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Abstract The recent GPS Block IIF satellites SVN62 and

SVN63 and the Galileo satellites GIOVE-A, GIOVE-B, PFM

and FM2 already send signals on more than two frequencies,

and more GNSS satellites will provide tracking data on at

least three frequencies in the near future. In this paper, a sim-

plified general method for ambiguity resolution minimizing

the noise level for the triple-frequency geometry-free (GF)

and ionosphere-free (IF) linear combinations is presented,

where differently scaled code noise on the three frequen-

cies was introduced. For the third of three required linear

combinations, the most demanding one in triple-frequency

ambiguity resolution, we developed a general method using

the ambiguity-corrected phase observations without any con-

straints to search for the optimal GF and IF linear combina-

tion. We analytically demonstrate that the noise level of this

third linear combination only depends on the three frequen-

cies. The investigation concerning this frequency-dependent

noise factor was performed for GPS, Galileo and Com-

pass frequency triplets. We verified the theoretical deriva-

tions with real triple-frequency GPS and Galileo data from

the Multi-GNSS Experiment (M–GEX) of the International

GNSS Service (IGS). The data of about 30 M–GEX stations

around the world over 11 days from 29 April 2012 to 9 May

2012 were used for the test. For the third linear combinaton

using Galileo E1, E5b and E5a, which is expected to have the

worst performance among all the GNSS frequency triplets in

our investigation, the formal errors of the estimated ambigu-

ities are in most cases below 0.2 cycles after 400 observa-

tion epochs. If more GPS satellites sending signals on three
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frequencies or more stations tracking Galileo E6 signal are

available in the future, an improvement by a factor of two to

three can be expected.
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1 Introduction

Nowadays, different GNSS already provide or will provide

their tracking data on three or even four frequencies. It is,

thus, interesting to exploit the advantages of the increas-

ing number of frequencies and search for geometry-free

(GF) and ionosphere-free (IF) linear combinations with min-

imized noise. Hatch (2006) introduced a method for obtain-

ing triple-frequency GF, refraction-corrected, ambiguity-

resolved carrier-phase measurements. Feng et al. (2007) pro-

vided a model using the differences between geometry-based

(GB), i.e. the geometry-related terms were preserved, triple-

frequency code observations and GB triple-frequency phase

observations to form geometry-free linear combinations,

and their differences were investigated with respect to their

ionospheric refractions and noise levels. Recently, Henkel

and Günther (2012) introduced a more general method that

uses simultaneously multi-frequency code and phase obser-

vations allowing an arbitrary scaling of the geometry, the

ionospheric delay and the minimized noise level. The code

noise on the three frequencies was assumed to be scaled

according to the Cramer Rao bounds (CRB) (Henkel and

Günther 2012). In this paper here, we present a simplified

method for GF and IF linear combinations using simulta-

neously triple-frequency code and phase observations with

different sets of scaling factors for the code noise. For given
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integer coefficients of the three ambiguities, the optimized

combination with the minimized combined noise can be

expressed as a function of the three frequencies and the

scaling factors of the code noise on the three frequencies.

Different sets of scaling factors were tested with real triple-

frequency Galileo data.

The GF and IF linear combination is useful especially for

the case of long baselines (e.g. a global network), where

the first-order term of the ionospheric delays cannot be

fully eliminated, and for the case of Wide Area Real Time

Kinematics (WARTK) measurements, where the geometry-

related information such as the orbits, the clocks and the

troposphere parameters are not available precisely enough

and sometimes need to be estimated. In the case of Precise

Point Positioning (PPP), the method can only be used when

the satellite- and receiver-related biases are stable enough

and can be estimated before the ambiguity resolution.

In order to solve the ambiguities, three linearly inde-

pendent combinations are necessary. Various studies have

been done in recent years to find the third GF and IF linear

combination with acceptable noise. The ambiguity-corrected

phase observations were used instead of the code observa-

tions to significantly reduce the noise level of the combina-

tion, and three sets of GB phase linear combinations were

proposed to form a geometry-free linear combination (Li et

al. 2010). Apart from that, Li et al. 2012 established a GF

and IF approach for narrow-lane ambiguity resolution. In this

study here, a more general method using ambiguity-corrected

phase observations is used to form the third linear combi-

nation. It is analytically demonstrated that the noise level

after combination is only a function of the three frequencies.

This frequency-dependent factor is investigated for different

GNSS. The Galileo combination using E1, E6 and E5a has

the smallest frequency-dependent factor and the best behav-

ior among all the systems.

The theoretical derivations were verified with real data.

The data were processed for 11 days in 2012 and the frac-

tional parts and formal errors of the estimated ambiguities

for all the three linear combinations were investigated.

2 GF and IF triple-frequency linear combinations

Ignoring hardware delays, multipath errors and higher-order

terms of the ionospheric refraction, the code and phase obser-

vation equations of a specific carrier frequency on the zero-

difference level can be described as follows:

Pi = ρ + I1 ·
f 2
1

f 2
i

+ δtro + c · δr − c · δs + ǫP ,

L i =ρ− I1 ·
f 2
1

f 2
i

+δtro+c · δr −c · δs +λi · ni +ǫL , (1)

where Pi and L i represent the code and phase observation on

frequency fi , respectively. The symbol ρ is the distance from

the satellite at the epoch of transmission to the receiver at the

epoch of reception. δtro, δr and δs stand for the tropospheric

delay, receiver clock correction and satellite clock correc-

tion, respectively. I1 is the first-order term of the ionospheric

refraction on carrier L1 and c is the speed of light. ǫP and ǫL

stand for the code and phase observation errors, respectively.

λi represents the wavelength of the signal on frequency fi

and ni represents the ambiguity on frequency fi .

If the phase and code observations are available on three

frequencies, it is possible to generate linear combinations

that are both, GF and IF, i.e. they eliminate all geometry-

related terms and the first-order ionospheric refraction. With

the help of Eq. 1, the most general linear combination that

can be formed using the code and phase observations on three

carrier frequencies is given by:

Lx = γ1L1+γ2L2 + γ3L3+γ4 P1 + γ5 P2 + γ6 P3

= (γ1+γ2 + γ3 + γ4+γ5 + γ6)(ρ + δtro+cδr − cδs)

+(γ4+
f 2
1

f 2
2

γ5 +
f 2
1

f 2
3

γ6−γ1 −
f 2
1

f 2
2

γ2−
f 2
1

f 2
3

γ3)I1

+(γ1λ1n1+γ2λ2n2+γ3λ3n3) + ǫ, (2)

where Lx is the combined observation. γi (i = 1, . . . , 6)

represent the weighting coefficients of the three phase and

the three code observations. ǫ stands for the observation error

after combination.

The combined ambiguity nx , which is a linear combina-

tion of the ambiguities n1, n2 and n3, has to be an integer for

ambiguity resolution purposes:

λx nx = γ1λ1n1 + γ2λ2n2 + γ3λ3n3

= λx (ax · n1 + bx · n2 + cx · n3), (3)

where λx represents the wavelength after combination.

ax , bx and cx are integer coefficients of the phase combi-

nations on three frequencies.

As a result of Eq. 3, we obtain the following relation-

ships between the weighting coefficients γ1, γ2 and γ3 and

the integer coefficients ax , bx and cx (Henkel and Günther

2010):

γ1 =
ax f1

fx

, γ2 =
bx f2

fx

, γ3 =
cx f3

fx

. (4)

Compared to the method, where a GB code combination is

subtracted from a GB phase combination (Feng et al. 2007),

the general combination described above has the advantage

of being more general and not losing any degrees of free-

dom. Apart from that, the weighting coefficients γ4, γ5 and

γ6 of the code observations do not have to follow the same

relationship as those of the phase observations (see Eq. 4).

In order to generate a GF linear combination, the factor

appearing before the geometry-related terms (see Eq. 2) has
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to be zero. Using Eq. 4, the following equation for the weight-

ing coefficients γ4, γ5 and γ6 of the code observations can

be derived:

ax f1 + bx f2 + cx f3

fx

+ γ4 + γ5 + γ6 = 0. (5)

An IF linear combination requires the factor before I1

(see Eq. 2) to be zero. With the help of Eq. 4, the following

equation can be derived:

γ4 +
f 2
1

f 2
2

γ5 +
f 2
1

f 2
3

γ6 =
f1

fx

(ax + bx

f1

f2
+ cx

f1

f3
). (6)

With Eqs. 5 and 6, the code weighting coefficients γ4 and

γ5 can be expressed as functions of γ6:

γ4 =
m1

fx

+ m2γ6, γ5 =
m3

fx

+ m4γ6, (7)

with

m1 =
f1(( f 2

1 + f 2
2 ) f3ax + 2 f1 f2 f3bx + ( f 2

2 + f 2
3 ) f1cx )

f3( f 2
2 − f 2

1 )
,

m2 = −
f 2
1 ( f 2

2 − f 2
3 )

f 2
3 ( f 2

2 − f 2
1 )

,

m3 =
f2(( f 2

1 + f 2
2 ) f3bx + 2 f1 f2 f3ax + ( f 2

1 + f 2
3 ) f2cx )

f3( f 2
1 − f 2

2 )
,

m4 = −
f 2
2 ( f 2

1 − f 2
3 )

f 2
3 ( f 2

1 − f 2
2 )

,

where m1 and m3 are functions of the three frequen-

cies and the integer coefficients ax , bx and cx with the

characteristics m1(−ax ,−bx ,−cx ) = −m1(ax , bx , cx ) and

m3(−ax ,−bx ,−cx ) = −m3(ax , bx , cx ). m2 and m4 are just

functions of the three carrier frequencies f1, f2 and f3.

2.1 Minimizing the noise level of the GF and IF

triple-frequency linear combinations

Henkel and Günther 2012 has introduced a general method to

minimize the noise level of the multi-frequency code carrier

linear combinations. In this section, an algorithm limited to

triple-frequency GF and IF linear combinations is discussed.

The results of this algorithm for different frequency triplets

using different scaling factors for the code noise are shown

in Sec. 2.2.

Since the code observation noise is dominant in the com-

bined noise, the minimal code observation noise after com-

bination is of great interest. Assuming that the code noise

on the three carrier frequencies σP1, σP2 and σP3 can be

formulated with three scaling factors C4, C5 and C6 and an

unscaled code observation noise σP in meters:

σP1 = C4σP , σP2 = C5σP , σP3 = C6σP , (8)

the so-called code noise amplification factor NCode can be

formulated as follows:

NCode =
√

C2
4γ 2

4 +C2
5γ 2

5 +C2
6γ 2

6

=
√

C2
4 (

m1

fx

+m2γ6)2+C2
5 (

m3

fx

+m4γ6)2+C2
6γ 2

6

=

√

(m2
2C2

4 +m2
4C2

5 +C2
6 )(γ6+

m1m2C2
4 +m3m4C2

5

fx (m2
2C2

4 +m2
4C2

5 +C2
6 )

)2+
1

f 2
x

NM I N ,

(9)

with

NM I N =m2
1C2

4 +m2
3C2

5 −
(m1m2C2

4 +m3m4C2
5 )2

m2
2C2

4 +m2
4C2

5 +C2
6

=
(m1m4−m2m3)

2C2
4C2

5 +m2
1C2

4C2
6 +m2

3C2
5C2

6

m2
2C2

4 +m2
4C2

5 +C2
6

≥0,

and the combined code noise σC
Code expressed in cycles of

λx can be formulated as:

σC
Code = NCode

σP

λx

= NCode

σP fx

c

=
σP

c

√

(m2
2C2

4+m2
4C2

5 +C2
6 ) f 2

x (γ6+
m1m2C2

4+m3m4C2
5

fx (m2
2C2

4 +m2
4C2

5 +C2
6 )

)2+NM I N .

(10)

Equation 10 shows that both, the code noise amplification

factor NCode and the combined code noise σC
Code, are the

square root of a quadratic polynomial in γ6, and are minimal,

if

γ6 = −
m1m2C2

4 + m3m4C2
5

(m2
2C2

4 + m2
4C2

5 + C2
6 ) fx

. (11)

In this case, we have

σC
Code =

σP

c

√

NM I N , (12)

where the value NM I N is independent of the combined fre-

quency fx . Expressed in another way, the minimal σC
Code can

be determined, when the integer coefficients ax , bx and cx

for the phase observations and the scaling factors C4, C5 and

C6 are given. At the same time, all six weighting coefficients

γi (i = 1, . . . , 6) are given up to a common factor fx (see

Eqs. 4, 7 and 11), that does not affect NM I N .

The phase noise plays only a secondary role compared to

the code noise, but it still needs to be considered. Assuming

that the phase observation noise is identical in either meters

or cycles for all the three frequencies, it turns out that the

combined phase noise σC
Phase in cycles is also independent

of the combined frequency fx :
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σC
Phase =

√

γ 2
1 +γ 2

2 +γ 2
3 · σL

λx

=

√

a2
x f 2

1 +b2
x f 2

2 +c2
x f 2

3 · σL

c
, or

σC
Phase =

√

γ 2
1 λ2

1+γ 2
2 λ2

2+γ 2
3 λ2

3 · σC
L

λx

=σC
L

√

a2
x +b2

x +c2
x ,

(13)

where σL and σC
L represent the phase observation noise of the

three carrier frequencies in meters and in cycles, respectively.

The entire combined noise σC in cycles is, thus, also inde-

pendent of the combined frequency fx and can be formulated

as:

σC =
√

(σC
Code)

2 + (σC
Phase)

2. (14)

To eliminate receiver and satellite electronic delays, typ-

ically double differences are formed for ambiguity resolu-

tion. Assuming that the linearly combined measurements

have a white noise, the formal errors σC D
Amb (in cycles) of the

ambiguity estimates on the double-difference level decrease

inversely proportional to the square root of the number of

observation epochs n:

σC D
Amb =

2

√

(σC )2 + (σC
M P )2

√
n

, (15)

where σC
M P represents the multipath errors in cycles for each

station. In Eq. 15, it is assumed that both stations have uncor-

related code and phase noise and multipath errors. The factor

of two in Eq. 15 results from forming of double-differences.

With the assumption that the observation noise has a

normal (Gaussian) distribution, the probability for correct

ambiguity-fixing, namely the success rate, can be calculated

according to Wang et al. (2004):

P D
correct = P(|x | <

1

2
) = P(|z| <

1

2σC D
Amb

), (16)

where P D
correct represents the probabilities for a correct

ambiguity-fixing on the double-difference level, and x and z

stand for the unnormalized and normalized fractional parts

of the ambiguity estimates in cycles, respectively.

The probability of correctly fixing the ambiguity is then

calculated with the cumulative distribution function of the

standardized normal distribution Φ(m):

P(|z| < m) = Φ(m) − (1 − Φ(m)) = 2Φ(m) − 1, (17)

with

Φ(m) =
1

2

(

1 + erf

(

m
√

2

))

,

where erf is the error function, and m stands for 1

2(σC D
Amb)

in

our case.

2.2 The best GF and IF triple-frequency linear

combinations for different GNSS frequency triplets

To find the IF and GF triple-frequency combinations for GPS

signals at L1( f1 =1575.42 MHz), L2( f2 =1227.6 MHz) and

L5( f3 = 1176.45 MHz) with the lowest σC in cycles, the

integer coefficients ax , bx and cx were varied in the range of

−10 to +10. A phase observation noise of σL = 0.01 cycles

was assumed. For the code observation noise, two different

sets of scaling factors C4, C5 and C6 were tested. The first

set assumes an identical noise level of σP =0.5 m for all three

frequencies (C4 =C5 =C6 =1). The best four combinations

resulting in this case are listed in the top part of Table 1. The

second set uses scaling factors according to the CRB (Henkel

and Günther 2012) with σP = 2 m, C4 = C5 = 0.2592 and

C6 = 0.0783 leading to the four combinations given in the

bottom part of Table 1. The entire combined noise values σC

and σC
C R B in cycles for these two cases are shown in the sixth

column of Table 1. The six weighting coefficients γi (i =
1, . . . , 6) are listed in the third, fourth and fifth column. The

wavelength of the linear combinations was set to 1 m. The

success rates on the double-difference level with 1 and 10

observation epochs for these two cases are documented in

the last two columns. The combinations with opposite signs

for ax , bx and cx , which deliver the same σC and σC
C R B , are

not listed in Table 1.

The triple-frequency combinations using code and phase

observations simultaneously are not only eliminating the

first-order term of the ionospheric refraction and all the

geometry-related terms, but they are also reducing the code

noise significantly. Compared to the Melbourne-Wübbena

combination for double frequencies, which leads to a noise

of σC = 0.4136 cycles with the assumption that the code and

phase noise equals 0.5 m and 0.01 cycles, respectively, we can

benefit more from the triple-frequency linear combinations

such as (0,−1,1) with σC = 0.0615 cycles and (1,−4,3) with

σC = 0.3517 cycles. We can also see that σC
C R B for the linear

combination (0,−1,1) is much smaller than σC , because the

observation noise assumed for L5 is much smaller. However,

for the other linear combinations, σC
C R B does not seem to

benefit a lot from this smaller noise on L5.

Apart from GPS, the Galileo system will provide signals at

E1(1575.42 MHz), E6(1278.75 MHz), E5b(1207.14 MHz),

E5(1191.795 Hz) and E5a(1176.45 MHz), and the Chinese

Compass system will also transmit multi-frequency sig-

nals. The combinations for Galileo, named GalileoA (E1,

E6 and E5b), GalileoB (E1, E6 and E5), GalileoC (E1,

E6 and E5a) and GalileoD (E1, E5b and E5a), as well as

the triple-frequency combination for Compass-III (B1 at

1575.42 MHz, B3 at 1268.52 MHz and B2 at 1191.795 MHz)
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Table 1 IF and GF

triple-frequency combinations

for GPS with small combined

noise

ax , bx , cx γi (i = 1, · · · , 6) σC &σC
C RB P D

correct (%)

(cycles) n = 1 n = 10

C4 = C5 = C6 = 1

0, −1, 1 γ1,2,3 0.0000 −4.0948 3.9242 0.0615 100.0 100.0

γ4,5,6 0.0021 0.0759 0.0926

1, −4, 3 γ1,2,3 5.2550 −16.3793 11.7726 0.3517 52.28 97.54

γ4,5,6 −0.6880 −0.0521 0.0917

1, −3, 2 γ1,2,3 5.2550 −12.2845 7.8484 0.3529 52.13 97.49

γ4,5,6 −0.6901 −0.1280 −0.0009

1, −5, 4 γ1,2,3 5.2550 −20.4742 15.6969 0.3612 51.12 97.14

γ4,5,6 −0.6859 0.0238 0.1844

C4 = C5 = 0.2592 C6 = 0.0783

0, −1, 1 γ1,2,3 0.0000 −4.0948 3.9242 0.0284 100.0 100.0

γ4,5,6 0.0136 0.0132 0.1438

1, −6, 5 γ1,2,3 5.2550 −24.5690 19.6211 0.3551 51.86 97.40

γ4,5,6 −0.6493 −0.0878 0.4299

1, −7, 6 γ1,2,3 5.2550 −28.6638 23.5453 0.3560 51.75 97.36

γ4,5,6 −0.6356 −0.0746 0.5737

1, −5, 4 γ1,2,3 5.2550 −20.4742 15.6969 0.3564 51.69 97.34

γ4,5,6 −0.6629 −0.1010 0.2862

(Li et al. 2012) were investigated with respect to their noise

values. The phase observation noise is set to be 0.01 cycles,

while the code observation noise is set to be σP = 0.5 m

with scaling factors C4 = C5 = C6 = 1 for the first case and

σP =2 m with scaling factors proportional to the CRB for the

second case. The CRB for the Galileo signals are 11.14 cm

for E1, 1.95 cm for E5, 7.83 cm for E5a and E5b and 11.36 cm

for E6 (Henkel and Günther 2012). For each system, the two

linear combinations with the lowest combined noise are listed

in Table 2.

We see that for all investigated GNSS, the combined ambi-

guities can be rounded to the nearest integers with high suc-

cess rates after only about 10 observation epochs. Looking

at the second best linear combination, Compass-III and most

of the Galileo combinations show a better performance than

GPS. The σC
C R B is generally much smaller than σC , because

the code observation noise assumed in the case of CRB is

much smaller than σP = 0.5 m. As long as we do not know

the real noise level of the triple-frequency observations, it is

hard to decide which of the two selections of scaling factors is

more suitable for minimizing the combined noise level of the

linear combinations. Therefore, both selections were tested

with real data (see Sec. 4).

3 Resolving ambiguities on the three carrier frequencies

In order to resolve all three ambiguities n1, n2 and n3, three

linearly independent linear combinations are required. It is

hard, however, to find a third linear combination, because all

the combinations with relatively low noise are linearly depen-

dent on the first two combinations given in Tables 1 and 2.

For this reason, significant research has been performed in

recent years to form a third linear combination with relatively

low noise. In this section, the results of such an investigation

are shown using a general linear combination of the phase

observations on three carrier frequencies.

The resolved combined ambiguities from the first two lin-

ear combinations, nx and ny , are introduced as known into

the third linear combination with the ambiguity named nz :

nx =ax n1+bx n2+cx n3, ny =ayn1+byn2+cyn3,

nz =azn1+bzn2+czn3

=
bzcy −czby

bx cy −cx by

nx +
bzcx −czbx

bycx −cybx

ny +Q(az, bz, cz)n1,

(18)

with

Q(az, bz, cz) = az − ax

bzcy − czby

bx cy − cx by

− ay

bzcx − czbx

cx by − bx cy

.

This means that the integer coefficients az, bz and cz of

the third linear combination do not necessarily have to be

integers; only a linear combination of az, bz and cz , here

called Q(az, bz, cz), has to be integer. Because the third lin-

ear combination is linearly independent of the first two, the

integer Q(az, bz, cz) is not allowed to be zero.

If the integer coefficients of the first two linear combina-

tions have the pattern (u, v,−(u + v)) as listed in Tables 1

123



544 K. Wang, M. Rothacher

Table 2 IF and GF

triple-frequency linear

combinations for different

GNSS with small combined

noise

ax , bx , cx σC P D
correct [%] ax , bx , cx σC

CRB P D
correct,CRB[%]

[cycle] n = 1 n = 10 (CRB) [cycle] n = 1 n = 10

GalileoA (E1, E6 and E5b)

0, −1, 1 0.0844 99.70 100.0 0, −1, 1 0.0323 100.0 100.0

1, −3, 2 0.3023 59.17 99.11 1, −3, 2 0.1370 93.19 100.0

GalileoB (E1, E6 and E5)

0, −1, 1 0.1014 98.63 100.0 0, −1, 1 0.0195 100.0 100.0

1, −2, 1 0.3061 58.58 99.02 1, −5, 4 0.1279 94.94 100.0

GalileoC (E1, E6 and E5a)

0, −1, 1 0.1182 96.56 100.0 0, −1, 1 0.0431 100.0 100.0

1, −2, 1 0.3068 58.49 99.00 1, −2, 1 0.1379 93.02 99.64

GalileoD (E1, E5b and E5a)

0, −1, 1 0.0388 100.0 100.0 0, −1, 1 0.0181 100.0 100.0

1, −5, 4 0.3697 50.12 96.75 1, −3, 2 0.1686 86.18 100.0

Compass-III (B1, B3 and B2)

0, −1, 1 0.0901 99.45 100.0

1, −3, 2 0.3148 57.29 98.80

and 2 (see also the pattern found by Cocard et al. (2008)

for the promising triple-frequency GF carrier phase lin-

ear combinations), the function Q(az, bz, cz) always equals

az + bz + cz , which means az + bz + cz has to be an integer.

Let us call this integer I :

I = az + bz + cz . (19)

In order to further reduce the noise, the so-called

ambiguity-corrected phase observations from the first two

linear combinations can be used instead of the code obser-

vations (Li et al. 2010). The phase observations on the three

carriers f1, f2 and f3, and both of the ambiguity-corrected

combined phase observations L̃x and L̃ y are again combined

linearly:

L z = γz1L1 + γz2L2 + γz3L3 + q1 L̃x + q2 L̃ y, (20)

with

L̃x = γx1L1 + γx2L2 + γx3L3 − nxλx , and

L̃ y = γy1L1 + γy2L2 + γy3L3 − nyλy,

whereγxi , γyi andγzi (i=1,2,3) represent the phase weighting

coefficients for the three linear combinations, respectively.

q1 and q2 stand for the weighting coefficients of the

ambiguity-corrected phase observations from the first two

linear combinations. It should be noted that the ambiguity-

corrected phase observations L̃x and L̃ y are neither GF nor

IF.

In order to generate an IF and GF combination according

to Eq. 20, the following two criteria must be fulfilled (see

Eqs. 4, 5 and 6):

gz

fz

+ q1
gx

fx

+ q2

gy

fy

= 0, (21)

with

gi = ai f1 + bi f2 + ci f3, i = x, y, z,

and

hz

fz

+ q1
hx

fx

+ q2

hy

fy

= 0, (22)

with

hi = ai + bi

f1

f2
+ ci

f1

f3
, i = x, y, z.

The parameters q1 and q2 can be calculated as

q1 =
fx (gyhz − gzhy)

fz(gx hy − gyhx )
, q2 = −

fy(gx hz − gzhx )

fz(gx hy − gyhx )
. (23)

In order to calculate the entire combined noise, Eq. 20 can

then be expressed based only on the phase observations on

the three frequencies:

L z = (γz1+q1γx1+q2γy1)L1+(γz2+q1γx2+q2γy2)L2

+(γz3+q1γx3+q2γy3)L3−q1nxλx −q2nyλy . (24)

Assuming that the phase observation noise on the three

carriers is identical and amounts to σL in meters or σC
L in

cycles, the entire combined noise σC
z in cycles of λ1 (see

Eqs. 18, 19 and 24) for the third linear combination can then

be calculated as:

123



Ambiguity resolution for triple-frequency 545

σC
z =

fz · σL

√

sa f 2
1 + sb f 2

2 + sc f 2
3

|I | · c
, or

σC
z =

fz · σC
L

√
sa + sb + sc

|I |
, (25)

with

sa =
(

az

fz

+ q1
ax

fx

+ q2

ay

fy

)2

,

sb =
(

bz

fz

+ q1
bx

fx

+ q2

by

fy

)2

,

sc =
(

cz

fz

+ q1
cx

fx

+ q2

cy

fy

)2

.

Inserting Eq. 23 into 25, we obtain the equations

sa =
pa

f 2
z

, sb =
pb

f 2
z

, sc =
pc

f 2
z

, (26)

with

pa =
(

az + ax

gyhz − gzhy

gx hy − gyhx

− ay

gx hz − gzhx

gx hy − gyhx

)2

,

pb =
(

bz + bx

gyhz − gzhy

gx hy − gyhx

− by

gx hz − gzhx

gx hy − gyhx

)2

,

pc =
(

cz + cx

gyhz − gzhy

gx hy − gyhx

− cy

gx hz − gzhx

gx hy − gyhx

)2

,

where pa, pb and pc are functions of the three carrier fre-

quencies f1, f2 and f3 and the integer coefficients ai , bi and

ci (i = x, y, z). They are independent of the three combined

frequencies fx , fy and fz .

Inserting Eq. 26 into 25, we obtain:

σC
z =

σL

√

pa f 2
1 + pb f 2

2 + pc f 2
3

|I | · c
, or

σC
z =

σC
L

√
pa + pb + pc

|I |
. (27)

We see that σC
z (in cycles of λ1) is independent of the com-

bined frequencies fx , fy and fz . From Eqs. 18, 19 and 23,

it is not hard to get:

gi (−ai ,−bi ,−ci ) = −gi (ai , bi , ci ),

hi (−ai ,−bi ,−ci ) = −hi (ai , bi , ci ),

pa(−ai ,−bi ,−ci ) = pa(ai , bi , ci ),

pb(−ai ,−bi ,−ci ) = pb(ai , bi , ci ),

pc(−ai ,−bi ,−ci ) = pc(ai , bi , ci ), i = x, y, z. (28)

As a result, σC
z will not be affected if all the signs of the

integer coefficients ai , bi and ci are changed simultaneously:

σC
z (−ai ,−bi ,−ci ) = σC

z (ai , bi , ci ). (29)

Equation 27 can also be formulated with the phase obser-

vation noise and a noise factor µ or µC :

σC
z = σL · µ = σC

L · µC , (30)

with

µ :=

√

pa f 2
1 + pb f 2

2 + pc f 2
3

|I | · c
, µC :=

√
pa + pb + pc

|I |
.

If the integer coefficients (ax , bx , cx ) and (ay, by, cy)

of the first two linear combinations follow the pattern

(u, v, −(u +v)) as in Tables 1 and 2, the noise factors µ and

µC are independent of the integer coefficients ai , bi and ci

(i = x, y, z). This conclusion agrees with the results of Li et

al. (2010). We get

µ=

√

f 4
1 ( f 2

2 − f 2
3 )2+ f 4

2 ( f 2
1 − f 2

3 )2+ f 4
3 ( f 2

1 − f 2
2 )2

|( f1− f2)( f1− f3)( f2− f3)| · c
,

µC =

√

f 2
1 ( f 2

2 − f 2
3 )2+ f 2

2 ( f 2
1 − f 2

3 )2+ f 2
3 ( f 2

1 − f 2
2 )2

|( f1− f2)( f1− f3)( f2− f3)|
. (31)

σC
z (in cycles of λ1) was calculated for different GNSS

frequency triplets with a pre-defined phase observation noise

σL = 5 mm or σC
L = 0.01 cycles. The results are shown

in Table 3. The second and the fourth column list σC
z with

σL = 5 mm and σC
L = 0.01 cycles, while the third and fifth

column document the corresponding noise factors µ and µC .

We see that the third linear combinations of Compass-III,

GalileoA, GalileoB and GalileoC reach a lower noise factor

than GPS. The noise factors µ and µC for GalileoC with E1,

E6 and E5a are about 40% smaller than those for GPS.

The formal errors of the n1 ambiguity estimates decrease

with an increasing number of observation epochs (see

Eq. 15). Figure 1 (top) shows the formal errors σC D
Amb of

the n1 ambiguity estimates on the double-difference level

for different GNSS frequency triplets ignoring the multi-

path errors because of the low weighting coefficients of the

code observations (see Table 1). The noise level of the phase

observations is set to be σC
L = 0.01 cycles. We immediately

see that the combinations GalileoA, GalileoB, GalileoC and

Compass-III show an even better behavior than GPS. For

GalileoC (black line) σC D
Amb is lower than 0.2 cycles after

213 epochs and reaches about 0.13 cycles after 500 epochs.

The formal errors of the n1 ambiguity estimates are also

directly related to the success rates (see Eq. 16) of the ambi-

guity resolution, which are shown in Fig. 1 (bottom) with

σL = 0.01 cycles. We conclude that under the assumptions

made, the success rates for GalileoB (green line), GalileoC

(black line) and Compass-III (yellow line) are above 90%

after 200 epochs.
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Table 3 Combined noise and

the noise factors of the third

linear combination for different

GNSS frequency triplets

σL = 5 mm σL = 0.01 cycles

σC
z (cycles) µ σC

z (cycles) µC

GPS (L1,L2,L5) 5.0676 1,013.5 2.5082 250.8

GalileoA (E1,E6,E5b) 4.5348 907.0 2.1542 215.4

GalileoB (E1,E6,E5) 3.6707 734.1 1.7431 174.3

GalileoC (E1,E6,E5a) 3.0754 615.1 1.4588 145.9

GalileoD (E1,E5b,E5a) 7.9361 1,587.2 3.9813 398.1

Compass-III (B1,B3,B2) 3.9918 798.4 1.9123 191.2

Fig. 1 Formal errors of the n1 ambiguity estimates (top) and the suc-

cess rates (bottom) as a function of the number n of observation epochs

4 The best linear combination after resolving all three

ambiguities

After resolving n1 according to Sec. 3, the other two ambi-

guities n2 and n3 can easily be computed using the resolved

combined ambiguities nx and ny (see Eq. 18). Making use

of our knowledge of all three integers n1, n2 and n3, we are

now looking for the best IF and GB linear combination with

minimized noise in meters.

With the help of Eq. 1, the triple-frequency phase linear

combination can be formulated as:

L P = γ1L1+γ2 L2+γ3L3 − (γ1λ1n1+γ2λ2n2+γ3λ3n3)

= (γ1 + γ2+γ3)(ρ + δtro+cδr − cδs)

−(γ1 +
f 2
1

f 2
2

γ2 +
f 2
1

f 2
3

γ3)I1, (32)

where L P represents the triple-frequency phase linear com-

bination.

Li et al. (2012) have shown that the coefficients γ1, γ2 and

γ3 are just functions of the three frequencies. The minimal

combined noise values σ M D
min in meters for different GNSS

frequency triplets on the double-difference level are listed

in Table 4 with the assumption that the phase observation

noise is 0.01 cycles on each of the three frequencies. After

resolving the three ambiguities, the minimized noise of the

phase GB and IF linear combination is then about 1 cm for

all the investigated GNSS frequency triplets.

5 Verification with real data

The theoretical derivations of the GF and IF triple-frequency

linear combinations were verified with real GPS and Galileo

data. The two GPS–IIF satellites PRN01 (SVN63) and

PRN25 (SVN62) are sending signals on the three frequencies

f1, f2 and f5 (USNO 2012). Both of the GIOVE (Galileo In-

Orbit Validation Element) satellites, GIOVE–A and GIOVE–

B, and the two Galileo In-Orbit Validation (IOV) satellites

(PFM and FM2), which were launched in October 2011, are

also providing signals on more than two frequencies (Inside

GNSS 2012). The 24-h Multi-GNSS Experiment (M–GEX)

data (Weber 2012) with a sampling rate of 30 s were collected

for the period 29 April 2012 to 9 May 2012 from the IGS web-

site ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/

daily/rinex3/2012 (Noll et al. 2009) in the format RINEX

3.00 (Gurtner 2007; Januszewski 2011). About 30 M–GEX

stations were available in this time period (see Fig. 2).

Table 4 Minimized combined

noise of the GB and IF linear

combination after solving the

three ambiguities in meters on

the double-difference level for

different GNSS

γ1 γ2 γ3 σMD
min (m)

GPS (L1,L2,L5) 2.3522 −0.4964 −0.8557 0.0102

GalileoA (E1,E6,E5b) 2.5422 −0.4559 −1.0863 0.0113

GalileoB (E1,E6,E5) 2.4510 −0.3679 −1.0831 0.0109

GalileoC (E1,E6,E5a) 2.3604 −0.2875 −1.0729 0.0106

GalileoD (E1,E5b,E5a) 2.3241 −0.5591 −0.7649 0.0101

Compass-III (B1,B3,B2) 2.4521 −0.4159 −1.0362 0.0109
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Fig. 2 Multi-GNSS experiment (M–GEX) stations on 29 April 2012

5.1 Fractional parts and formal errors of nx and ny

In order to form double-differenced triple-frequency linear

combinations, at least two satellites of each system provid-

ing more than two frequencies have to be available. The two

GPS–IIF satellites PRN01 and PRN25 can only be observed

simultaneously from two stations during a short time interval

at low elevation angles, while a relatively long overlapping

time can be found for E11 (Galileo–IOV satellite PFM), E12

(Galileo–IOV satellite FM2) and E52 (GIOVE–B satellite)

in the available M–GEX dataset. Because no signal on fre-

quency E6 was recorded simultaneously for two stations with

a baseline shorter than 1,000 km, the frequency combination

GalileoD (E1, E5b, E5a) (see Fig. 1; Tables 2, 3) was used

for the processing of Galileo baselines. An elevation mask of

6◦ was set for all satellites. The observations were weighted

with the elevation angle βE according to

PZ s
r

= sin(βE )2,

PD =
1

1
P

Z1
1

+ 1
P

Z2
1

+ 1
P

Z1
2

+ 1
P

Z2
2

, (33)

where PZ s
r

and PD represent the weight of the observations

on the zero-difference and double-difference level.

Figure 3 shows the fractional parts and the formal errors

of the estimated nx and ny for two Galileo baselines, namely

ons1 (Onsala, Sweden) – mar7 (Gavle, Sweden) with a base-

line length of 470 km and brux (Brussels, Belgium) – grab

(Graz, Austria) with a baseline length of 913 km (see Fig. 3a

, b) as well as for two GPS baselines ons1–mar7 and kir8

(Kiruna, Sweden) – mar7 with a baseline length of 832 km

(see Fig. 3c, d). Generally speaking, the estimated nx and ny

from the first two GF and IF linear combinations mostly have

an absolute fractional part below 0.2 cycles with a formal

error smaller than 0.1 cycles. We see that the formal errors

decrease with increasing number of observation epochs and

are mostly below or around the expected values (red line

and blue line; according to Eq. 15) except for some outliers

generated by the Galileo baseline brux–grab. It is not hard

to see that for the Galileo linear combinations, the results

generated from baseline brux–grab are generally worse than

the results of the baseline ons1–mar7. The reason certainly

is that different tracking modes or channels for the same

frequency (Gurtner 2007) exhibit biases that do not cancel

by double-differencing. In addition, since different antenna

types are part of the baseline brux–grab, Phase Center Vari-

ations (PCVs) may also lead to deviations from integers. It

should be noted that signals were received on the same chan-

nels for the Galileo baseline ons1–mar7 (E1X, E5bX, E5aX),

but at different channels for the baseline brux–grab with E1C,

E5bQ and E5aQ for station brux and E1X, E5bX, E5aX for

station grab. For the GPS baselines, the results using the

channels (L1C, L2W, L5X) are plotted.

5.2 Impact of receiver tracking modes on nx and ny

To have a closer look at the differences in the results caused

using different tracking channels, the fractional parts and the

formal errors of the estimated nx and ny ambiguities were

compared using different tracking channels for both of the

GPS baselines. Only identical ambiguities (same baseline,

same day and same number of observation epochs) were com-

pared and the standard deviations of the absolute fractional

parts (see column 2 and 3) and the standard deviations of

the formal errors (column 4 and 5) for each tracking channel

combination are listed in Table 5. We see that the fractional

nx of the combination L1C, L2W and L5X for one station

and L1C, L2X and L5X for the other station are the smallest

for the case of 45 epochs, while using channels L1C, L2W

and L5X for both stations seems to be the best choice for

160 epochs. Among different choices of tracking channels,

we did not observe big differences for the formal errors. As

expected, the formal errors of the linear combinations with

about 160 epochs are generally smaller than those with only

45 epochs. The scaling factors of the formal errors between

the two cases are bigger than the expected scaling factors√
160/45 because of the elevation dependency. For the case

of 160 epochs, the elevation angles are generally larger than

for the 45 epoch case. We also see that the real errors (column

2 and 3) are slightly smaller than the formal errors (column

4 and 5) for the case of 45 epochs and bigger than the for-

mal errors for the case of 160 epochs. The systematic effects

(such as multipath errors) play a more and more important

role as the time interval considered is increasing. A more

concrete investigation concerning the channel combinations

will be possible, if more M–GEX data is available in the

future.
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(c) (d)

(b)(a)

Fig. 3 Fractional parts (a), (c) and formal errors (b), (d) of the estimated nx and ny for the Galileo baselines ons1–mar7 and brux–grab and for

the GPS baselines ons1–mar7 and kir8–mar7 from 30 April 2012 to 9 May 2012

Table 5 Standard deviations of

the absolute values of the

fractional parts nx and ny and

standard deviations of their

formal errors for different

channel combinations with

different numbers of observation

epoches

∆nx ∆ny σnx σny

(cycles) (cycles) (cycles) (cycles)

Number of observation epochs: ca. 45

L1C,L2W,L5X – L1C, L2W, L5X 0.0254 0.0932 0.0255 0.1169

L1C,L2X,L5X – L1C, L2X, L5X 0.0190 0.0902 0.0232 0.1180

L1C,L2W,L5X – L1C, L2X, L5X 0.0178 0.0974 0.0247 0.1181

L1C,L2X,L5X – L1C, L2W, L5X 0.0433 0.0866 0.0243 0.1168

Number of observation epochs: ca. 160

L1C,L2W,L5X – L1C, L2W, L5X 0.0082 0.0782 0.0095 0.0425

L1C,L2X,L5X – L1C, L2X, L5X 0.0126 0.0606 0.0087 0.0431

L1C,L2W,L5X – L1C, L2X, L5X 0.0357 0.0541 0.0093 0.0431

L1C,L2X,L5X – L1C, L2W, L5X 0.0198 0.0847 0.0090 0.0425

5.3 Scaling factors for the code noise

As discussed in Sec. 2, two different sets of scaling factors for

the code observation noise on the three frequencies, namely

the identical scaling factors C4 = C5 = C6 = 1 and the

scaling factors according to CRB, were tested with real data.

Since the overlapping time interval for the observation of

the two GPS satellites PRN01 and PRN25 is very short for
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Fig. 4 Differences of the formal errors for the first two linear combina-

tions using the CRB and identical scaling factors for Galileo baselines

ons1–mar7 and brux–grab from 29 April 2012 to 9 May 2012

most of the baselines, only real data of the Galileo satel-

lites from 29 April 2012 to 9 May 2012 was used for this

analysis. The differences in the formal errors using the two

sets of scaling factors (CRB scaling factors minus identical

scaling factors) are shown in Fig. 4. We see that in most of

the cases, using identical scaling factors generates smaller

formal errors for the combined ambiguity ny of the second

linear combination, especially for ambiguities ny with short

observation intervals. For the first linear combination, the

case using identical scaling factors is also slightly better than

using the CRB scaling factors. This gives a hint that the actual

measurement noise levels of the code observations on differ-

ent frequencies should be studied more carefully. In view of

the better performance, the ambiguities nx and ny based on

C4 = C5 = C6 = 1 were thus introduced for the analysis of

the third linear combination.

5.4 The third linear combination

The linear combinations of the real observation data which

were used to fix nx , ny and n1 for the baseline ons1–mar7 and

satellites E11 and E52 between 1:09 and 5:08 am on 29 April

2012 are shown in Fig. 5 as an example. The third linear com-

bination LC D
z was corrected by

bzcy−czby

bx cy−cx by
nx + bzcx −czbx

bycx −cybx
ny

and divided by the integer I (see Eq. 18). We see that the

core problem of triple-frequency ambiguity resolution is fix-

ing the ambiguities n1 with the third linear combination.

The triple-frequency combinations for the baselines ons1–

mar7 and brux–grab on 29 April 2012 are listed in Table 6.

The frequencies on L1, L2 and L5 and on E1, E5b and E5a

were available and used when forming triple-frequency lin-

ear combinations. In Table 6, the channels which generate the

lowest formal error for n1 on 29 April 2012 were selected

Fig. 5 The three linear combinations used for fixing nx , ny and n1

for baseline ons1–mar7 and satellites E11 and E52 between 1:09 and

5:08 am on 29 April 2012

for each baseline. The second and fourth column document

the fractional parts of the estimated combined ambiguities

nx and ny , and the third and fifth column list their cor-

responding formal errors. The estimated n1 from the third

linear combination and its formal error are listed in the sixth

and seventh column, and the last column lists the expected

formal errors σ E
n1 of n1 calculated with the theoretical deriva-

tions (see Eqs. 15, 30) based on the assumption that the phase

observation noise is 0.01 cycles and independent of the ele-

vation angle.

We see that for the third combined ambiguity, the for-

mal error is sometimes bigger than expected and sometimes

smaller. The relatively big formal error of n1 is very likely

caused by the real observation noise, which is bigger than

expected, or the effects that are included in the observa-

tion noise such as, e.g. multipath errors. To have a closer

look, Fig. 6a, b shows the third combined observation LC D
z

in cycles on the double-difference level divided by the fac-

tor µC for different pairs of stations and satellites. An off-

set was subtracted for each pair and each time interval. The

elevation angles for the two Galileo baselines are shown in

Fig. 6c, d. We see an obvious correlation between the ele-

vation angles, the observation noise and the formal errors of

the estimated n1.

The standard deviation σC D
L of the combined phase obser-

vations
LC D

z

µC in Fig. 6a, b and the mean values of the elevation-

dependent weights of the double-differenced observations

are given in Table 7. The expected phase observation noise

σ EC D
L on the double-difference level is 0.02 cycles.

It is not hard to see that the real noise for short observation

intervals is in some cases bigger than 0.02 cycles due to

the low elevation angles (small weights), which results in

relatively big formal errors in Table 6.
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Table 6 The estimated ambiguities and their formal errors for three linearly independent combinations on the double-difference level using M–GEX

data on 29 April 2012

Number of epochs nx σnx ny σny n1 σn1 σ E
n1

(cycles) (cycles) (cycles) (cycles) (cycles) (cycles) (cycles)

ons1–mar7 (470 km) G01, G25 (L1C, L2X, L5X – L1C, L2W, L5X)

127 −0.0234 0.0110 0.0891 0.0588 −0.2511 0.5938 0.4451

kir8–mar7 (832 km) G01, G25 (L1C, L2X, L5X – L1C, L2W, L5X)

159 −0.0186 0.0093 0.0790 0.0412 −0.3252 0.5109 0.3978

47 −0.0387 0.0251 −0.0745 0.1106 0.3466 1.3730 0.7317

ons1–mar7 (470 km) E11, E52 (E1X, E5bX, E5aX – E1X, E5bX, E5aX)

478 −0.0005 0.0018 −0.0103 0.0144 0.1667 0.1864 0.3642

168 0.0026 0.0072 −0.0326 0.0568 −0.1184 0.7364 0.6143

brux–grab (913 km) E11, E12 (E1C, E5bQ, E5aQ – E1X, E5bX, E5aX)

466 −0.0032 0.0018 −0.0123 0.0334 −0.3812 0.1594 0.3689

121 0.0153 0.0147 0.3171 0.2771 0.0640 1.3219 0.7239

(a) (b)

(c) (d)

Fig. 6 The third combined observation LC D
z in cycles on the double-

difference level divided by factor µC for baseline a ons1–mar7 and b

kir8–mar7 and brux–grab and the corresponding elevation angles for

the two Galileo baselines c ons1–mar7 and d brux–grab on 29 April

2012. The green dots represent the observations with an elevation angle

lower than 6◦
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Table 7 Real phase observation

noise for some double-

differenced observations on 29

April 2012

Baseline Satellites Number of epochs σCD
L PD σECD

L

(cycles) (Eq. 33) (cycles)

ons1–mar7 (470 km) G01, G25 127 0.0269 0.0128 0.0200

E11, E52 478 0.0133 0.1042 0.0200

168 0.0259 0.0190 0.0200

kir8–mar7 (832 km) G01, G25 159 0.0265 0.0197 0.0200

47 0.0323 0.0092 0.0200

brux–grab (913 km) E11, E12 466 0.0102 0.1393 0.0200

121 0.0291 0.0078 0.0200

(b)(a)

Fig. 7 Formal errors of estimated nx , ny and n1 for Galileo baselines ons1–mar7 and brux–grab and GPS baselines ons1–mar7 and kir8–mar7

from 29 April 2012 to 9 May 2012

Figure 7 shows the formal errors of the estimated nx , ny

and n1 for (a) the two Galileo baselines and (b) the two

GPS baselines for the time period from 29 April 2012 to

9 May 2012. The red, blue and black dots represent the

formal errors of the estimated nx , ny and n1, respectively.

The magenta lines stand for the expected formal errors of n1

with the assumption that the phase observation noise equals

0.01 cycles on the zero-difference level. They correspond to

the magenta line (Galileo) and the blue line (GPS) in Fig. 1

(top). The green line marks the boundary of 0.2 cycles for

the formal errors. We see that the formal errors decrease

with an increasing number of observation epochs. nx and

ny , which are determined from the first two linear combi-

nations, are generally much easier to be fixed than n1 from

the third linear combination. Most of the formal errors for

n1 are below or around the expected values, which suggests

a phase observation noise around or lower than the assumed

0.01 cycles, except for some cases with short observation

intervals and low elevation angles. The formal errors for n1

are mostly below 0.2 cycles, if the number of observation

epochs is larger than 400 epochs.

Table 8 lists the real errors, i.e. the absolute fractional

parts, and the formal errors of the estimated nx , ny and n1

for the cases with more than 400 observation epochs for both

of the Galileo baselines. We see that the real errors are mostly

smaller than 0.01 cycles for nx and 0.15 cycles for ny . The

real errors for the first two linear combinations are sometimes

bigger than the formal errors, but do not affect the fixing of

nx and ny . For the third linear combination, the real errors

are about 67% bigger than the formal errors and are some-

times bigger than 0.3 cycles. The systematic effects, such as

multipath errors, that are present in the phase-only observa-

tions, result in difficulties for the ambiguity resolution of n1.

We also see that the behavior of the baseline ons1–mar7 is

much better than the baseline brux–grab for both, the second

and the third linear combination. The biases caused by dif-

ferent tracking channels (see Sec. 5.2) and, possibly, PCVs

caused by different antenna types play an important role in

ambiguity resolution.

However, with more and more Galileo and GPS satellites

providing three frequencies in the near future, longer obser-

vation times including also higher elevation angles can be
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Table 8 Real and formal errors

of the estimated nx , ny and n1

for both of the Galileo baselines

with more than 400 observation

epochs

Number of epochs |δnx | σnx |δny | σny |δn1| σn1

(cycles) (cycles) (cycles) (cycles) (cycles) (cycles)

ons1–mar7

418 0.0008 0.0020 0.0327 0.0153 0.1152 0.1443

421 0.0028 0.0018 0.0026 0.0168 0.2949 0.1418

466 0.0020 0.0020 0.0469 0.0168 0.3854 0.2210

478 0.0005 0.0018 0.0103 0.0144 0.1667 0.1864

500 0.0017 0.0020 0.0342 0.0154 0.1872 0.2132

546 0.0026 0.0015 0.0058 0.0140 0.2781 0.1451

598 0.0026 0.0016 0.0436 0.0150 0.1367 0.1792

brux–grab

408 0.0028 0.0031 0.2499 0.0558 0.3949 0.2758

424 0.0156 0.0031 0.1600 0.0537 0.3015 0.2522

466 0.0032 0.0018 0.0123 0.0334 0.3812 0.1594

508 0.0031 0.0018 0.0825 0.0404 0.3839 0.1595

512 0.0009 0.0023 0.0802 0.0393 0.1572 0.1847

521 0.0003 0.0021 0.2056 0.0381 0.4465 0.1882

606 0.0000 0.0019 0.1483 0.0326 0.3810 0.1897

687 0.0003 0.0018 0.0436 0.0295 0.2971 0.1594

expected. It will, thus, be possible to obtain a higher success

rate for fixing n1 in the third linear combination, i.e. more

n1 ambiguities with a formal error lower than 0.2 cycles will

result. To achieve better results, it will also be necessary to

calibrate the PCVs as well as the differential code biases

(DCBs) between channels. Furthermore, if the signals on E6

from the Galileo satellites and the signals on B1, B3 and

B2 from the Compass-III satellites can be received by more

stations in the future, the linear combinations of GalileoA,

GalileoB, GalileoC and Compass-III (see Table 3) will be

able to generate much better results for n1, namely better by

a factor of two to three.

6 Summary and conclusions

In this work, we presented a simplified method for ambiguity

resolution using triple-frequency GF and IF linear combi-

nations. The code and phase observations on the three fre-

quencies were simultaneously used to identify the two GF

and IF linear combinations with the lowest noise level. It

has been demonstrated that the noise level after forming the

linear combinations is independent of the combined wave-

length. The third linear combination with a low noise level is

much more difficult to be found and poses the core problem

in triple-frequency ambiguity resolution. A general method

using the ambiguity-corrected phase observations without

any constraints was used to search for the optimal GF and

IF linear combination. We analytically demonstrated that

the combined noise level is only a function of the three

frequencies and not depending on the details of the lin-

ear combination. The resulting frequency-dependent factor

was investigated for different GNSS frequency triplets. The

Galileo combination using E1, E6 and E5a shows the best

behavior among all the systems.

The theoretical derivations were verified with real data.

Different scaling factors for the code noise on the three fre-

quencies were set and tested. Using identical scaling fac-

tors has been shown to be better than using scaling factors

derived from the CRB of the signals, especially for the sec-

ond linear combination. The formal errors of the estimated

ambiguities using E1, E5b and E5a, which is expected to

show the worst performance among different GNSS triple-

frequency combinations in our investigation, are mostly bet-

ter than expected and below 0.2 cycles, if the observation

span is longer than 400 epochs. The ambiguities with big

formal errors have usually short observation times and low

elevation angles. Because the number of the available triple-

frequency satellites is very limited at the moment, the obser-

vation time for each ambiguity on the double-difference level

is in most of the cases relatively short. With more and more

triple-frequency satellites and better calibrations of PCVs

and DCBs between channels in the near future, we can expect

a more reliable ambiguity resolution. Furthermore, if the

Galileo E6 signal of more stations will become available, an

improvement factor of two to three in total can be expected.
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