all � 2 �(S):

By Dominance, it follows,
P � Q+ (1� ) �R:

Therefore, by Lemma B.3(ii),Z
H
UdP �

Z
H
Ud
�
Q+ (1� ) �R

�
= 

Z
H
UdQ: (B.6)

Then, by (B.6),

hU; t0i =
Z
Udt0 =

Z
Ud [� (P � Q)] � 0.

This completes the proof of (B.2).
Now, apply the Generalized Farkas Theorem to obtain m 2 K = ca+(�(S)) satisfying

the equation Am = U , or equivalentlyZ
�(S)

bU �	(f; �)dm(�) = U (f) , for each f 2 H. (B.7)

To prove that m is a probability measure, let p 2 �(Z) be such that bU(p) 6= 0 as in
Lemma B.4 and let f be the constant act giving p in every state. Since U (p) = bU(p) 6= 0,
(B.7) becomes Z

�(S)

dm(�) = 1:

Now, I will show a general property about utility representation.

Lemma B.9 Let X be a connected topological space. If two bounded continuous functions
u : X ! R and w : X ! R represent the same preference on X, then there exists a
continuous and strictly increasing function v : u(X)! R such that w = v � u.

Proof. De�ne v on u (X) by

v (y) = w (x) if u (x) = y:

Then v is well-de�ned, strictly increasing and w = v � u.
In order to show the continuity of v, note thatX is connected and w is continuous. Hence,

v (u (X)) = w (X) is connected. Since v is (strictly) increasing, it must be continuous.
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Lemma B.10 There exists a bounded continuous and strictly increasing function v : u (� (Z))!
R such that bU = v � u.
Proof. Observe that u and bU represents the same preference on �(Z). By Lemma B.9,
a continuous and strictly increasing function v : u (� (Z)) ! R exists such that bU = v � u.
Boundedness comes from the fact that bU is bounded.
Finally, by Lemma B.3(ii), V (P ) =

R
H U(f)dP (f) represents � on�(H) and by Lemmas

B.3(i), B.8 and B.10, it follows that

U (f) =

Z
�(S)

bU �	(f; �) dm (�) = Z
�(S)

v � u �	(f; �) dm (�)

=

Z
�(S)

v

�Z
S

u (f) d�

�
dm (�) :

B.3 Proof of Lemma 4.1

Proof. (i) Suppose that � satis�es Order, Continuity, Reversal of Order and AA-
Dominance.
For any P 2 �(H), let �(P ) be the act obtained by collapsing all the objective proba-

bilities into �(Z), i.e., � is a function from �(H) into H such that for every B 2 BZ and
s 2 S, �(P ) (s) (B) =

R
H f(s)(B)dP (f). In order for � to be well-de�ned, f(s)(B) must be

P -integrable as a function of f .
Step 1. � is well-de�ned : Since Z is metrizable, the function p 7! p (B) from �(Z) into

R is measurable (AB (1999, p.485)). Moreover the function f 7! f(s) is measurable. Thus,
f 7! f(s)(B) is measurable. Since f(s)(B) is bounded, f 7! f(s)(B) is P -integrable.
Step 2.

R
Z
� (z) d�(P ) (s) (z) =

R
H
R
Z
� (z) df (s) (z) dP (f) for any s 2 S, � 2 Cb (Z)

and P 2 �(H) : When � is a measurable step function (i.e., it has a �nite image), this is
clear. For any � 2 Cb (Z), take a sequence �n of step functions such that �n (z) converges to
� (z) for each z 2 Z. Then, by the Lebesgue Dominated Convergence Theorem,Z

Z

� (z) d�(P ) (s) (z) = lim

Z
Z

�n (z) d�(P ) (s) (z)

= lim

Z
H

Z
Z

�n (z) df (s) (z) dP (f)

=

Z
H

Z
Z

� (z) df (s) (z) dP (f) :
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Step 3. � is continuous: Fix s 2 S. Suppose that Pn ! P . Note that f 7!R
Z
� (z) df (s) (z) is continuous. Then, by Step 2,Z
Z

� (z) d�(Pn) (s) (z) =

Z
H

�Z
Z

� (z) df (s) (z)

�
dPn (f)

!
Z
H

�Z
Z

� (z) df (s) (z)

�
dP (f) =

Z
Z

� (z) d�(P ) (s) (z) :

Thus, P 7! �(P ) (s) is continuous for every s 2 S. Therefore � is continuous.
Step 4. �(P ) � P for any P 2 �(H): Reversal of Order implies that �(P ) � P when

P has a �nite support. Since H is metrizable, the set of all probability measures on H with
�nite support is dense in �(H) (AB (1999, p.481)). For any P 2 �(H), take Pn 2 �(H)
with �nite support such that Pn ! P . Then �(Pn) � Pn for all n. By Continuity and Step
3,

�(P ) = lim� (Pn) � limPn = P:

Step 5. �(	(P; �)) = 	(�(P ); �) for any P 2 �(H) and � 2 �(S) : For any B 2 BZ ,

�(	(P; �)) (s)(B) =

Z
H
f(s)(B)d	(P; �)(f) =

Z
�(Z)

p (B) d	(P; �)(p)

=

Z
H
	(f; �)(B)dP (f)

=

Z
H

�
�(s1)f(s1)� :::� �(sjSj)f(sjSj)

�
(B)dP (f)

=

Z
H
�(s1) [f(s1)(B)] + :::+ �(sjSj)

�
f(sjSj)(B)

�
dP (f)

= �(s1)

Z
H
f(s1)(B)dP (f) + :::+ �(sjSj)

Z
H
f(sjSj)(B)dP (f)

= �(s1) [�(P )(s1)(B)] + :::+ �(sjSj)
�
�(P )(sjSj)(B)

�
=

�
�(s1) � �(P )(s1)� :::� �(sjSj) � �(P )(sjSj)

�
(B)

= 	(�(P ); �)(B).

The third equality is obtained by the Change of Variables Theorem.
Step 6. � satis�es Dominance : Suppose that 	(P; �) � 	(Q;�) for all � 2 �(S). By

Steps 4 and 5,
	(P; �) � �(	(P; �)) = 	(�(P ); �):
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Therefore 	(�(P ); �) � 	(�(Q); �) for all � 2 �(S). Since 	(�(P ); �s) = �(P ) (s), it
follows that �(P )(s) � �(Q)(s) for all s 2 S. For k = 0; 1; :::; jSj ; de�ne hk 2 H by

hk(s) =

�
�(P )(s) if s > k
�(Q)(s) if s � k :

Then, by AA-Dominance and Step 4,

P � �(P ) = h0 � h1 � ::: � hjSj = �(Q) � Q;

which completes the proof of (i).

(ii) Let f; g 2 H and suppose that f(s) = g(s) for all s 6= s0 and f(s0) � g(s0) for some
s0 2 S. By Second-Stage Independence, 	(f; �) � 	(g; �) for any � 2 �(S). Dominance
implies f � g.

C Appendix : Uniqueness of the SOSEU representa-
tion

The following Lemma provides some uniqueness properties.

Lemma C.1 Suppose that P � Q for some P;Q 2 �(H) and let the two triples (u; v;m)
and (u0; v0;m0) represent � on �(H). Then
(i) u and u0 are the same up to positive a¢ ne transformation and so are v � u and v0 � u0
(ii)

R
'dm =

R
'dm0 for all ' 2 D where

D =

�
' 2 C (� (S)) : 9� 2 ca (T ) such that ' (�) =

Z
v (� � t) d� (t) for all �

�
and T = [u (� (Z))]jSj � RjSj:

Proof. (i) : Note that u and u0 represent the same preference on �(Z), and so do
�P 7!

R
v � ud �P and �P 7!

R
v0 � u0d �P on �(� (Z)).

(ii) : Note that u0 = au + b for some a > 0 and b 2 R, and v0 � u0 = cv � u + d for some
c > 0 and d 2 R: Thus, v0 (ax+ b) = cv (x) + d for any x 2 u (� (Z)). Then,Z

v0
�Z

u0(f)d�

�
dm0(�) =

Z
v0
�
a

Z
u(f)d�+ b

�
dm0(�)

= c

Z
v

�Z
u(f)d�

�
dm0(�) + d:
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Since
R
v0
�R
u0(f)d�

�
dm0(�) and

R
v
�R
u(f)d�

�
dm(�) represent the same preference,Z

v

�Z
u(f)d�

�
dm(�) =

Z
v

�Z
u(f)d�

�
dm0(�) for all f 2 H.

Since S is �nite, it follows thatZ
v (� � t) dm(�) =

Z
v (� � t) dm0(�) for all t 2 u (� (Z))jSj :

Integrating both sides givesZ Z
v (� � t) dm(�)d� (t) =

Z Z
v (� � t) dm0(�)d� (t)

for any � 2 ca
�
u (� (Z))jSj

�
. Observe that (�; t) 7! v (� � t) is jointly continuous and

bounded and hence m� �-integrable. By the Fubini Theorem,Z Z
v (� � t) d� (t) dm(�) =

Z Z
v (� � t) d� (t) dm0(�) for all � 2 ca (T ) ;

for T = [u (� (Z))]jSj, which completes the proof.

By the above Lemma, characterizing D is crucial in determining the class of m that
represents the same preference.
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