
 The Linguistic Review 2015; 32(1): 5 – 35

Ricard V. Solé* and Luís F. Seoane

Ambiguity in language networks

Abstract: Human language defines the most complex outcomes of evolution. The 

emergence of such an elaborated form of communication allowed humans to 

 create extremely structured societies and manage symbols at different levels 

 including, among others, semantics. All linguistic levels have to deal with an 

 astronomic combinatorial potential that stems from the recursive nature of lan-

guages. This recursiveness is indeed a key defining trait. However, not all words 

are equally combined nor frequent. In breaking the symmetry between less and 

more often used and between less and more meaning-bearing units, universal 

scaling laws arise. Such laws, common to all human languages, appear on dif-

ferent stages from word inventories to networks of interacting words. Among 

these seemingly universal traits exhibited by language networks, ambiguity 

 appears to be a specially relevant component. Ambiguity is avoided in most com-

putational approaches to language processing, and yet it seems to be a crucial 

element of language architecture. Here we review the evidence both from lan-

guage network architecture and from theoretical reasonings based on a least 

 effort argument. Ambiguity is shown to play an essential role in providing a 

source of language efficiency, and is likely to be an inevitable byproduct of net-

work growth.
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1 Introduction

One of the latest and yet more profound evolutionary transitions involved the 

appearance of a new form of communication. Human language represented the 

triumph of non-genetic information, in a scale and quality that allowed a  virtually 

infinite repertoire of meaningful constructs out of a collection of basic lexical 

*Corresponding author: Ricard V. Solé: Universitat Pompeu Fabra (GRIB).  

E-mail: ricard.sole@upf.edu

Luís F. Seoane: Universitat Pompeu Fabra (GRIB). E-mail: luis.seoane@upf.edu



6   Ricard V. Solé and Luís F. Seoane

units. Cultural evolution became a major player in shaping the character of hu-

man societies [Maynard-Smith & Szathmáry 1995, Hauser et al. 2002].

It is fair to say that language, and human language in particular, has received 

the most dedicated multidisciplinary efforts. These include a vast range of fields, 

from genetics and anthropology to cognitive sciences, artificial intelligence or 

game theory. And yet, despite its undeniable importance, the origins of language 

remain largely unknown. Moreover, a graded transition to this complex form of 

communication does not exist. It is a sharp, drastic change what mediates be-

tween human languages and other animal communication systems. This enor-

mous gap makes difficult to retrieve information by comparing our tongues to any 

midway stages.

We deal with a complex system that involves multiple scales and intricate 

interactions between levels and component units [Altmann et al. 2012]. As such, 

a proper approach to its complexity needs a framework that explicitly considers 

systemic properties. Born by this complexity, language displays all kinds of ap-

parently odd features, from the sometimes quirky appearance of syntactic rules 

to the ubiquitous presence of ambiguity. Ambiguity is specially puzzling: it seems 

to make little sense when we consider language from an engineering perspective 

or even under a standard optimization view based on communicative pressures 

[Pinker & Bloom 1990, Chomsky 2002]. Under this view, selection for comprehen-

sible symbols would act removing unreliable components, thus reducing ambig-

uous features to the minimum.

Following the optimization line of thought, the ultimate basis of our dis-

course will be that a least effort principle is a driving force of languages. Always 

focused on this argument, in this paper we present recent theoretical advances 

that share a common systems-level perspective of language structure and func-

tion. We adopt a non-reductionist approach towards human language [Kauffman 

1993, Solé & Goodwin 2001, Ke 2004] that largely relies on a network view of its 

structure – closer to a structuralist view of evolution. Within this view, constraints 

and genuine, endogenous features manifest themselves promoting (and being 

masked behind) universal statistical regularities. The discussed theoretical argu-

ments are preceded by the description and discussion of experimental facts – 

 always following the same systemic approach – that clearly show the kind of uni-

versal traits that we refer to and that happen to pervade every known language.

After discussing some striking empirical universal regularities of human 

 language in Sections 2 and 3 and their connections to ambiguity in Section 4 we 

briefly present experimental support of the least effort argument and analyze in 

detail some of its theoretical consequences in Sections 5 and 6. We will also see 

how some of these consequences link back to the ever present statistical regular-

ities mentioned earlier. Finally, in Section 7 we sketch out open questions and 
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research lines that could further our understanding about the fascinating matter 

of human language.

2 Scaling in language

Language structure has been very often contemplated under the perspective of 

word inventories. The properties of isolated words and how these properties can 

be used to classify them within given general groups provide a first way of study-

ing language architecture. The abundance of words, how they become adopted 

over language acquisition, or how different levels of language structure shape 

their relative importance define major research areas within linguistics. When 

 exploring word inventories, one is faced with a dual character of languages that 

confronts the heterogeneity of tongues with the deep universality of a variety of 

their traits.

So, on the one hand languages are diverse. This is reflected in several fea-

tures displayed by its constituents. Word inventories obviously differ from one 

dialect to another. Many characteristics, such as the number of letters in a word, 

show a statistical pattern with a distinctive single-hump distribution, but the 

 average number of letters is rather different across languages. In Mongolian or 

German this is close to 12 letters per word, whereas for Croatian or Serbian this 

drops down to around seven. The diversity in this trait might originate in historic 

contingencies idiosyncratic of each language and is not – a priori – the kind of 

universalities that we wish to study.

On the other hand, it has been shown that all languages seem to share some 

remarkable universal patterns, best exemplified by the so called Zipf’s law [Zipf 

1949]. Earlier noted by other authors, but popularized by G. K. Zipf, this law states 

that the frequency of words in a given word inventory – such as the one we can 

obtain from a book – follows a universal power law. Specifically, if we rank all the 

occurrences of words in a given text from the most to the less common one, Zipf’s 

law states that the probability p(si) that in a random trial we find the i-th most 

common word si (with = 1,...,i n) falls off as:

1
( ) ,ip s i

Z
γ−= (1)

with γ ≈ 1 and Z the normalization constant – i.e., the sum =
i n

Z i γ−
≤∑ . We can 

observe this regularity in any modern human language when analyzing any ade-

quate corpus. This is the kind of traits that we are interested in, and of which we 

demand an explanation with the hope of gaining a deeper understanding about 

the origins of language or the constrains that shape it.
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Roughly speaking, Zipf’s law tells us that the most frequent word will appear 

twice as often as the second most frequent word, three times as often as the third 

one, and so on. Instead of using a word’s rank, an alternative form considers the 

use of the standard probability p(m) that we come across a word that is repeated 

m times throughout a text. Then the corresponding Zipf’s law scales as:

1
( )p m m

Z
α−= (2)

where now the normalization constant is 
m M

Z m α−
≤

=∑  with M the maximum ob-

served frequency. Now the scaling exponent is α = 2. In Figure 1a the frequency- 

rank distribution of words collected from Herman Melville’s Moby Dick is shown 

in logarithmic scale. The scaling law P(k) = k−γ/Z is plotted against the rank k. The 

logarithmic plot provides a direct way of testing the presence of a scaling law, 

since it gives a linear relationship:

1
log ( ) log

1
log log ,

p k k
Z

k
Z

γ

γ

−
 

=  
 
 

= − 
 

(3)

the slope of which is the scaling exponent γ.

Fig. 1: A seemingly universal feature of all known human languages is Zipf’s law, illustrated in 

Figure (a) from the rank-abundance statistics obtained using Melville’s Moby Dick (see text). 

Moreover (b) language contains multiple levels of nested complexity, illustrated here by means 

of an idealized collection of spheres whose size rapidly grows as the objects being considered 

at one level are combined to obtain those in the next level. Letters and syllabus are the first 

levels, followed by words and pairs of words and eventually sentences. The diagram actually 

underestimates the real proportions of combinatorics.
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The widespread, virtually universal presence of Zipf’s law in all known 

 languages, and perhaps even in the context of DNA and the genetic code 

 [Mantegna et al. 1994, Searls 2002, Obst et al. 2011] suggests two potential 

 interpretations. It might be the case that the observed scaling is so widespread 

that it is essentially a meaningless signal. (Note the discussion about Zipf’s law 

in random texts [Ferrer i Cancho & Solé 2001c].) The other possibility is that its 

 universal presence has to do with some relevant feature shared by all lan-

guages,  perhaps associated to some deep functional role. Given the disparate 

 trajectories followed by human languages over their evolution, it seems unlikely 

that such a unique scaling law would be so robust unless it involves a relevant 

constraint.

An additional component related to the logical organisation of language 

deals with its enormous combinatorial potential. Language defines a non-genetic 

form of heredity and as such allows rapid cultural exchanges, the formation of a 

collective memory, and an enormous plasticity while facing environmental chal-

lenges. Its success is tied to the brain’s capacity for storing a large number of 

communication elements. However, an inventory of words can only be part of the 

whole story. Another important aspect must be the associations that these units 

can build between them and that will be treated in more detail in the next section. 

Let us explore first the scaling facet of such associativity to have a scope of the 

relevance of the generative power of language.

Words are combined and related to each other in multiple ways. Such com-

binatorial potential pervades all linguistic levels from phonemes to whole texts. 

As we move towards higher levels, the potential universe of objects expands 

 super-exponentially (Figure 1b). We can appreciate this inflationary behavior 

 explicitly when moving from words to sentences to texts. Let us assume a set of 

words ′L  is sampled from the whole repertoire of words defining a language L 

(i.e. ′ ⊂L L). Our set ′L  is finite and involves | | wN′ =L  words. Of course the combi-

natorial nature of word arrangements easily explodes with Nw. Now consider a 

finite (but long) written text, to be indicated as T . It is composed by a set of M 

sentences Sµ, each one formed by an ordered, sequential collection of words 

 extracted from ′L :

1, 2, ,{ , ,..., }nS w w wµ µ µ µµ
= (4)

with 1,2....Mµ =  and thus we have our text defined as the union:

1

M

Sµ
µ=

=T (5)
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If we indicate by |Sµ| the length of a given sentence, the average sentence size in 

T  will be

1
| |S S

M
µ

µ

〈 〉 = ∑ (6)

A very rough first approximation assuming that all components can be combined 

in similar ways – i.e. leaving syntactic constrains aside – provides a total number 

of (possible) sentences as given by the power law:

| | S
wN 〈 〉~T (7)

which gives, for Nw ≈ 80000 and 7S〈 〉 ≈  (two reasonable estimates) a hyperastro-

nomic number: 2.097 × 1034. In natural language, many of these combinations 

will never appear, most of words will be extremely rare and a few of them ex-

tremely frequent (as we saw above) since there exist nontrivial rules for a string 

of symbols make sense as a word of L. The plausibility of a sentence existence 

and its frequency will be constrained as well because there are further nontrivial 

(syntactic) rules for the use of words from L in a real context. Nevertheless, this 

quick calculation allows us to grasp the scope of the expressive power of this 

system.

The enormous potential for combination that is present in human language 

embodies the uniqueness of such complex form of communication. No other 

 species in our planet shares such a spectacular capacity and a chasm seems to 

exist between us and all the other species inhabiting our planet. This uniqueness 

is also interesting for another reason. Major innovations that have occurred 

through evolution have been found independently a number of times. Multicellu-

larity, sight, or sex have emerged in many different groups through different paths 

 [Maynard-Smith & Szathmáry 1995, Gregory 2008, Knoll 2011] thus indicating that 

the same basic innovations can be obtained following different paths. By con-

trast, the complex communication system that we use as a species is unique 

[Maynard-Smith & Szathmáry 1995]. No other parallel experiments in evolution 

leading to such achievement have taken place.

However, storing words is one thing; combining them, another; and being 

able to relate each other in a flexible, efficient manner is yet another one. Our 

potential for storing a large inventory of words together with an astonishing 

 potential of relating them in complex ways through intricate paths (sentences 

being just one of them) is at the core of the evolutionary success of humans. In 

this paper we consider language organization in terms of a statistical physics pic-

ture, where networks instead of word inventories play a central role. By using 
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them, we will argue that ambiguity is an expected feature of human language, 

and a specially relevant and perhaps inevitable one. It is ambiguity what hides 

behind Zipf’s law and an essential element that makes our use of language so 

 efficient and flexible.

3  Small world language networks

In our previous illustration of the combinatorial potential of language, we used 

sentences as higher-order structures obtained as linear chains that combine 

words in syntactically meaningful ways. Sentences provide us with a first exam-

ple for the kind of recursive linguistic structures that we are capable of forming. 

They will also serve us to introduce networks and how language can be inter-

preted in terms of these complex webs.

The simplest case of language network that can be introduced is defined in 

terms of co-occurrence [Ferrer i Cancho & Solé 2001a]. Two words in a sentence 

that appear one after the other are said to co-occur. We will build a graph (a net-

work) using these words and their co-occurrence as follows: Words wi ( = 1,..., )wi N  

are the fundamental units, defining a set W. The relationships between words are 

encoded in a matrix Γ = {aij} called the adjacency matrix. An undirected link 

aij = 1 = aji will be defined between two words ,i jw w W∈  if they follow one another 

within at least one sentence (otherwise the matrix element is set to aij = 0 = aji). 

The resulting language production network (LPN) ΩL is thus defined as a pair 

ΩL = (W, Γ), where Γ = {aij} constitutes the set of unweighted links of the graph. It 

should be noticed that the mapping :W WΓ →  is expected to capture some of 

the underlying rules of word ordering. This web provides in fact a glimpse to the 

production capacity of the underlying grammar structure and shares, as we will 

see below, a large number of common traits with syntactic webs [Ferrer i Cancho 

et al. 2004].

In Figure 2a we display an example of LPN network. This particular one has 

been obtained from the words that appear in Paul Auster’s short story Augie Wren 

Xmas tale. Here spheres correspond to specific words and connections among 

them indicate that the pair of word co-occurred at least within one sentence 

throughout the tale. The size of the spheres has been increased in some cases 

to  indicate their high frequency of appearance in the text. Several interesting 

 features need to be noticed. One is that the network is highly heterogeneous: a 

vast majority of words have only one or two links with others, whereas a small 

number of them (the hubs) have a very large number of connections. These 

 super  connectors can be seen in Figure 2c and correspond to words that are 

very common and highly ambiguous. Figure 2b gives us a glance of the “local” 



12   Ricard V. Solé and Luís F. Seoane

organization stemming from the sentence structure. We can actually read well 

defined chains that make sense in a given direction. These readable chains be-

come less and less  common as the size of the word inventory grows and more and 

more crossings occur.

Fig. 2: A language network can be build in different ways. The simplest one is considering 

co-occurrence between words within sentences from written corpuses. Here (a) we have used 

the first chapter of Paul Auster’s “Augie Wren Xmas Tale”, from which we draw our network. 

Each ball is a different word, whereas an undirected link between two balls indicates that those 

words appeared one after the other within a sentence in the text. Two parts of the web are 

zoomed in (b) and (c). In (b) we observe multiple linear structures and chains associated to 

particular sentences. Meanwhile, in (c) we can see that some words have a very large number 

of links with others and are referred to as “hubs”, whereas most words have just one or two 

connections. LPNs follow scale-free degree distributions, as exemplified in (d). This is the same 

statistical feature of word frequency illustrated by the Moby Dick data set (see Sections 2 and 

Figure 1a).
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A distribution of connections, or degree distribution P(k), can be defined by 

measuring the number of links k of each node (also known as its degree) and 

calculating the relative frequencies for each k. In a randomly wired graph of N 

nodes (where we simply connect every two elements with some probability p) the 

number of links associated to arbitrary words would follow a Gaussian distribu-

tion centered around the average degree value = ( 1) / 2k p N〈 〉 − . We call such a 

graph homogeneous because the average value represents fairly well everything 

that can be awaited of the graph. But many real networks – including language 

graphs – follow a functional form that displays a scaling law, namely

1
( ) .P k k

Z
α−= (8)

Once again, we have 
k

Z k α−=∑  and, for all LPN networks, α ≈ 2. Let us note once 

more the remarkable universality of this observation: for any language, from any 

adequate collection of sentences, despite the disparity that both elements (lan-

guages and sentences – and collections of sentences, indeed) can present we will 

derive such a degree distribution with roughly the same exponent α; just as if 

some inner mechanisms of the human language were eventually responsible of 

such scaling. As opposed to the Gaussian, these kind of power law distributions 

feature an extreme variability that the average alone cannot capture. This is a 

consequence of the existence of a miscellany of structures within the network. 

The real world example from Auster’s short story is shown in Figure 2d, where we 

have used (to smooth out the statistics) the cumulative distribution, defined as

1( ) ( ) ( ) .
M M

k
k

P k P k P k dk k kα γ− + −
> = ~ ~ =∑ ∫ (9)

We find an exponent α ~ 2, which is actually the same that we observed in Zipf’s 

law (in its frequency form). This is not surprising, since there is an almost per-

fect  correlation between the frequency of a given word and the number of co- 

occurrences it can establish within W. Therefore, it could be argued that the only 

thing that matters is the frequency distribution of words: this would eventually 

determine the degree distribution. However, there is more to the structure of the 

network than this power law distribution of its degree k. To appreciate it we must 

look at some other traits.

A randomly connected graph following the previous P(k) scaling would not 

recover many observable properties exhibited by the original graph based on 

co-occurrence. As an example, there is a widespread feature that is present in the 

LPN and not in a randomized version of it: hubs are usually not connected in the 
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former but they can be so in the later. This particular result tells us that, despite 

not being a true syntactic network, LPNs do preserve some essential constraints 

associated to syntactic rules.

There is another interesting property. The LPN graph is sparse: the average 

number of connections per word is small. Despite this sparseness and the local 

organization suggested by the previous features, the network is extremely well 

connected. In complex networks theory, this is known as a small world graph 

[Watts & Strogatz 1998, Albert & Barabasi 2002]. Small world networks were 

first analyzed by Stanley Milgram in the context of social ties within a country 

 [Milgram 1967]. It was found that only a small number of links separates, within 

the network of social acquaintances, two randomly chosen individuals. Since a 

given country involves millions of humans, the basic result – that only about six 

jumps are needed (on average) to connect any two random persons – was highly 

surprising. This qualitative property can be quantified by means of the average 

path length (D) defined as = ( , )minD D i j〈 〉 over all pairs ,i jw w W∈ , where Dmin(i, j) 

indicates the length of the shortest path between two nodes. Within the context 

of a LPN, a short path length means that it is easy to reach a given word iw W∈  

starting from another arbitrary word jw W∈ . The path cannot be interpreted here 

in terms of meaningful trajectories (such as sentences) but instead as a measure 

of accessibility.

An additional measure of network organization that characterizes small 

world graphs is the so called clustering coefficient (C). It is defined as the probabil-

ity that two vertices (words, in our context) that are neighbors of a given vertex 

are neighbors of each other as well. In order to compute the clustering, we asso-

ciate to each word wi a neighborhood Γi, defined as the set of words linked to wi, 

i.e.

{ | 1}i k ikw W aΓ = ∈ = (10)

Each word j iw ∈Γ  has co-occurred at least once with wi in some sentence. The 

words in Γi can also be linked among them. The clustering C(Γi) of this set is 

 defined as the fraction of triangles found, compared to the maximal number ex-

pected from an all-connected scenario. Formally, it is given by:

1
( )

( 1)
i jk

j ki i i

C a
k k ∈Γ

Γ =
− ∑∑ (11)

and the average clustering is simply ( )iC C= 〈 Γ 〉. Many triangles in a sparse graph 

indicate an excess in local richness of connections. Such an excess needs to be 

compared with a null model of random connections among words – i.e. with a 
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randomized version of the LPN as we did to compare the likelihood that the hubs 

are connected.

Concerning the average path length, for random graphs with Poissonian 

structure – i.e. with nodes simply connected with a probability p and thus their 

degree distribution following the rather unremarkable Gaussian distribution – it 

is possible to show that we have a logarithmic growth in the number of degrees of 

separation with N [Watts & Strogatz 1998, Albert & Barabasi 2002]:

log
;

log
random

N
D

k
≈

〈 〉
(12)

whereas the clustering is expected to decay inversely with system size – i.e.

1
.randomC

N
≈ (13)

On a first approximation, it is said that a network is a small world when 

randomD D≈  whereas the clustering coefficient is much larger randomC C≫  [Watts & 

Strogatz 1998, Albert & Barabasi 2002]. LPNs happen to be small worlds, as re-

marked above. This nature of LPNs and other language networks tells us that 

 despite their locally ordered, correlated structure (far from that of a random 

graph) association and routing between words can be highly efficient.

Network theory does not offer a full explanation for the cognitive substrate 

responsible for word association and optimal search – this last property being 

related to the easy navigation that small worlds enable. This theory does provide, 

though, a valid formal framework within which relevant questions can be consis-

tently stated. Hopefully, the answers attained also constitute compelling knowl-

edge about human language.

4 Ambiguity in semantic networks

The relational nature of language can be analyzed from different scopes. They 

include semantics, syntax, morphology and phonology [Pustejovsky 1991, Puste-

jovsky 1995, Chomsky 1998, Scalise 1984, Trubetskoi 1939]. They define the dif-

ferent relationships between units and the structures made by such units. We saw 

a syntactic example in the previous section. Moreover, at the community level 

social interactions also describe a web within which languages are enforced. This 

social structure can play a determinant role, for example, in the success or failure 

of a contingent linguistic trait and even in the emergence of further universal 
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 regularities [Solé et al. 2010]. We see that network theory is not only useful 

but  perhaps inescapable to understand our communication system. All these 

 networks must somehow contain information concerning the way in which 

 components – generally, but not necessarily, words – are organized within sen-

tences or how they are related in terms of their semantic content. The links can 

thus have a very different nature in each graph and the overall patterns of organi-

zation of such graphs do not need to be the same.

A prominent subfield of linguistics, semantics has traditionally been defined 

as the study of the meaning of (parts of) words, phrases, sentences, and texts. 

Semantic organization is a widely explored topic in psycholinguistics. As a search 

for an adequate characterization of meaning, semantic relations have strong ties 

with memory and categorization. Semantic relations are also known to deterio-

rate in patients with Alzheimer’s disease and other types of brain impairment 

[Chan et al. 1997]. Such a semantic decline can also be appreciated in the kind 

of properties (e.g. Zipf’s law) that we are interested for other diseased patients 

[Ferrer i Cancho 2005a].

Semantic networks can be built starting from individual words that lexicalise 

concepts and by then mapping out basic semantic relations such as isa-relations, 

part-whole, or binary opposition. They can potentially be built automatically 

from corpus data [Kinouchi et al. 2002, Motter et al. 2002, Sigman & Cecchi 2002, 

Holanda et al. 2004, Steyvers & Tenenbaum 2005] and also from retrieve experi-

ments in which subjects are asked to quickly list down words as they come to 

their minds [Steyvers & Tenenbaum 2005, Goñi et al. 2011]. One of the most in-

teresting efforts in understanding the organization of semantic relationships is 

the Wordnet project [Miller 1995, Fellbaum 1998]. This data set explicitly defines 

a graph structure where words from the English lexicon are connected through 

 various kinds of semantic links. A possible subset of such kind of web is dis-

played in Figure 3a–b. As pointed out by Sigman and Cecchi [Sigman & Cecchi 

2002] mental concepts emerge as a consequence of their interrelationships, and 

meanings are often related through chains of semantic relations. Linking “stripes” 

with “lion” requires following a mental path through a sequence of words, such 

as lion-feline-tiger-stripes [Steyvers & Tenenbaum 2005]. Different paths are pos-

sible on a semantic network – as exemplified in Figure 3a–b – and experience 

shows that we find them easily despite the very large set of items potentially 

 available.

The efficient character of the semantic network is associated to an important, 

universal, and yet apparently undesirable property of language: polysemy. All 

languages exhibit polysemy, meaning that a given word form corresponds to two 

or more meanings. At first sight we would think that polysemy is a rather undesir-

able feature, since some ideal language should be expected to avoid such ambi-
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guity. The analysis of the large-scale architecture of semantic networks reveals a 

likely reason for polysemy to exist and be so widespread. The answer lies on the 

global organization of these graphs which are both highly heterogeneous and 

 exhibit the small world phenomenon. The network analysis of Wordnet shows a 

Fig. 3: A simple network of semantic relations among lexicalised concepts. Nodes are concepts 

and links, semantic relations between concepts. This would correspond to a very small subset 

of a vast set of words and semantic relationships. Associations between words allow us to 

navigate the network. Locally, the number of triangles is very large, allowing multiple ties 

among semantically related words – and contributing to a high clustering, as seen in the text. 

Moreover, given two words, such as “volcano” and “pain” can be linked through different 

paths, two of which are illustrated here using thick lines. The degree distributions associated 

to these semantic graphs are broad, with fat tails. In (c) we display the distribution of links for 

WordNet, with a scaling exponent close to three.
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scale-free structure (Figure 3c) where most elements would be more specialized, 

and thus semantically linked to just a few others. By contrast, a few of them 

would have a large number of semantic links. As before, we have a degree distri-

bution P(k) ~ k−γ, now with γ ~ 3 and thus a higher scaling exponent that indicates 

a much faster decay in the frequency of high-degree elements. This network is a 

small world provided that polysemy is included. The high clustering found in these 

webs favors search by association, while the short paths separating two arbitrary 

items makes search very fast [Motter et al. 2002] even if distant fields need to be 

reached. Additionally, as discussed in [Steyvers & Tenenbaum 2005], the scale-

free topology of semantic webs places some constraints on how these webs (and 

 others mentioned above) can be implemented in neural hardware. This is a re-

markable example of how statistical regularities could be hiding a very relevant 

constrain of language evolution.

To summarise, the mapping of language into networks captures novel fea-

tures of language complexity far beyond word inventories. It provides further 

 evidence for universal traits shared by all languages and how to characterise and 

measure them. More interestingly, they suggest novel ways of approaching old 

questions related to language efficiency and how it might have evolved. But they 

also allow us to formulate new questions that could not be expressed without 

using the network formalism. Among them, how these network patterns might 

emerge and how they might be linked to Zipf’s law. In the next section, we will 

review a model of language evolution that also involves graphs and that is based 

on an early proposal by Zipf himself. That model provides a first approximation 

to the potential components that make human language unique. It turns out that 

ambiguity might actually be a key component behind some of our more remark-

able singularities.

5 The least-ef﻿fort language agenda

As we insisted throughout the text: statistic regularities are a narrow window that 

allows us to glimpse the existence of universal laws driving the emergence and 

evolution of human languages. Zipf’s law remains the most singular of such 

 universal observations. Opposed to partial collections of words – such as the 

analysis performed on Moby Dick in Section 2 – a careful analysis of extensive 

corpora clearly indicates that the whole of a language does not feature the pattern 

observed by Zipf [Ferrer i Cancho & Solé 2001b, Peterson et al. 2012]. Just a core 

 vocabulary does so, but the observation remains universal anyway. Furthermore, 

recent analysis indicate that diseased patients as well as lexicon not in the core 

might follow a version of Zipf’s law with a generalized exponent γ ≠ 1 [Ferrer i 
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Cancho & Solé 2001b, Ferrer i Cancho 2005a]. In sight of this evidence, the gen-

eral scientific intuition has a broad consensus about the importance of Zipf’s law 

and efforts to find model explanations to it do not diminish over time.

In its original account, Zipf proposed that a tension between minimizing 

 user’s efforts and maximizing the communication power of a language would be 

the main driver towards the statistic regularity that he observed empirically, thus 

he coined the least effort language principle [Zipf 1949]. Our main concern in this 

section is not necessarily Zipf’s law, but the least effort optimization as a mecha-

nistic driving force – which, anyway, has been shown to be a mechanism for the 

generation of scale-free distributions [Valverde et al. 2002]. There are strong 

 evolutionary reasons why a least effort principle might be acting upon human 

languages. To appreciate the selection for least effort in communication we can 

adopt any of two complementary view points – both of which are visited in [Wray 

2002]. On the one hand we could argue that a human group with a more efficient 

code could enjoy an evolutionary advantage over other groups. Those with less 

adequate dialects would be selected against and their tongues would perish with 

them. The other possibility is to look at each language as a system enduring nat-

ural selection. We can conceive different codes simultaneously spreading over a 

population. Those fitter to be transmitted by humans – i.e. those better coping 

with our biological, social, and technological constrains – would be naturally 

selected for and become dominant. Because the fitness now is the ease of tongues 

to humans we can see a least effort driving language evolution quite directly, not 

necessarily through an intermediate step of human selection.

How can we approach language evolution from a sensible facet? There are in 

principle multiple ways and scales of approximation that can be used. They span 

an enormous range of views, from game-theoretic models to computational lin-

guistic or language evolution in embodied, robotic agents. Perhaps the answer to 

previous questions needs to be tied to another, more basic one: What do we want 

to understand? Here we are concerned with ambiguity as part of the fabric of lan-

guage organization. We would like to understand if ambiguity plays any role in 

how the previous scaling laws emerge and why there might be sharply defined 

classes of languages – perhaps separated by some sort of barrier – thus directly 

tackling the harsh gap between human and any other form of communication. 

Following the steps indicated in [Ferrer i Cancho & Solé 2003], we will use Zipf’s 

least effort hypothesis to derive a model within which we can frame these kind 

of questions properly. We will ultimately study communication between pairs of 

agents sharing a given channel, so information theory (as formulated by Claude 

Shannon) is the natural framework.

In [Ferrer i Cancho & Solé 2003], the tension between simplicity and commu-

nicative power proposed by Zipf rests upon the trade-off between speaker and 
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hearer’s requirements of a language. The former prefers to name every possible 

object with the same signal – there lays their least effort to find an object’s proper 

name – and the latter prefers to have a one-to-one mapping between available 

signals and existing objects, so that no decoding effort is necessary. Note that the 

speaker’s option is the most ambiguous language possible in which communica-

tion is not possible. Meanwhile, the hearer’s proposal is not degenerated at all. 

The conflicting needs of different users pose an evolutionary game for languages. 

These are modeled by allocations of available signals is S∈  (with |S| = n) to name 

existing objects jr R∈  (with |R| = m). The assignments that identify a given tongue 

are encoded in the entries of a matrix: A = {aij} with aij = 1 if signal si refers to  object 

rj and aij = 0 otherwise.

Similarly to the matrices introduced in Section 3, A is known as an adjacency 

matrix; only before it linked elements from within a set to one another and now it 

connects the constituents of two different sets, R and S, thus accounting for their 

relationships and other relevant features. A very important trait is related to the 

presence of ambiguity. As defined, the model and its matrix representation in-

clude both polysemy (i.e. presence of multiple meanings associated to a given 

signal) as well as synonymy, where different signals refer to the same object. The 

two traits can be detected by direct inspection of the rows and columns of the 

adjacency matrix. If we look at the example given in Figure 4b, using n = m = 5 

the matrix reads:

1 0 0 0 0

0 1 0 0 0

0 0 1 1 1

0 0 0 1 0

0 0 0 1 0

A

 
 
 
 

=  
 
 
 
 

(14)

The A matrix structure apprehends both the capacity for a signal to have multiple 

meanings (by referring to multiple objects), and synonymy, where multiple sig-

nals refer to the same object. These two features are directly detectable here by 

looking at rows and columns within A. Synonyms are associated to vertical strings 

of ones, indicating that the same object rk can be labelled or referred to by multi-

ple (synonymous) words. Conversely, a polysemous word would correspond to 

a signal having multiple ones in a row. This contributes to the ambiguity of the 

language. In our example, r4 is connected to three synonyms, whereas signal s3 is 

used to label three different objects.

In [Ferrer i Cancho & Solé 2003] it is assumed that objects are recalled ran-

domly with uniform frequency p(ri) = 1/m. A speaker then chooses from among 
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the available signals that name the required object in its language A = {aij}, yield-

ing a frequency for each signal:

( | ) = ,ij

i j

j

a
p s r

ω
(15)

with =j ijj
aω ∑ . We will indicate the joint probability (of having a signal and a 

given object) and the corresponding probability of a given signal as:

( , ) = ( ) ( | ),

( ) = ( , ).

i j j i j

i i j

j

p s r p r p s r

p s p s r∑ (16)

We can write the entropy associated to the signal diversity, which in the proposed 

framework stands for the effort of the speaker:

1

=1

( ) = ({ ( ),..., ( )}) = ( ) ( ( )).
n

n n i n i

i

H S H p s p s p s log p s−∑ (17)

Fig. 4: In order to model language evolution, one can use a number of artificial systems, 

including among them robotic, embodied agents (a). Here two robots (image from the 

Neurocybernetics group at Osnabrück, see https://ikw.uni-osnabrueck.de/neurokybernetik/) 

share a common environment seeded by a number of objects, which they can name. Robots 

can evolve a rudimentary grammar that goes beyond the simple word inventory that we could 

expect. Additionally, simple mathematical models can also be used in order to capture 

essential features of language organisation. A model of language can be formulated in terns 

of a matrix (b) that relates a set of n signals (indicated as s1, s2, . . . , sn) with a set of m objects 

or actions of reference (r1, . . . , rm). A simple case with n = m = 6 is displayed. A signal is 

associated to an object using a link connecting them. Here for example signal s5 is used to refer 

to object r4.
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Recalling our needs of information theory, Shannon’s entropy Hn(S) provides a 

measure of the underlying diversity in the system. It is also a measure of uncer-

tainty: the higher the entropy, the more difficult it is to predict the state of the 

system. For this reason H is often considered a measure of randomness. Its maxi-

mum value is obtained for a homogeneous distribution. In our case, it corre-

sponds to p(si) = 1/n for all signals involved:

=1

1 1 1 1
,..., = = log .

n

n

i

H log n
n n n n

      
−             
∑ (18)

Conversely, the lowest entropy is obtained for p(si) = 1 and ( ) = 0k ip s ≠ . For this 

 single-signal scenario we obtain Hs(S) = 0.

Another key quantity involves the noise associated to the communica-

tion  channel. Using the definition of conditional probability, namely ( | ) =j ip r s  

( , ) / ( )i j ip s r p s  we define a measure of noise associated to a given signal as follows:

=1

( | ) = ( | ) ( | ).
m

m i j i m j i

j

H R s p r s log p r s−∑ (19)

This entropy weights the uncertainty associated to retrieving the right object from 

R when signal si has been used. The average uncertainty is obtained from:

=1

( | ) = ( | ) = ( ) ( | ).
n

m m i i m i

i

H R S H R s p s H R s〈 〉 ∑ (20)

For simplicity, let us assume n = m. If each signal were used to refer to a single and 

separated object, we could order our set of objects and signals so that ( | ) =j i ijp r s δ  

where we define δij = 1 for i = j and zero otherwise. In this case, it is easy to see that 

( | ) = 0m iH R s  and thus no uncertainty would be present: given a signal, the right 

object can be immediately fetched without ambiguity. This corresponds to a 

 perfect mapping between signals and meanings/objects. The opposite case would 

be a completely degenerate situation where a single signal sµ is used to refer to 

all objects indistinctly. Then ( | ) = 1 /jp r s nµ  for all = 1,...,j n. In this case, it can be 

shown that ( | ) = logH R S n – thus the uncertainty that the hearer faces is maximal.

Summing up, this conditional entropy H(R | S) works as the average  ambiguity 

perceived by the hearer, and thus stands for its effort when decoding language 

A = {aij}. Finally, both communicative costs are collapsed into the following 

 energy function:

( ) = ( | ) (1 ) ( ).m nH R S H Sλ λ λΩ + − (21)
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Using this as a kind of “fitness” function, an evolutionary search was performed 

in order to minimize Ω(λ). The minima obtained from this algorithm provide a 

picture of the expected graphs – as defined by the adjacency matrices – compat-

ible with the least effort minimization principle.

Along with the relative efforts defined above, two key properties were also 

measured. The first is the information transfer (or mutual information) obtained 

from:

( , ) = ( ) ( | ),I R S H S H S R− (22)

which plays a central role within information theory and is interpreted as how 

much information do signals convey about which object needs to be retrieved. The 

second is the effective lexicon size | |L , i.e. the number of signals that are used to 

name objects. This was defined as

=1

| |= | = > 0 ,
N

j jk

k

j aµ
  
 
  

∑L (23)

where µj actually indicates whether or not the signal is being used.

Clearly the meta-parameter λ weights the importance of the hearer and 

speaker’s needs. In [Ferrer i Cancho & Solé 2003] a phase transition is uncov-

ered at a certain value λc when varying λ between 0 and 1, as it is illustrated in 

Figure 5. For λ < λc the speaker’s effort is minimized and completely ambiguous 

languages are persistently achieved. The A matrix for the extreme case in a 

n = 4 = m system would be

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

A

 
 
 

=  
 
  
 

(24)

As expected, in that scenario communication is impossible, given the complete 

degeneracy associated to the unique signal used to refer to every item within R. 

This is revealed by the vanishing mutual information between signals and objects 

(Figure 5a). Obviously the vocabulary requirements of this solution are minimal 

(Figure 5b). The word-object association graph that we would obtain is illustrated 

in Figure 5c.
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Fig. 5: Phase transition in least-effort language. As we vary λ, equation 21 awards different 

importance to a speaker’s or a hearer’s requirements of a tongue. Accordingly, we move from 

a scenario that contents the former to one that pleases the later. But the change is sharp and 

happens at a very precise value of λ = λc ≡ 0.5, in accordance with the description of a first 

order phase transition. The simulations to generate these plots – a Genetic Algorithm (GA) that 

proceeded to minimize equation 21 with different values of λ – are in good agreement with this 

numerical critical value. Because of this sudden regime shift we can observe very abrupt 

changes in some order parameters than can be measured in a language: (a) The mutual 

information between signals and objects (whose average value across the top population of 

the GA is plotted) says how much information the signals of a language convey about the 

named world. For λ < λc one only signal serves to name every object – fully complying with the 

speaker’s needs – and the language does not bear any information about the external world, 

thus communication is not feasible with such a language. For λ > λc tongues map one-to-one 

between signals and objects and a maximal amount of information is conveyed. This is 

compared to animal codes in [Ferrer i Cancho & Solé 2003]. These require a perfect mapping, 

thus exploit the whole range of available signals as we can see in panel (b), where the 

proportion of used signals to those available is reported. In (c) and (d) we represent the 

signal-object association graphs that emerge in the two extreme regimes: λ < λc and λ > λc 

respectively.
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For λ > λc the one-to-one mapping preferred by the hearer (Figure 5d) is 

 always optimal. In this special case, the adjacency matrix for the signal-object 

association can be written in a diagonal form:

1 0 0 0

0 1 0 0
.

0 0 1 0

0 0 0 1

A

 
 
 

=  
 
  
 

(25)

Most models of language evolution that explore the origins of communication 

under natural selection end up in finding these type of diagonal matrices. This is 

compared to animal communicative systems in [Ferrer i Cancho & Solé 2003]. 

Such systems present a non-degenerated mapping between objects and signals. 

The exhaustive vocabulary needs of this regime is illustrated in Figure 5b. This 

case would be favored in a scenario where few signals suffice for communication, 

and it would be restrained by the memory capacities of hearer and speaker. In-

deed, it has been shown how memory constrains could prompt the development 

of a fully articulated human language when vocabulary size overcomes a certain 

threshold [Nowak et al. 2000] so that units might be reused, but at the expense 

of making them ambiguous. In the least-effort framework proposed in [Ferrer i 

Cancho & Solé 2003], such a language would show up only at the phase transition 

λ ~ λc. Then, hearer and speaker’s needs are equally taken into account, language 

instances with a moderate level of ambiguity are found, and communication is 

still possible – as the sharply varying mutual information between signals and 

objects around λc points out (Figure 5a).

In the original work [Ferrer i Cancho & Solé 2003] the phase transition re-

ported was of second order, meaning that the shift from non-communicative 

codes to one-to-one mappings was a smooth drift across several intermediate 

steps – any of them could be a relatively fit candidate of human language, not so 

urgently needing to tune λ to its critical value λc. But further investigation of the 

problem clearly indicates that the transition is of first order in nature and that 

λc = 0.5 (for m = n), as Figure 5 clearly shows. This means that the jump between 

the two extreme cases happens swiftly at λ = 0.5, that a graduated range of possi-

bilities that solve the optimization problem for λ ~ λc does not exist, and that only 

at λ = λc could we find a phenomenology akin to human language.

The analysis in [Ferrer i Cancho & Solé 2003] is complemented with an inves-

tigation of the frequency with which different signals show up for a given lan-

guage in the model. This can be made thanks to equations 15 and 16. Remarkably, 

at the phase transition it was found that the frequency of different words obey 
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Zipf’s law [Ferrer i Cancho & Solé 2003], thus closing the circle with one of the 

 observations that opened our quest.

This work [Ferrer i Cancho & Solé 2003] has been featured here for its histor-

ical importance in promoting the least-effort language agenda. However, its re-

sults have been contested and can not be held as correct anymore without a 

 critical revision. The first and foremost claim has been that the algorithm em-

ployed in [Ferrer i Cancho & Solé 2003] usually only achieves local minimization, 

thus the portrayed languages would not correspond to global least-effort codes 

[Prokopenko et al. 2010]. Furthermore, when analyzing the global optima of the 

problem we find ourselves with a degenerated solution – i.e. multiple assign-

ments between objects and signals optimize the trade-off between speaker and 

hearer needs at the phase transition [Ferrer i Cancho 2005b, Ferrer i Cancho & 

Díaz-Guilera 2007, Prokopenko et al. 2010].

Three observations are pertinent about these critics: i) Among the several 

solutions to the least-effort problem at the indicated phase transitions we find 

Zipf’s law as well [Prokopenko et al. 2010]. This is not the dominating solution, 

though – i.e. there are more solutions with some other frequency distribution of 

signals than solutions whose signal usage follows equations 1 and 2 [Prokopenko 

et al. 2010]. Thus we would expect that when choosing randomly among all 

least-effort solutions for = cλ λ  we would likely arrive to some other distribution 

but to Zipf’s. However, ii) the original investigation of least-effort communicative 

systems and the framework that this model introduces remain valid and very 

 appealing, even if they do not suffice to produce Zipf’s law. The least-effort prin-

ciple has still got robust experimental and theoretical motivations, and we should 

not discard further forces operating upon language evolution that would select 

Zipf’s law against others. In such a case, the least-effort game described in this 

section would be just a sub-problem that language evolution has solved over 

time. Finally, iii) concerning the main topic of this volume; even if Zipf’s law were 

not recovered, robust evidence exists indicating that the trade-off posed by the 

least-effort procedure is a way in of ambiguity into human language.

The featured model has been furthered by successive works. The hunt for a 

robust mechanism that generates the Zipf distribution continues and interesting 

proposals are being explored. A very promising one relies on the open-ended 

 nature of human language [Corominas-Murtra & Solé 2011]. Previous work by the 

same authors showed how Zipf’s law is unavoidable in a series of stochastic sys-

tems. A key feature of those systems is that they grow by sampling an infinite 

number of states [Corominas-Murtra & Solé 2010]. When applied to language, not 

only the unboundedness of human language is necessary but also the sempiter-

nal least effort, so that Zipf’s law can be successfully obtained for communicating 

systems. Interestingly, the approach in [Corominas-Murtra & Solé 2011] applies 
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the least-effort principle upon the transition between stages of the language as it 

grows in size – by incorporating new signals to its repertoire. This explicit role 

of the contingent historical path is an interesting lead absent in the main body of 

literature. A slightly different research line followed by these authors uses the 

proposed model to quantify precisely how much information is lost due to the 

ambiguity of optimal languages when the trade-offs discussed above are satisfied 

[Fortuny & Corominas-Murtra 2013, Corominas-Murtra et al. 2014].

Finally, several authors elaborate upon the model described above. In the 

critical review mentioned earlier [Prokopenko et al. 2010] it is noted how the 

 original model is not sufficient to always derive Zipf’s law for the optimal model 

languages. The authors modify equation 21 and propose:

0( ) = ( | ) (1 ) ( ) = ( ) ( ),I S R H S H Rλ λ λ λ λΩ − + − − +Ω (26)

as a target for minimization; where I(S|R) is the mutual information between sig-

nals and objects in the sets S and R respectively. This new target becomes eq. 21 if 

all objects are equally probable. Equation 26 is more adequate to “better account 

for subtle communication efforts” [Prokopenko et al. 2010], as more costs implic-

it in equation 26 but absent in equation 21 are considered. In a follow up paper 

[Salge et al. 2013] it is demonstrated how an ingredient to robustly derive Zipf’s 

law in their model is to take into account signal costs, which makes sense consid-

ering that different signals require different time, effort, or energy to be produced, 

broadcast, collected, and interpreted. This, as we will see in the following sec-

tion, can also be an important element for the presence of ambiguity in human 

languages.

6  Ambiguity, principles of information theory, 

and least ef﻿fort

Several recent empirical observations illustrate an optimization force – that justi-

fies our least effort point of view – acting upon different linguistic facets such as 

prosody, syntax, phonology, and many others [Levy & Jaeger 2007, Frank & Jaeger 

2008, Jaeger 2010, Piantadosi & Gibson 2011, Mahowald et al. 2013]. This evidence 

accumulates with other, previously shown global-level language organizational 

features epitomized by the properties of the small worlds (see Sections 3 and 4). 

All this indicates that optimization principles and natural selection should play a 

paramount role to understanding human communication in a broad sense. As 

we have seen, entropies arise or need to be explicitly introduced with a twofold 
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purpose: as a metric and as a specific optimization target. The ubiquity of this 

mathematical construct – that, we recall, gives a measure of degeneracy and, 

more specifically in our context, of degeneracy of meanings – is a first clue that 

the price to pay for a least effort language is ambiguity, as we will argue right 

 below again and as suggested by the results from Section 5.

In [Piantadosi et al. 2012] a formalization of this trade-off between least-effort 

and ambiguity is presented. They argue that any optimal code will be ambiguous 

when examined out of context, provided the context offers redundant informa-

tion; and they do so presenting extremely elegant, easy, and powerful informa-

tion theoretical arguments that apply beyond human communication. Specially 

the first argument is of general validity for any communicative system within a 

context that is informative about a message. The two alternative – but similar – 

paths that the authors provide towards ambiguity are the following ones (the 

quotes are from [Piantadosi et al. 2012]):

– “Where context is informative about meaning, unambiguous language is partly 

redundant with the context and therefore inefficient.”

 The authors conceive a space M consisting of all possible meanings m 

such that inferring a precise meaning out of a signal demands at least

[ ]= ( ) { ( )}
m M

H M P m log P m
∈

−∑ (27)

 bits of information, with P(m) the probability that meaning m needs to be 

 recalled. Similarly, they assume a space C that encompasses all possible con-

texts c, compute the entropy of each meaning conditioned to happen within 

each context, and average over contexts:

[ | ]= ( ) ( | ) { ( | )}.
c C m M

H M C P c P m c log P m c
∈ ∈
∑ ∑ (28)

 This accounts for the average number of information (in bits) that a code 

needs to provide to tell apart different meanings within discriminative enough 

contexts. If context is informative it is likely that [ ] [ | ]H M H M C>  [Piantadosi 

et al. 2012, Cover & Thomas 2012].

 With this in hand the authors have shown how “the least amount of in-

formation that a language can convey without being ambiguous is H[M | C]”, 

which is lower than H[M]; thus any optimal code will seem ambiguous when 

examined out of context and any unambiguous code will be suboptimal in 

that it produces more information than strictly necessary.

 Note once more the elegance of the argument and its generality: no 

 requirements are made about the meanings or the contexts, and the later are 
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general enough as to include any circumstance of any kind affecting commu-

nication in any way.

– “Ambiguity allows the re-use of words and sounds which are more easily pro-

duced or understood.”

 This second argument only diminishes in generality because the authors 

must consider that different signals in a code vary in cost – i.e. that they are 

not of equal length or complexity, or that distinct signs require different 

amount of effort when they are used. This becomes obvious in human speech, 

e.g., considering the longer time that larger words demand. Note anyway that 

this is a quite general scenario still affecting most conceivable communica-

tive systems and, of course, any kind of human communication.

 The argument acknowledges that it is preferable to use simpler signals. 

Then, ambiguity enables us to re-use the same signal in different contexts, 

assuming always that the context provides the needed disambiguation.

According to these ideas, that optimal codes are ambiguous if the context is infor-

mative does not imply that human languages must be ambiguous, neither that 

any ambiguous coding is more optimal than any unambiguous one. However, 

ambiguity – say polysemy, in certain contexts, but not only – is an extremely ex-

tended phenomenon in human language when tongues are analyzed out of con-

text, and the authors propose that such simple yet forceful reasoning explains its 

pervasiveness. In previous sections a much stronger point was made based on 

empirical observations: this polysemy not only does exist, but it also shapes the 

structure of tongues such that a global order arises in many aspects of it (e.g. se-

mantic networks), and such that it presents very convenient features that render 

human language optimal or very effective (e.g. for semantic navigation). Thus not 

only ambiguity is present, it seems to be of a very precise kind in order to comply 

with several optimization needs at a same time, such as Zipf’s least effort para-

digm proposed [Zipf 1949].

7 Discussion and prospects

The models and real networks presented above provide a well-defined theoretical 

and quantitative framework to address language structure and its evolution. The 

sharp transition between non-communicative and communicative phases is a re-

markable finding – and the fact that intuitive models can reproduce this feature 

is impressive. This suggests that a fundamental property associated to the least 

effort minimization principle involves an inevitable gap to be found among its 

solutions. From another perspective, both real language networks and the simple 
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graphs emerging from the least effort algorithm(s) introduce ambiguity as a natu-

ral outcome of their heterogeneous nature.

While the path explored this far invites us to be optimistic, several open prob-

lems arise from the results reviewed. These will require further research until a 

complete picture of human language – beyond the role of ambiguity – is attained. 

Here is a tentative list of open issues:

1. Both the topological analysis of semantic networks and what can be pro-

posed from simple models are typically disconnected from an explicit cogni-

tive substrate. Some remarkable works on semantic webs have shown that 

the structure of semantic webs includes a modular organization where groups 

of semantically related words are more connected among them than with 

other items. Individuals mentally searching on this space seem to make fast 

associations between items within modules as well as seemingly random 

jumps between modules [Goñi et al. 2011]. The pattern of search is actually 

related to the ways search is performed on computer networks. Moreover, 

there is a literature on neural network models of semantic association  [Martin 

& Chao 2001, Huth et al. 2012] that could be explored in order to see how the 

space of neural attractors and the underlying categorization emerging from 

them are linked to a semantic network. Models of damage in semantic webs 

(using topological methods) already suggest that relevant information might 

be obtained in relation with the process of cognitive decay associated to some 

neurodegenerative diseases [Chertkow et al. 1989, Borge-Holthoefer et al. 2011].

2. A very promising field within language evolution involves using embodied 

agents (robots or physical simulations of them) that are capable of learning, 

memory, and association [Steels 2003]. A protogrammar has been shown to 

emerge in these embodied communicating agents [Steels 2000, Steels 2012, 

Beuls & Steels 2013]. The study of lexical and grammatical processing in these 

robotic agents using so called Fluid Construction Grammars (FCGs) [Steels & 

de Beule 2006, Steels 2011] reveals that language evolution might take place 

by optimizing lexicon size and the construction structures in order to mini-

mize search. More traditional approaches to computer languages – as in 

 programming languages – explicitly reject ambiguity for the challenges it 

presents. It is made clear that FCGs seek more malleable structures (thus the 

Fluid), ready to evolve and be adopted and adapted by a population – in this 

case, of robots. The population is usually not expected to share the exact 

same grammatic structure as it emerges, thus clearing a path for ambiguity. 

Notwithstanding this, part of the problems solved by this novel approach is 

one of reducing ambiguity out of the messages being interchanged by the 

talking agents [Steels et al. 2005]. Also, the emergence of grammatical rules 

is a  direct consequence of this ambiguity reduction [Beuls & Steels 2013].
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3. In all studies so far developed, models of language evolution involve only one 

type of network level of description. However, semantic, syntactic and even 

phonologic levels interact and any relevant analysis should include several 

network levels. How are different networks connected to each other? What is 

the impact of their special topological and scaling properties on the global 

behavior of language as a whole?

4. Statistical physics is at the core of many of the approximations considered in 

this paper. Despite the biological nature of language and its historical ori-

gins, we have seen that some strong regularities are inevitable and are more 

fundamental than we would expect. There are many other ways of approach-

ing language structure using these methods, including the analysis of lan-

guage ontogeny [Corominas-Murtra et al. 2009, Baixeries et al. 2013] and the 

structure of syntactic networks. Available evidence from data and models 

suggests that, once Zipf’s law is at work, a number of well known regularities 

exhibited by syntax graphs are obtained [Ferrer i Cancho et al. 2005]. This 

would be consistent with an evolutionary scenario where syntax might come 

for free, as a byproduct of possibly inevitable features of correlations among 

words following Zipf’s law [Solé 2005]. The idea is appealing and worth re-

searching and, once again, complex networks and information theory might 

provide a valid framework.

5. A twin problem to that of ambiguity is revealed when we consider synonymy. 

This trait might be a contingency, and it is considered rare by scholars [Nowak 

et al. 1999]. Indeed, while different models account for it [Nowak et al. 1999, 

Ferrer i Cancho & Solé 2003, Salge et al. 2013], all of them predict that synon-

ymy should not be present in optimal languages or languages in equilibrium; 

but yet we observe some degree of synonymy in every human code.
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