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Abstract

Machina (2009) introduced two examples that falsify Choquet expected utility,

presently one of the most popular models of ambiguity. This article shows that

Machina’s examples do not only falsify the model mentioned, but also four other

popular models for ambiguity of the literature, namely maxmin expected utility,

variational preferences, α-maxmin and the smooth model of ambiguity aversion.

Thus, Machina’s examples pose a challenge to most of the present field of ambiguity.

Finally, the paper discusses how an alternative representation of ambiguity-averse

preferences manages to accommodate the Machina paradoxes and what drives the

results.
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Daniel Ellsberg (1961) constructed counterexamples to show the limitations of Leonard

J. Savage’s (1954) subjective expected utility (SEU). Ellsberg’s examples involved a com-

parison between objective uncertainty (risk), in which probabilities are known, and sub-

jective uncertainty, in which they are not. The prevailing preference for objective over

subjective uncertainty, known as ambiguity aversion, raised an important paradox for

economic theory. Since Ellsberg’s classical work, many models have been developed to

generalize SEU, in order to accommodate the preference for objective over subjective

uncertainty.

In the same manner as Ellsberg, Mark Machina (2009) proposed two examples that

falsify one of the SEU generalizations, David Schmeidler’s (1989) Choquet expected util-

ity (CEU). This article shows that the impact of Machina’s examples is not restricted to

the model initially targeted. His examples pose difficulties not only for CEU, but also

for the four other most popular and widely-used models of ambiguity-averse preferences,

namely maxmin expected utility (Itzhak Gilboa and Schmeidler, 1989), variational pref-

erences (Fabio Maccheroni, Massimo Marinacci, and Aldo Rustichini, 2006), α-maxmin

(Paolo Ghirardato, Maccheroni, and Marinacci, 2004), and the smooth model of ambi-

guity aversion (Peter Klibanoff, Marinacci and Sujoy Mukerji, 2005). Consequently, the

implications for economics are more profound than initially thought.

We also discuss Marciano Siniscalchi’s (2009) vector expected utility (VEU) model,

which can account for the typical ambiguity-averse preferences in Machina’s examples.

Finally, we examine how our results are related to the uncertainty aversion axiom, which

is assumed in virtually all commonly-used decision models under ambiguity. In particular,

we argue that Machina’s examples demonstrate that the uncertainty aversion axiom can

be overly restrictive in some circumstances.

The article proceeds as follows: Section I presents the four models of ambiguity-averse

preferences, that are alternatives to CEU, and which are examined in this paper. In

Section II and III, the implications of Machina’s examples for these models are presented.

Section IV discusses alternative models and the uncertainty aversion axiom.
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I Four popular models of ambiguity-averse preferences

A typical decision problem under uncertainty involves a state space S that contains all

possible states of nature. Only one of these states is (will be) true, but we do not know

which one. By ∆(S) we denote the set of all probability measures (typically denoted

p) over S. An act is a mapping from the state space S to a set of monetary outcomes.

Assuming a utility function mapping the outcomes to the reals, Up(f) refers to the expected

utility of act f if the probability distribution over S is p. Using this notation, Gilboa and

Schmeidler’s (1989) maxmin expected utility (MEU), also called multiple priors, holds if

preferences can be represented by

MEU(f) = min
p∈C

Up(f), (1)

where C is a subset of ∆(S) and is called the set of priors. C need not be equal to

∆(S), i.e., decision-makers may think that some probability distributions in ∆(S) are

irrelevant or not possible. MEU is the basis of many results in economics and finance. For

instance, James Dow and Sergio Ribeiro Da Costa Werlang (1992), Larry G. Epstein and

Tan Wang (1994), among many others, have studied the implications of multiple priors

in asset pricing. Introducing multiplier preferences, Lars Peter Hansen and Thomas J.

Sargent (2001) showed how the robust-control theory applications used to account for

model mispecification in macroeconomic modeling are related to MEU.

Maccheroni, Marinacci and Rustichini (2006) proposed a general model, called vari-

ational preferences (VP), which captures both MEU and multiplier preferences. Under

VP, preferences are represented by:

V P (f) = min
p∈∆(S)

{Up(f) + c(p)} , (2)

where c(p) : ∆(S)→ [0,∞] is an index of ambiguity aversion assigned to the probability

distribution p. MEU is the special case of VP where c(p) = 0 if p ∈ C and c(p) = ∞

otherwise. Hansen and Sargent’s (2001) multiplier preferences correspond to a case with

c a function of relative entropy.

The α-maxmin model (αM), axiomatized by Ghirardato, Maccheroni, and Marinacci

(2004), is a linear combination of maxmin expected utility and maxmax expected utility,
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in which not the worst but the best expected utility is considered. This model extends the

well-known Hurwicz criterion to ambiguity. αM holds if preferences can be represented

by:

αM(f) = αmin
p∈C

Up(f) + (1− α) max
p∈C

Up(f). (3)

The set of priors C and the parameter α may be interpreted as ambiguity and ambi-

guity attitude respectively. Consider the case of Ellsberg’s three-color urn (an urn with

30 red balls and 60 balls that are either yellow or black in unknown proportion and where

one ball is to be drawn at random) and an αM decision-maker who strictly prefers to

bet on red rather than on yellow and also strictly prefers to bet on red rather than on

black. A decision-maker of this type is clearly ambiguity averse and violates SEU. It can

be shown that in such a case, α must be higher than 1/2.

The fourth model was introduced by Klibanoff, Marinacci and Mukerji (2005). Their

approach is slightly different from the previous ones. Their smooth model of ambiguity

aversion (KMM) involves a two-stage decomposition of the decision process into risk

and ambiguity. Each stage uses an expected-utility-like functional form. Preferences are

represented by

KMM(f) =

∫
∆(S)

φ (Up(f)) dµ(p), (4)

where µ is a subjective probability measure over ∆(S), that is, the measure of the subjec-

tive relevance of p ∈ ∆(S) to be the ‘right’ probability. Ambiguity attitude is captured

by φ. More precisely, concavity of φ implies ambiguity aversion. For instance, a decision-

maker preferring to bet on red rather than on yellow and to bet on red rather than on

black in Ellsberg’s urn cannot have a convex φ. Klibanoff, Marinacci and Mukerji (2005)

defined ambiguity aversion as aversion to mean preserving spreads in terms of expected

utility values and their model deals with ambiguity aversion as expected utility does

with risk aversion. Hence, it is particularly convenient for applications (e.g., in macroe-

conomics, Hansen, 2007; in health and environmental policy, Nicolas Treich, 2010; in

finance, Christian Gollier, 2009).

In the next two sections, we show precisely how Machina’s examples pose difficulties

for each of the four models presented above.
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II The 50:51 example

The first example proposed by Machina (2009) is based on an urn with 101 balls. Fifty

balls are marked with either 1 or 2 and 51 balls are marked with either 3 or 4. Each ball

is equally likely to be drawn. En denotes the event “a ball marked with a n is drawn”.

Table 1 displays the outcomes assigned to each event by four acts. These outcomes

are expressed in utility units. We use the flexibility of outcomes in Machina’s examples

to choose outcomes that are equally-spaced on the utility scale.1 This adaptation of

Machina’s original example enables us to derive particularly clear counter-examples for

MEU, αM, and VP, but is not needed for the KMM model. The specific numbers 0,

101, 202, 303 are proposed for convenience, in order to simplify some formulas (they are

multiples of the number of balls in the urn). These numbers do not constitute any further

restriction since as under all the models we are dealing with, utility is defined up to unit

and level.

50 balls 51 balls

Acts E1 E2 E3 E4

f1 202 202 101 101

f2 202 101 202 101

f3 303 202 101 0

f4 303 101 202 0

Table 1: The 50:51 example

In the 50:51 example, f1 and f2, as well as f3 and f4, differ only in whether they

offer the higher prize 202 on the event E2 or E3. If a decision-maker is sufficiently

ambiguity averse, he/she will prefer f1 to f2, as argued by Machina. Indeed, f1 is clearly

unambiguous whereas f2 is ambiguous but benefits from a slight advantage due to the

51th ball that may yield 202. There is thus a tradeoff between the advantage offered
1Eliciting outcomes that are equally-spaced in terms of utility units can easily be done using Wakker

and Deneffe’s (1996) tradeoff method under risk. For lotteries involving only objective probabilities, their

method is compatible with MEU, αM, VP, KMM, and CEU.
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by f2 and the absence of ambiguity offered by f1. Such a tradeoff is less clear in the

choice between f3 and f4. Like f2, f4 benefits from the 51th ball but f3 does not offer a

particular informational advantage.2 There are two conflicting principles in this example.

A SEU maximizer assuming a uniform distribution over the balls should prefer f2 and

f4. Yet, a decision-maker who values unambiguous information may prefer f1 to f2 and

may be indifferent between f3 and f4. The informational advantage of f1 can more than

offset its Bayesian disadvantage with respect to f2 whereas f3 benefits from no clear

informational advantage that could compensate its Bayesian disadvantage with respect

to f4. This would lead to f1 � f2 and f3 ≺ f4. If the 50:51 assignment of balls does not

supply the “right advantage”, or if it supplies “too much advantage”, this can be adjusted,

either by changing to 100:101 (if it is necessary to reduce the advantage) or to 25:26

(if it is necessary to increase the advantage).3 However, Machina showed that under

CEU, f1 � f2 if and only if f3 � f4. We show that f1 � f2 also implies f3 � f4 if the

decision-maker’s preferences are represented by MEU, VP, αM, or KMM with φ concave.

Throughout this section, any possible probability distribution over the state space is

fully characterized by a pair of numbers (i, j) where i denotes the number of balls marked

with a 1 and j denotes the number of balls marked with a 3. There are 50−i balls marked

with a 2 and 51 − j balls marked with a 4. ∆(S) = [0, 50] × [0, 51] refers to the set of

all possible distributions. For instance, (25, 25.5) is the prior such that E1 and E2 are

equally-likely with probability 25
101

each, and such that E3 and E4 are equally-likely with

probability 25.5
101

each. U(i,j)(f) denotes the expected utility of act f if the distribution is

characterized by (i, j). In what follows, we often suppress f in U(i,j)(f).

First consider MEU. For f2 and f3, increasing i or j by 1 increases U(i,j) by 1. For f4,

they increase U(i,j) by 2. As a consequence, a MEU decision-maker will take into account

the minimum of i+ j for f2, f3, and f4. The same prior can thus be applied to evaluate

the four acts, the prior having no impact on the evaluation of the unambiguous act f1.

With the same prior for the four acts, we are back to SEU. Hence, MEU implies the same
2Following Klibanoff, Marinacci and Mukerji (2005, pp. 1875-1876), f1 can be interpreted as a risky

asset and f2 as an ambiguous asset in a management portfolio problem. Asset f3 (f4) could be obtained

by buying 2 units of f1 (f2) and one unit of f2 (f1), and by selling a riskless asset yielding 303 for sure.
3We are grateful to a referee for bringing this point to our attention.
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restriction as CEU (and SEU): f1 � f2 if and only if f3 � f4

Under αM, it can easily be shown that the same result holds. As with MEU, the

priors that are used to evaluate f1, f2, f3 and f4 are the same. In the 50:51 example,

αM corresponds to SEU with a specific probability distribution: α times the distribution

that minimizes i + j plus (1 − α) times the distribution that maximizes i + j (over the

set of priors C).

Result 1 in the Appendix establishes that an ambiguity-averse decision-maker, who

prefers f1 to f2, will violate4 VP if f3 ≺ f4. A similar result can be derived for KMM

with φ concave. Using the functional given by (4), the values of the acts in the 50:51

example are:

KMM(f1) = φ(151),

KMM(f2) =
∫

∆(S)
φ(i+ j + 101)dµ(i, j),

KMM(f3) =
∫

∆(S)
φ(i+ j + 100)dµ(i, j), and

KMM(f4) =
∫

∆(S)
φ(2i+ 2j + 50)dµ(i, j).

Figure 1 represents the impact of the concavity of φ on the evaluation of the acts for i+j <

50 and i+j > 50. The case i+j = 50 is straightforward: it implies φ(151)−φ(101+i+j) =

φ(100+i+j)−φ(50+2i+2j). For i+j < 50, U(i,j)(f1) > U(i,j)(f2) > U(i,j)(f3) > U(i,j)(f4).

Moreover, the difference between U(i,j)(f1) and U(i,j)(f2) on the one hand and U(i,j)(f3)

and U(i,j)(f4) on the other hand is the same. Figure 1(a) shows how concavity of φ implies

that φ(151)−φ(101+i+j) ≤ φ(100+i+j)−φ(50+2i+2j) for all (i+j) < 50. The same

result holds if i + j > 50 as can be seen in Figure 1(b). Under KMM, a preference for

both f1 over f2 and f4 over f3 implies KMM(f1)−KMM(f2) > KMM(f3)−KMM(f4)

which is not possible because φ(151)−φ(101+ i+ j) ≤ φ(100+ i+ j)−φ(50+2i+2j) for

all (i, j). This leads to a contradiction. A decision-maker with φ concave cannot exhibit

both f1 � f2 and f3 ≺ f4. Note that this result can easily be extended to outcomes that

are not equally spaced in terms of utility units, the proof being very similar.

To conclude this section, preferences that reflect the tradeoff between ambiguity and

Bayesian advantages (f1 � f2 and f3 ≺ f4) can be represented by none of the models
4Note that unlike under CEU, MEU, and αM, f1 ≺ f2 and f3 � f4 may both hold under VP and

KMM. These preferences however, are not plausible under natural ambiguity aversion.
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Figure 1: Impact of the concavity of φ on the evaluation of the acts

examined.
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III The reflection example

The second example proposed by Machina (2009), the reflection example, entails a

slight modification of the previous urn; not 51 but 50 balls are marked with a 3 or a 4.

Table 2 describes four acts assigning outcomes evaluated in terms of utility to the four

events (with 0 < π < 1). Unlike the previous example, this example does not require the

outcomes to be equally-spaced on the utility scale.

50 balls 50 balls

Acts E1 E2 E3 E4

f5 100π 100 100π 0

f6 100π 100π 100 0

f7 0 100 100π 100π

f8 0 100π 100 100π

Table 2: The reflection example

III.1 Decision criteria and experimental results

E1 and E2 (E3 and E4) are informationally symmetric: there is no more evidence in

favor of one event or the other. Moreover, the two events E1∪E2 and E3∪E4 are equally

likely. This is why Machina (2009) argues that f8 is an (informationally symmetric) left-

right reflection of f5, and f7 is a left-right reflection of f6. As a consequence, there is

no reason to prefer f8 to f7 if one prefers f6 to f5. We will say that preferences should

be reflected. Machina shows that under CEU, f5 ≺ f6 is equivalent to f7 ≺ f8 and

thus preferences should not be reflected, unless indifference holds. Hence, CEU can only

account for reflected preferences through indifference (f5 ∼ f6 and f7 ∼ f8). However, in

an experimental study of the reflection example, L’Haridon and Placido (2010) showed

that such indifferences are rejected (over 90% of the subjects expressed strict preferences

when indifference was allowed) while reflected preferences hold for more than 70% of

subjects. Their data thus reject CEU.
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More can be said about the pattern of preferences over these acts. Maximizing ex-

pected utility assuming a uniform distribution over the four events implies indifference

between the four acts, because they lead to the same expected utility. Decision-makers

may have to find other criteria unless they accept to be indifferent. On the one hand,

f5 ≺ f6 and f7 � f8 can be justified in the light of Ellsberg, because f6 and f7 assign

known probabilities to at least one outcome (100π). Furthermore, f6 and f7 are less

exposed to ambiguity than f5 and f8.5 On the other hand, assuming some symmetry

between E2 and E3, f5 � f6 and f7 ≺ f8 will hold for decision-makers who want to avoid

mean preserving spreads in expected utility values (see Result 2 in the Appendix).

The aforementioned arguments do not allow us to clearly predict what the preferences

should be. However, we can still let the data speak. Up to now, the only experimental

test of the reflection example we are aware of was conducted by L’Haridon and Placido

(2010). The typical preference pattern they found was f5 ≺ f6 and f7 � f8 (46% of the

participants), even if 28% of the subjects exhibited f5 � f6 and f7 ≺ f8. Furthermore,

the experimenters replicated the Ellsberg paradox and found that f5 ≺ f6 and f7 � f8

was still the most common pattern when only the subjects that are clearly ambiguity

averse according to the Ellsberg paradox are considered. This confirms that ambiguity

averse decision-makers tend to have this pattern of preferences. As a consequence, one

might expect that a model of ambiguity aversion can account for f5 ≺ f6 and f7 � f8.

This is what we will check for in the four models under consideration in this paper.

III.2 Analysis of the reflection example

In what follows, (k, t) denotes any possible probability distribution over the state space

with k the number of balls marked with a 2 and t the number of balls marked with a 3.

Therefore, there are 50−k balls with a 1 and 50− t balls with a 4. ∆(S) = [0, 50]× [0, 50]

is the set of all possible (k, t) distributions.
5Consider an act assigning 100π to E1, 100 to both E2 and E3, and 0 to E4, and the following

choice: remove 100(1− π) from E2 (yielding f6) or remove the same amount from E3 (yielding f5). The

former completely removes an exposure to ambiguity while the latter only decreases a previously-existing

exposure to ambiguity. A similar reasoning applies to f7 and f8.
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First consider MEU. It can be shown that MEU will minimize some linear combina-

tions of k and t in f5 and f8 whereas it minimizes only t in f6 and only k in f7. It is thus

impossible for both f6 and f7 to be preferred to f5 and f8 respectively (see Result 4 in the

Appendix). However, f5 � f6 and f7 ≺ f8 may hold. MEU predicts that, if preferences

are reflected, an ambiguity averse decision-maker will prefer the acts in which none of the

outcomes are associated with a known probability. It cannot represent what L’Haridon

and Placido (2010) found as being the prevailing ambiguity averse preferences. VP also

fail to account for these preferences. The derivation of this result follows the same steps

as in the case of MEU (Result 3 and Result 5 in the Appendix).

αM can explain the reflection example for any α as soon as C 6= ∆(S) and α 6= 1. If the

set of priors equates the set of all possible distributions (C = ∆(S)), indifference should

hold between the four acts. Assume now, for instance, C = ∆(S) − (49, 50] × (49, 50]

and α 6= 1. Note that k = 50 or t = 50 are still possible independently. The maximum

expected utility (50 + 50π) is still possible for f6 and f7 but not for f5 and f8. Assume

that π ≥ 1/2. The valuations of the acts are: αM(f5) = αM(f8) = 50π+(1−α)(49+π),

which is smaller than αM(f6) = αM(f7) = 50π + (1 − α)50. Assume that π < 1/2.

In such a case: αM(f5) = αM(f8) = 50π + (1 − α)(50 − π), which is also smaller than

αM(f6) = αM(f7) = 50π + (1− α)50. Thus, f5 ≺ f6 and f7 � f8 can both hold.

However, this result relies on a choice of priors that does not seem consistent with the

information provided in the (thought) experiment. One may think that the informational

symmetry of the decision problem should be present in the set of priors. We will say

that the set of priors replicates the informational symmetry of the decision problem if

(k, t) ∈ C implies (50 − k, t) ∈ C, (k, 50 − t) ∈ C, and (t, k) ∈ C. If C (C 6= ∆(S))

replicates the informational symmetry,6 f5 ≺ f6 (f7 � f8) implies α < 1/2 (see Result 6).

As a consequence, either C does not replicate the informational symmetry or α < 1/2 (or

both). In other words, decision-makers exhibiting f5 ≺ f6 and f7 � f8 must change their

preferences for some permutations of E1 with E2, E3 with E4, or (E1, E2) with (E3, E4)

(if C does not replicate the informational symmetry, the numbers 1, 2, 3 and 4 must

matter) or they must prefer to bet on the yellow and on the black balls rather than on
6This excludes the above example C = ∆(S)− (49, 50]× (49, 50].
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the red balls in the Ellsberg urn7 (otherwise, α cannot be smaller than 1/2).

Finally, let us study Klibanoff, Marinacci, and Mukerji’s smooth model of ambiguity.

The preferences f5 ≺ f6 and f7 � f8 imply that a KMM decision-maker cannot have

a concave φ (see Result 7), no matter what µ is, i.e., whatever a KMM decision-maker

thinks about the relevance of each probability distribution. Moreover, if this preference

pattern does not depend on the outcomes under consideration, then φ must be convex.

On the other hand, if the Ellsberg paradox holds whatever the color and the outcomes,

then φ must be concave. This leads to a contradiction.

To summarize our results, KMM with φ concave, VP, and MEU cannot represent the

attraction most people seem to feel for acts including outcomes with objective probabil-

ities. αM can accommodate such behavior but, to do so, it must violate either informa-

tional symmetry or Ellsberg preferences.

IV Implications of Machina’s examples for other mod-

els

Up to now, we have focused on four models of ambiguity-averse preferences. Ehud

Lehrer (2007a) analyzed the impact of the reflection example for two other models:

Lehrer’s (2009) concave integral for capacities and Lehrer’s (2007b) expected utility max-

imization w.r.t partially-specified probabilities. In both cases, he found that f5 � f6 and

f7 ≺ f8, but not the opposite preferences that were experimentally found. As a conse-

quence, these two models have the same prediction as MEU and VP for the reflection

example. Kin Chung Lo (2009) showed similar results for Klibanoff’s (2001) version of

MEU based on an unpublished example proposed by Machina in an earlier draft. Lo’s

(2009) results are consistent with ours.

Siniscalchi (2009) proposed VEU, which is able to account for both the 50:51 and

the reflection examples. His model is decomposed into an expected utility term and

an adjustment term capturing attitude towards ambiguity. Complementarities among
7Recall that the Ellsberg paradox involves an urn with 30 red balls and 60 balls that are either black

or yellow.
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ambiguous events (in the above examples, E1 and E2 on the one hand, and E3 and E4

on the other hand, have such complementarities) are represented by adjustment factors.

The second term of the VEU model is a function defined over these adjustment factors.

It is negative if Alain Chateauneuf and Jean-Marc Tallon’s (2002) diversification axiom

holds. Furthermore, it is negative and concave if Schmeidler’s (1989) uncertainty aversion

axiom holds. This axiom, which is necessary for VP and MEU, implies that "’smoothing’

[...] utility distributions makes the decision-maker better off" (Schmeidler, 1989, p.582).

Siniscalchi (2009) showed that VEU can handle the preference patterns considered in the

present paper with an adjustment function that is negative but not concave,8 meaning

that the diversification axiom holds, but the uncertainty aversion axiom does not.9

A natural conjecture10 is that the uncertainty aversion axiom drives most of the re-

sults in this paper. Without imposing further structure on preferences, this conjecture is

false: Result 8 in the Appendix shows that some general preferences, satisfying the un-

certainty aversion axiom, can accommodate Machina’s paradoxes. However, the example

we provide does not seem particularly intuitive; moreover, it is inconsistent with expected

utility under risk.

As an alternative way to study the conjecture, we can impose more structure on pref-

erences, for instance by assuming the standard independence axiom for expected utility

under risk. Simone Cerreia-Vioglio, Maccheroni, Marinacci and Luigi Montrucchio (2009)

consider complete, transitive, monotonic and continuous preferences that satisfy uncer-

tainty aversion and the independence axiom; they provide a representation for such pref-

erences, which we shall call "uncertainty averse representation" (UAR). Cerreia-Vioglio

et al. show that MEU, VP, and KMM with φ concave are all special cases of UAR. We
8In both the 50:51 example and the reflection example, we can write the VEU value of act f as

V EU(f) =
∑4
i=1 pEixEi + A(pE1xE1 − pE2xE2 , pE3xE3 − pE4xE4), where xEi denotes the utility value

on event Ei and pEi denotes the (baseline) probability that a VEU decision-maker assigns to Ei. The

higher |pE1xE1 − pE2xE2 | or |pE3xE3 − pE4xE4 |, the more ambiguity the decision-maker perceives (these

terms are 0 under risk). With A(ν0, ν1) = −
√

1+|ν0|−1

10 −
√

1+|ν1|−1

10 and uniform baseline probabilities,

we can derive both f1 � f2 and f3 ≺ f4 in the 50:51 example and f5 ≺ f6 and f7 � f8 in the reflection

example.
9Because a VEU representation satisfying the uncertainty aversion axiom is a VP representation.

10We thank a referee for this conjecture.
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show in the Appendix that UAR can accommodate the 50:51 example (Result 9), but

not the reflection example (Result 3). In consequence, Machina’s reflection example calls

for going beyond the class of uncertainty averse representations.
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Appendix

Result 1. In the 50:51 example, VP imply f1 � f2 ⇒ f3 � f4.

We can define (ih, jh) as any element of argmin(i,j)∈∆(S){U(i,j)(fh) + c(i, j)}. As a

consequence, V P (f1) = 151 + c(i1, j1), V P (f2) = 101 + i2 + j2 + c(i2, j2), V P (f3) =

100 + i3 + j3 + c(i3, j3) and V P (f4) = 50 + 2i4 + 2j4 + c(i4, j4).

First, suppose that f1 � f2 and f3 ≺ f4. Hence, 50+c(i1, j1) > i2+j2+c(i2, j2). Replacing

i4 and j4 by i3 and j3 in V P (f4), because this can only increase the evaluation of the act,

we obtain i3 + j3 > 50. By definition of (i1, j1), c(i1, j1) ≤ c(i3, j3). The sum of these

inequalities gives 50 + c(i1, j1) < i3 + j3 + c(i3, j3). As i2 + j2 + c(i2, j2) = i3 + j3 + c(i3, j3)

must hold, we have 50 + c(i1, j1) < i2 + j2 + c(i2, j2). This leads to a contradiction.

Result 2. Assuming η(k, t) = η(t, k) ∀(k, t) ∈ ∆(S) (where η is a density defined over

∆(S)), f6 (f7) can be derived from f5 (f8) by a series of mean preserving spreads in terms

of expected utility values.

Let ηfh
be the density function over the expected utility values induced by fh and η

(h ∈ {5, 6}). We assume that η(k, t) = η(t, k). Note that:

U(k,t)(f5) = k + (50− k + t)π (5)

U(k,t)(f6) = t+ 50π (6)

For all (k, t) such that k = t, both ηf5 and ηf6 assign η(k, t) to k + 50π.

Let us now consider each (k, t) ∈ ∆(S) such that t < k and its symmetric distribution

(t, k) (we are thus dealing with every case satisfying k 6= t). If 1/2 ≤ π < 1:

U(k,t)(f6) < U(k,t)(f5) ≤ U(t,k)(f5) < U(t,k)(f6). (7)

Otherwise (0 < π < 1/2):

U(k,t)(f6) < U(t,k)(f5) < U(k,t)(f5) < U(t,k)(f6). (8)

Therefore, for all t < k and no matter what π is, ηf5 assigns η(k, t) and η(t, k) (which,

by assumption, are equal) to intermediate values while ηf6 assigns them to extreme values,

moving density from the center to the tails of the distribution. Moreover, the mean
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expected utility has not changed because U(k,t)(f5) + U(t,k)(f5) = U(k,t)(f6) + U(t,k)(f6).

This corresponds to Michael Rothschild and Joseph E. Stiglitz’s (1970) definition of a

mean preserving spread. The same result can be obtained for f7 and f8 by symmetry.

Result 3. UAR cannot accommodate f5 ≺ f6 and f7 � f8.

Cerreia-Vioglio et al. (2009) defined UAR as:

UAR(f) = min
p∈∆(S)

G(Up(f), p), (9)

where G is quasiconvex and non-decreasing in the first argument. We can define (kh, th)

as any element of argmin(k,t)∈∆(S)

{
G
(
U(k,t)(fh), (k, t)

)}
. We must have UAR(f5) =

G (k5 + (50− k5 + t5)π, (k5, t5)), UAR(f6) = G (t6 + 50π, (k6, t6)), UAR(f7) = G (k7 + 50π, (k7, t7)),

and UAR(f8) = G (t8 + (50− t8 + k8)π, (k8, t8)). f5 ≺ f6 impliesG (k5 + (50− k5 + t5)π, (k5, t5)) <

G (t6 + 50π, (k6, t6)) and f7 � f8 impliesG (t8 + (50− t8 + k8)π, (k8, t8)) < G (k7 + 50π, (k7, t7)).

By definition of (k6, t6) and (k7, t7), we can infer:

G (k5 + (50− k5 + t5)π, (k5, t5)) < G (t5 + 50π, (k5, t5)) , (10)

G (t8 + (50− t8 + k8)π, (k8, t8)) < G (k8 + 50π, (k8, t8)) , (11)

G (k5 + (50− k5 + t5)π, (k5, t5)) < G (t8 + 50π, (k8, t8)) , (12)

G (t8 + (50− t8 + k8)π, (k8, t8)) < G (k5 + 50π, (k5, t5)) . (13)

Recall that 0 < π < 1. G must be non-decreasing in its first argument. Therefore, Eq.

10 implies k5 < t5 and Eq. 11 implies t8 < k8. These two implications, Eqs. 12 and 13,

and G being non-decreasing in its first argument imply:

G (k5 + 50π, (k5, t5)) < G (t8 + 50π, (k8, t8)) , (14)

and

G (t8 + 50π, (k8, t8)) < G (k5 + 50π, (k5, t5)) . (15)

The two inequalities (14) and (15) contradict each other.

Result 4. In the reflection example, MEU preferences f5 ≺ f6 and f7 � f8 cannot both

hold.
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This is implied by Result 3 with G
(
U(k,t)(fh), (k, t)

)
= U(k,t)(fh).

Result 5. In the reflection example, VP imply that f5 ≺ f6 and f7 � f8 cannot both hold.

This is implied by Result 3 with G
(
U(k,t)(fh), (k, t)

)
= U(k,t)(fh) + c(k, t).

Result 6. If C (C 6= ∆(S)) replicates the informational symmetry of the decision prob-

lem, f5 ≺ f6 (f7 � f8) implies α < 1/2

We say that the set of priors replicates the informationally symmetric left-right re-

flection whenever (k, t) ∈ C implies (50 − k, t) ∈ C, (k, 50 − t) ∈ C, and (t, k) ∈ C.

Note that this definition also implies (50 − k, 50 − t) ∈ C. Assume that (k′, t′) ∈

argmin(k,t)∈CU(k,t)(f5) and (k′′, t′′) ∈ argmin(k,t)∈CU(k,t)(f6). As a consequence of the

structure of C and by reflection, (t′, k′) ∈ argmin(k,t)∈CU(k,t)(f8) and (t′′, k′′) ∈ argmin(k,t)∈CU(k,t)(f7).

It also implies that (50 − k′, 50 − t′) ∈ argmax(k,t)∈CU(k,t)(f5), (50 − k′′, 50 − t′′) ∈

argmax(k,t)∈CU(k,t)(f6), (50− t′, 50−k′) ∈ argmax(k,t)∈CU(k,t)(f8) and (50− t′′, 50−k′′) ∈

argmax(k,t)∈CU(k,t)(f7). f5 ≺ f6 (or f7 � f8) implies:

α (k′ + (t′ − k′)π) + (1− α) (50− k′ + (k′ − t′)π) < αt′′ + (1− α)(50− t′′) (16)

α (k′ − t′′ + (t′ − k′)π) < (1− α) (k′ − t′′ + (t′ − k′)π)(17)

By definition of k′, t′ and t′′ and because of the symmetry of C, t′′ ≤ t′ and t′′ ≤ k′. As

a consequence, (k′ − t′′ + (t′ − k′)π) ≥ (k′ − t′′)(1− π) ≥ 0. If (k′ − t′′ + (t′ − k′)π) = 0,

indifference should hold. It must thus be strictly positive. Hence, α < 1−α and therefore,

α < 1/2.

Result 7. If a KMM decision-maker has a concave φ, f5 ≺ f6 and f7 � f8 cannot both

hold.

This is implied by Result 3 and by the fact that preferences that can be represented

by KMM with φ being concave belong to UAR. It can also be proved in the following

way. Values of the acts are:

KMM(f5) =
∫

∆(S)
φ(k + (50 + t− k)π)dµ(k, t),

KMM(f6) =
∫

∆(S)
φ(t+ 50π)dµ(k, t),
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KMM(f7) =
∫

∆(S)
φ(k + 50π)dµ(k, t), and

KMM(f8) =
∫

∆(S)
φ(t+ (50 + k − t)π)dµ(k, t).

A preference for both f6 and f7 against f5 and f8 implies∫
∆(S)

[φ(t+ (50 + t− k)π)− φ(t+ 50π) + φ(k + (50 + k − t)π)− φ(k + 50π)]dµ(k, t) < 0.

However, if φ is concave, for all (k, t):

φ(t+ (50 + t− k)π)− φ(t+ 50π) + φ(k + (50 + k − t)π)− φ(k + 50π) ≥ 0.

To prove this, let us define a(k, t) = φ(t+ (50 + k − t)π)− φ(t+ 50π), and

b(k, t) = φ(k + (50 + t− k)π)− φ(k + 50π).

Assume t ≥ k; hence, a(k, t) ≤ 0 and b(k, t) ≥ 0. Note that t+50π−(t+(50+k−t)π) =

k+(50+t−k)π−(k+50π) = (t−k)π > 0. Consequently, the same increase (i.e., (t−k)π

) of the argument of φ is applied to two different levels: k + 50π and t + (50 + k − t)π.

If t ≥ k, k + 50π ≤ t + (50 + k − t)π. φ being increasing and concave, the impact of an

increase of the arguments in terms of φ units should be lower for the highest argument.

As a consequence, b(k, t) ≥ −a(k, t).

The opposite case k ≥ t is obtained by symmetry.

Result 8. Preferences satisfying the uncertainty aversion axiom are not incompatible

with f1 � f2 and f3 ≺ f4, and with f5 ≺ f6 and f7 � f8.

Consider a preference relation represented by:

V (xE1 , xE2 , xE3 , xE4) = ln(3 + xE1) · ln(3 + xE3) + a ln(3 + xE2) · ln(3 + xE4), (18)

with a > 0. V is defined on R4
+ and (xE1 , xE2 , xE3 , xE4) represents the utility values

associated with E1, E2, E3, and E4 respectively. V has a negative-definite Hessian ma-

trix on R4
+ and therefore, V is strictly concave. This implies that the preference rela-

tion is complete and transitive (because the representation exists), monotone (because

the function is monotone), and, above all, convex (because the function is concave).

Convexity (with respect to utility values) implies that the uncertainty aversion axiom,

as defined by Schmeidler (1989), holds. It is then sufficient to note that at a = 3
2
,

V (f1) ≈ 61.81, V (f2) ≈ 60.69, V (f3) ≈ 35.35, and V (f4) ≈ 38.12 to see that convex

preferences (satisfying monotonicity and weak ordeing) can accommodate the 50:51 ex-

ample. Finally, at a = 1, V (f5) = V (f8) = (ln(3 + 100π))2 + ln(103) ln(3) is less than
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V (f6) = V (f7) = ln(3 + 100π) ln(3) + ln(3 + 100π) ln(103) for all 0 < π < 1.

Result 9. UAR can accommodate f1 � f2 and f3 ≺ f4.

Starting from (9), we define G(U(i,j)(f), (i, j)) = G∗(U(i,j)(f), i+ j) with G∗ such that:

G∗(x, y) =



3 if y ≤ 49.5 or y ≥ 51

or (49.5 < y < 51 and x ≥ 151)

|4y − 201| if 49.5 < y < 51 and x ≤ 100 + y

|4y − 201|+ 3−|4y−201|
151−(100+y)

× (x− (100 + y)) if 49.5 < y < 51

and 100 + y < x < 151

G∗ (and hence, G) is weakly increasing in its first variable, (continuous) and quasiconvex.

We get UAR(f1) = 3, UAR(f2) ≈ 2.8, UAR(f3) = 0, and UAR(f4) ≈ 0.9.
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