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AMBIGUITY, RISK, AND ASSET RETURNS 
IN CONTINUOUS TIME 

BY ZENGJING CHEN AND LARRY EPSTEIN' 

Models of utility in stochastic continuous-time settings typically assume that beliefs are 
represented by a probability measure, hence ruling out a priori any concern with ambiguity. 
This paper formulates a continuous-time intertemporal version of multiple-priors utility, 
where aversion to ambiguity is admissible. In a representative agent asset market setting, 
the model delivers restrictions on excess returns that admit interpretations reflecting a 
premium for risk and a separate premium for ambiguity. 

KEYWORDS: Ambiguity, asset pricing, backward stochastic differential equations, recur- 
sive utility, continuous-time. 

1. INTRODUCTION 

1.1. Outline 

IT IS INTUITIVE that many choice situations feature 'Knightian uncertainty' or 
'ambiguity' and that these are distinct from 'risk.' The Ellsberg Paradox and 
related evidence have demonstrated that such a distinction is behaviorally mean- 
ingful. However, the distinction is not permitted within the subjective expected 
utility framework, or even more broadly, if preference is 'probabilistically sophis- 
ticated.' Because continuous-time modeling has universally assumed probabilistic 
sophistication, it has focussed on risk and risk aversion as the important charac- 
teristics of choice situations, to the exclusion of a role for ambiguity. This paper 
presents a formulation of utility in continuous-time that permits a distinction 
between risk aversion and ambiguity aversion, as well as a further distinction 
between these and the willingness to substitute intertemporally. This three-way 
distinction is accomplished through an extension of stochastic differential utility 
(Duffie and Epstein (1992a)) whereby the usual single prior is replaced by a set 
of priors, as in the atemporal model of Gilboa and Schmeidler (1989). We call 
the resulting model recursive multiple-priors utility.2 

1 Some of this work was completed while Epstein was visiting the HKUST and U. Paris-Dauphine 
and while Chen was visiting INRIA; the hospitality of these institutions is gratefully acknowledged. 
Financial support was provided by the National Natural Science Foundation of China, the Young 
Foundation of Shandong U., and by the NSF (Grant SES-9972442). We have benefited from dis- 
cussions with Rose-Anne Dana, Jerome Detemple, Nicole El Karoui, Lars Hansen, Xing Jin, Mas- 
simo Marinacci, Angelo Melino, Jianjun Miao, Werner Ploberger, Martin Schneider, Nizar Touzi, 
Tan Wang, and especially Shige Peng. We are grateful also for valuable suggestions from three very 
patient referees and an editor. First version: December 1998. 

2 To explain this nomenclature, note that stochastic differential utility is the continuous-time coun- 
terpart of recursive utility (Epstein and Zin (1989)). 
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Our model of utility is the continuous-time counterpart of that in Epstein 
and Wang (1994, 1995). It is well known that continuous-time modeling affords 
considerable analytical advantages. These are manifested here in our applica- 
tion of recursive multiple-priors utility to a representative agent asset pricing 
setting to study the effects of the ambiguity associated with asset returns. We 
show (Section 5) that excess returns for a security can be expressed as a sum of 
a risk premium and an ambiguity premium. We elaborate shortly (Section 1.2) 
on the potential usefulness of such a result and more generally, of admitting 
that security returns embody both risk and ambiguity, for addressing two long- 
standing empirical puzzles. At this point, we wish to emphasize that none of the 
asset pricing results and potential applications discussed in this paper are dis- 
cussed in the cited papers by Epstein and Wang. Their focus is on the connection 
between ambiguity and the indeterminacy of equilibrium. In particular, a decom- 
position of excess returns into risk and ambiguity premia is not presented, nor is 
it apparent in the discrete-time framework, though it jumps off the page in the 
continuous-time setting. 

The paper proceeds as follows. The rest of this introduction elaborates on 
potential applications. Section 2 specifies recursive multiple-priors utility. This is 
accomplished in stages, beginning with an outline of the essential ingredients of 
the atemporal model. Section 3 provides some examples. Ambiguity and ambi- 
guity aversion are examined in Section 4 and the application to asset pricing is 
provided in Section 5. Proofs are collected in appendices. 

1.2. Ambiguity in Markets 

The importance of the Ellsberg Paradox is that it is strongly suggestive of the 
importance of ambiguity also in nonexperimental settings. Asset markets provide 
an obvious instance. The risk-based models that constitute the paradigm in this 
literature have well documented empirical failures; and introspection suggests (at 
least to us) that ambiguity is at least as prominent as risk in making investment 
decisions. An illustration of the potential usefulness of recognizing the presence 
of ambiguity is provided by the equity premium puzzle (Mehra and Prescott 
(1985)-the failure of the representative agent model to fit historical averages of 
the equity premium and the risk-free rate. One aspect of the puzzle is that an 
implausible degree of risk aversion is needed to rationalize the observed equity 
premium. Naturally, the equity premium is viewed as a premium for the greater 
riskiness of equity. The alternative view that is suggested by our analysis is that 
part of the premium is due to the greater ambiguity associated with the return 
to equity, which reduces the required degree of risk aversion. 

Another potential role for ambiguity is in addressing the home-bias puzzle, 
whereby investors in many countries invest 'too little' in foreign securities. Natu- 
rally, 'too little' is from the perspective of a model where securities are differen- 
tiated only via their risk characteristics. However, if foreign securities are more 
ambiguous than domestic ones, then admitting this possibility into the model 
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may help to resolve the puzzle. This approach has been developed, with some 
success, in Epstein and Miao (2001).3 

Further applications of our model are suggested by the related work on robust 
decision-making; see Hansen and Sargent (2000) and Anderson, Hansen, and 
Sargent (2000), for example. Though these authors refer to 'model uncertainty' 
rather than 'ambiguity,' their model is also motivated in part by the Ellsberg 
Paradox and it is proposed as an intertemporal version of the Gilboa-Schmeidler 
model. The utility function specification supporting the robust control approach 
is described in Hansen and Sargent (2001) and a detailed comparison of the 
two models of utility is provided in Epstein and Schneider (2001a).4 In spite of 
the substantial differences between the models described there, the commonality 
in motivation and spirit suggests that the macroeconomic applications discussed 
by these authors (see also Hansen, Sargent, and Tallarini (1999) and Cagetti 
et al. (2002)) are potential applications of our model as well. These include 
also normative applications, for example, to optimal monetary policy in a setting 
where the monetary authority does not know precisely the true model describing 
the environment (Onatski (2000) and Onatski and Stock (2002)). 

To provide some perspective on the above applications, consider two issues 
that may have already occurred to readers, namely, (i) observational equivalence 
and (ii) learning. 

For (i), consider the alternative deviation from rational expectations modeling 
whereby we continue to assume probabilistic sophistication (a single prior) but 
relax the rational expectations hypothesis that the agent knows the true prob- 
ability law. This approach is adopted in Abel (2002) and Cecchetti, Lam, and 
Mark (2000) in order to address the equity premium puzzle. Our model ulti- 
mately delivers a 'distorted probability measure,' selected endogenously from the 
agent's set of priors, that would deliver the identical representative agent equi- 
librium were it adopted as a primitive specification of beliefs. That is, there is an 
observational equivalence if one restricts attention to a single dynamic equilib- 
rium. Nevertheless, our approach has several advantages. 

First, the observational equivalence fails once one connects the dynamic 
equilibrium to behavior in other settings. For example, the equity premium 
puzzle concerns not only the historical equity premium but also behavior in 
other settings and introspection regarding plausible choices between hypotheti- 
cal lotteries-these are used to determine the range of plausible risk aversion. 
Implicit is that the prospects involved in all these settings are purely risky, justify- 
ing the transfer of preference parameters across settings. Such transfers are inap- 
propriate, however, under our working hypothesis that prospects faced in an asset 
market are qualitatively different than hypothetical lotteries where prizes are 
determined by the outcome of a coin flip, for example. In this way, even though 

3 Once again, continuous-time plays an important role. 
4 One difference is that the robust control model violates the usual notion of dynamic consistency. 

Another difference is that its underlying updating rule is such that conditional preference at time 
t > 0 depends on what might have happened in other unrealized parts of the event tree. 
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any excess return that can be generated by our model could also be delivered by 
a model in which equity is viewed exclusively as risky but where perceived risk- 
iness is relative to erroneous beliefs, reinterpretation of the equity premium as 
due partly to ambiguity has potential empirical significance. 

Second, there is an appeal to basing an explanation of asset market behavior 
on a phenomenon, namely ambiguity aversion, that is plausibly important in a 
variety of settings, rather than on a particular and invariably ad hoc specification 
of erroneous beliefs. Finally, an agent using the wrong probability measure may 
plausibly be aware of this possibility and thus be led to seek robust decisions. 
Such self-awareness and a desire for robust decisions lead naturally to consider- 
ation of sets of priors. 

The second natural question concerning our model is "would ambiguity not 
disappear eventually as the agent learns about her environment?" For example, 
given an Ellsberg urn containing balls of various colors in unknown proportions, 
it is intuitive that the true color composition would be learned asymptotically if 
there is repeated sampling (with replacement) from the urn. However, intuition 
is different for the modified setting where there is a sequence of ambiguous Ells- 
berg urns, each containing balls of various colors in unknown proportions, and 
where sampling is such that the nth draw is made from the nth urn. If the agent 
views the urns as 'identical and independent,' then one would not expect ambigu- 
ity to vanish. Indeed, Marinacci (1999) and Epstein and Schneider (2001b) prove 
LLN results appropriate for beliefs represented by a set of priors in which the 
connection between empirical frequencies and asymptotic beliefs is weakened to 
a degree that depends on the extent of ambiguity in prior beliefs. The latter paper 
adopts the discrete-time counterpart of recursive multiple-priors utility and thus 
is directly relevant. 'Identical and independent' is modeled there by conditional 
one-step-ahead beliefs that are independent of history and time. The continuous- 
time counterpart corresponds to the special case of our model called IID ambi- 
guity (Section 3.4), where, roughly speaking, the increments {dWt: t > 0} of the 
driving state process (We) constitute the counterpart of the set of Ellsberg urns. 
(See the end of Section 2.4 for further discussion of learning.) 

2. MULTIPLE-PRIORS UTILITY 

2.1. Atemporal Model 

Consider an atemporal or one-shot choice setting where uncertainty is repre- 
sented by the measurable state space (Q2, i). The decision-maker ranks uncer- 
tain prospects or acts, maps from Q2 into an outcome set W. According to the 
multiple-priors model, the utility U(f) of any act f has the form: 

(2.1) U(f) = min u(f) dQ, 
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where u: T -? 2/ is a von Neumann-Morgenstern utility index and -, is a subjec- 
tive set of probability measures on (12, G).S The subjective expected utility model 
is obtained when the set of priors $9P is a singleton. Intuitively, the multiplicity of 
priors in the general case models ambiguity about likelihoods of events and the 
infimum delivers aversion to such ambiguity. 

In anticipation of the technical requirements of continuous time, consider a 
specialization of the multiple-priors model for which all priors in -, are uniformly 
absolutely continuous with respect to some P in p,p.6 Then $9P may be identified 
with its set H of densities with respect to P, where H c Ll (Q, , P) is weakly 
compact. The identification is via 

-P = {hdP: h E H}. 

For further details and behavioral implications of this added structure, see 
Epstein and Wang (1995, Section 2). 

2.2. Discrete Time 

The essence of our continuous-time model can be described by considering 
first a discrete-time setting.7 

Let time vary over t = 0, . . . , T and let the state space and filtration be given 
by (12, {t}T). The objects of choice are adapted consumption processes. To for- 
mulate a dynamic version of the multiple-priors model, it is natural to consider 
the process of conditional preferences and furthermore to assume that each such 
conditional preference satisfies the Gilboa-Schmeidler axioms (where the out- 
come set T consists of consumption streams). Suppose further that conditional 
preferences are dynamically consistent. Epstein and Schneider (2001a) show that 
these axioms, plus some 'auxiliary' ones, deliver the following representation:8 
the time t conditional utility of a consumption process c = (ct) is 

(2.2) Vt(c) = minEQ[Lf3stu(cs) I 7t 

where ,X and u are as usual and where $9P is the agent's set of priors on (Q, JT). 

The set $9P satisfies the regularity conditions described above for the atemporal 

SThe set 9P is required to be weakly compact (the weak topology is that induced by the set of 
bounded measurable functions) and convex. Because 9P and its closed convex hull generate the iden- 
tical utility function, closedness and convexity are normalizations that ensure uniqueness. See Gilboa 
and Schmeidler (1989) for further details. Note, however, that probability measures are assumed 
there to be only finitely additive, while we assume countable additivity. 

6 9? is uniformly absolutely continuous with respect to P if for every ? > 0 there exists 8 > 0 such 
that E E J and P(E) < 8 imply Q(E) < E, V Q E P. 

7 This perspective on Epstein and Wang (1994) does not appear there; it has emerged only with 
the benefit of hindsight and Epstein and Schneider (2001a). 

8 As in Gilboa and Schmeidler (1989), an Anscombe-Aumann style domain is adopted where the 
axioms are both necessary and sufficient for the representation. The auxiliary axioms deal primarily 
with the ranking of objective lotteries rather than ambiguous prospects. 
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model and also a property that (following earlier versions of this paper) is called 
rectangularity. Because of rectangularity, utilities satisfy the recursive relation 

(2.3) V,(c) = minEQ [L/s-tU(cs) +3T-tV(c) I t 

for all r > t, which in turn delivers dynamic consistency if 9I* is updated by apply- 
ing Bayes' Rule prior by prior. It merits emphasis that such a recursive relation 
is not valid for general sets of priors because the minimization destroys the addi- 
tivity available in the standard model. 

To understand the meaning of rectangularity, observe that the recursive rela- 
tion for utility depends on 9I* only via the sets of one-step-ahead conditional mea- 
sures that it induces at each (t, w). Thus it must be that in a suitable sense * is 
completely determined by these one-step-ahead conditionals. To see how, think 
of a discrete-time event tree that represents (Q, {5t}), where nature determines 
motion through the tree and where YT describes the set of terminal states or 
events. At each node, 9I* induces a set of conditional probability measures over 
the state next period. Conversely, the sets of conditional-one-step-ahead mea- 
sures for all time-event pairs can be combined in the usual probability calculus 
way to deliver a set 95' of measures on GT. In this construction, admit all pos- 
sible selections of a conditional measure at each time-event pair. In general, Ss' 
is strictly larger than 9I* though they induce the identical sets of one-step-ahead 
measures. Call 9I* rectangular if Ss' = 21. It is apparent that rectangularity ensures 
an equivalence between global minimization over 9IY, as in (2.2), and repeated 
local minimization over the set of one-step-ahead conditional measures, as in 
(2.3). 

For later use, note that if a reference probability measure P is given on ?T, 

then conditional measures can be expressed in terms of their densities with 
respect to the conditional measures induced by P. Thus the preceding sketch can 
be reformulated in terms of sets of one-step-ahead densities. Further, these can 
be taken to be primitives and specified arbitrarily. Then the above construction 
delivers a rectangular set 9I* and any rectangular set can be generated in this way. 

A (nonaxiomatic) generalization of (2.2) has the form 

(2.4) Vt(c) = min VtQ(c), where 

VtQ(c) = W(ct, EQ[VQ1(c) I i]) for each Q in 21. 

Here W is an aggregator function (strictly increasing in its second argument) 
analogous to that appearing in Epstein and Zin (1989) and motivated there by the 
desire to disentangle risk aversion from other aspects of preference. As above, 
rectangularity for * delivers the recursive relation 

(2.5) VtJ(c) = W (ct,minEQ[Vt+l(c) t]) =minW(ct,EQ[Vt+l(c) jt]). 

We proceed shortly to formulate a continuous-time counterpart of (2.4)-(2.5). 
The key is the construction of rectangular sets of priors in continuous time, that 
is, sets constructed along the lines described above for the event tree. 
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2.3. Continuous Time 

Consider a finite horizon model, where time t varies over [0, T]. Other primi- 
tives include: 

* a probability space (Q, i, P); 
* a standard d-dimensional Brownian motion Wt = (Wt,... , W) defined 

on (Q, ,P); 
* the Brownian filtration {'7tI}O<t<T, where Gt is generated by o(Ws: s < t) 

and the P-null sets of i, T =Y. 
The measure P is part of our description of the consumer's preference and, for 

that purpose, it is significant only for defining null sets; any equivalent measure 
would do as well. In particular, P is not necessarily the 'true' measure (with the 
exception of Section 5). 

Consumption processes c take values in C, a convex subset of R'.9 Our objec- 
tive is to formulate a utility function on the domain D of C-valued consumption 
processes. It is natural to consider a process of utility values (Vt) for each c, 
where Vt is the utility of the continuation (cs)s,t and V0 is the utility of the entire 
process c. 

In the case of risk, where P represents the consumer's assessment of likeli- 
hoods, Duffie and Epstein (1992a) define stochastic differential utility (SDU). 
For any given c in D, the SDU process (V/P) is defined as the solution to the 
integral equation 

(2.6) Vtp = E[ f (cs, VP) ds I Y, 

Here the function f is a primitive of the specification, called an aggregator. The 
special case f (c, v) = u(c) -,3v, delivers the standard expected utility specifica- 
tion 

(2.7) Vt = E[j eP(st)u(cs) ds I <t. 
The limitation of SDU from the present perspective is that because all expec- 

tations are taken with respect to the single probability measure P, the consumer 
is indifferent to ambiguity. In the next three sections, we describe a generaliza- 
tion of SDU in which the consumer uses a set 9P of measures as in the atemporal 
multiple-priors model. 

2.4. The Set of Priors 

As suggested in the discussion of the discrete-time model, construction of the 
set 9P of priors on (Q, ST) is key. Ignore rectangularity for the moment and 

9 In this paper, x = (xt) denotes aprocess, by which we mean that it is: (i) progressively measurable, 
that is, (for each t) x: [0, t] x (f2, it) Re is product measurable, and (ii) square integrable, that is, 
E fo Ix, 12 ds < oo. The set of all such processes is a Hilbert space under the obvious inner product. 
Inequalities in random variables are understood to hold P a.e., while those involving stochastic 
processes are understood to hold dt 0 dP a.e. 
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consider the representation of sets 9P of measures equivalent to P. This is done 
by specifying suitable densities. 

For this purpose, define a density generator to be an Rd-valued process 0 = (Os) 
for which the process (zr) is a P-martingale, where 

dzt6 =- -4.tt dWt, zo = 1, 

that is, 

zo expf-_j IOs 12 ds-Os. dWs}, 0<t<T. 

A sufficient condition (see Duffie (1996, p. 288)) is that 0 satisfy the Novikov 
condition 

(2.8) E expGf IOs 2 ds) <. 

Then, because 1 = zo = E[z6 ], z4 is a P-density on GT. Consequently, 0 generates 
a probability measure Q' on (fQ, G) that is equivalent to P, where 

Q6(A) = E[1AZ4], for all A in ?T. 

In other words, 

(2.9) dQP = ZT 
dP ZT 

more generally, 

dQO z6 for each t. 

dP t 

Thus, given a set 0 of density generators, the corresponding set of priors is 

(2.10) 959 = {Q6: 0 E 6 and Qo is defined by (2.9)}. 

Conversely, any set of equivalent measures can be generated in this way.10 
Turn now to a further restriction on sets of density generators and hence sets 

of priors in order to obtain recursivity of utility. The discussion of rectangular- 
ity in the discrete-time setting pointed to the key property being that 9P is equal 
to the set of all measures that can be constructed via arbitrary selections from 
primitive sets of one-step-ahead densities. In the present setting, a density gen- 
erator 0 = (0t) is the process that delivers the counterpart of the (logarithm of) 
a conditional one-step-ahead density for each time and state and the primitive 

Adapt the argument in Duffie (1996, p. 289). 
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sets of one-step-ahead densities (in logarithm form) are modeled via a process 

(0t)tE[O,T] of correspondences from Q into Rd; that is, for each t, let 

et: I2QRd. 

Finally, the restriction to the set of all measures that can be constructed by 
some selection from these sets of one-step-ahead densities corresponds to the 
restriction to the following set of density generators: 

(2.11) 6 = {(0t): Ot (c)) E Ot(w) dt X dP a.e.}. 

Refer to such sets of density generators and to the corresponding sets of priors 
@P as rectangular." 

Assume throughout the following properties for 
(0t)tE[O, 

T]: 

UNIFORM BOUNDEDNESS: There is a compact subset X in Rd such that 
at: n --- X each t. 

COMPACT-CONVEX: Each Ot is compact-valued and convex-valued. 

MEASURABILITY: The correspondence (t, to) F-+ Ot (to), when restricted to 
[0, s] x f2, is A([O, s]) x ?s-measurable for any 0 < s < T. 

NORMALIZATION: 0 E t (to) dt 0 dP a.e. 

Uniform Boundedness ensures that (2.8) is satisfied by any 0 E e and hence 
that each Q6 is well-defined. Normalization ensures that the reference measure 
P lies in 9P'. The roles of the other assumptions are evident. 

The primitive {lO} can be represented in an alternative way that is sometimes 
more convenient. Because each Ot is convex-valued, we can use the theory of 
support functions to provide a reformulation of the preceding structure. Define 

(2.12) e (x)(co)= max y.x, xERd. 

Occasionally, we suppress the state and write simply et(x). It is well-known that, 
for each (t, to), et(.)(cto) provides a complete description of et (w) in that the lat- 
ter can be recovered from et( )(co)). Characterizing properties of et( )(cto) include 
(Lipschitz) continuity, convexity, linear homogeneity, and non-negativity (because 
of Normalization).'3 Further, by Aliprantis and Border (1994, Theorem 14.96), 
the above Measurability assumption is equivalent to: 

(t, to) > et(x)(Z) is s([O, s]) x Ys-measurable on [0, s] x Q 

for all (s, x) E (0, T] x Rd. 

An example of a nonrectangular set is {(0),: E[foT I1Q12 ds] < ?}, where ,> 0 is a parameter. 
12 That is, {(t, cl) E [0, s] x Q: &,(w)l nK # 0} E A ([O, s]) x is for each compact K c JY (Aliprantis 

and Border (1994, Section 14.12)). 
13 The proof of Lipschitz continuity is contained in the proof of Theorem 2.2. 
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We use the support function primarily in the special case described in Section 3.4, 
where ej(.)(wt) is independent of both time and the state. 

The above assumptions on (0t)tE[O,T] deliver a number of properties for the set 
of priors. The most important implication of rectangularity, that is, of the special 
structure (2.11) for &, is recursivity of utility as described in the next section. 
Here we list properties that are counterparts of those mentioned in the context 
of the atemporal setting. 

THEOREM 2. 1: The set of priors 9p& satisfies: 

(a) Pe E9P. 
(b) 95' is uniformly absolutely continuous with respect to P and each measure in 

-?P is equivalent to P. 
(c) $9p& is convex. 
(d) 9p& c cal (Q, YT) is compact in the weak topology.14 
(e) For every 6 E L2(Q2, ?iT, P), there exists Q* E $'P& such that 

EQ. [6 I Sj = min EQ[ I iYj, O < t < T. 
Q E2 P9 

Parts (a)-(d) are self-explanatory, By (d), minQE_ EQf exists for any { in 
L'(Q, ST, P), a fortiori in L2(Q, iT' P). Part (e) extends the existence of a min- 
imum to the process of conditional expectations. 

Finally, consider again the issue of learning. As suggested above, &,(co) can 
be thought of as the set of conditional one-step-ahead densities (in logarithm) at 
(t, w). Because this set depends on data (through co), our general model permits 
learning. On the other hand, the responsiveness to data permitted by our model 
is very general and we do not yet have any compelling structure to add, for 
example, in order to illustrate the response of ambiguity to observation. Thus 
our principle examples below (Section 3.4) exclude learning. 

It may be useful to translate the preceding into the single-prior (and discrete- 
time) context. Typically, the prior is over the full state space and learning 
amounts to Bayes' Rule. However, the Savage theory does not restrict this prior 
and its conditional one-step-ahead updates are similarly unrestricted. We adopt 
the equivalent approach of beginning with the updates and using them to con- 
struct the prior. In saying that we do not yet have an interesting structure to 
suggest for conditional one-step-ahead updates, we are in part acknowledging 
the widely recognized fact that there is no decision theory available that serves 
to pin down the prior. 

14 Let ba(Q, YT) denote the normed space of finitely additive real-valued functions on YT with 
the total variation norm. The weak topology on ba(f2, ?T) is that induced by the set B(f2, YT) of 
all bounded measurable real-valued functions. cal (f2, ?JT) denotes the subset of countably additive 
probability measures; it inherits the above weak topology. 
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2.5. Definition and Existence of Utility 

Let & and 95& be as above. In addition and in common with SDU (see (2.6)), 
another primitive component of the specification of utility is an aggregator f: C x 
R- R1.15 Assume the following: 

* f is Borel measurable. 
* Uniform Lipschitz in utility: There exists a positive constant k such that 

if (c, v)-f (c, w)j < kjv-wj, for all (c, v, w) e C x R2. 

C Growth condition in consumption: E[fo[ f2(Ct, 0) dt] < o for all c E D. 
We wish to generalize SDU by allowing the agent to employ the set 95s of 

priors rather than the single measure P. On purely formal grounds, one is led 
to consider the following structure: Fix a consumption process c in D. Then for 
each measure Q in 9P', denote by (VtQ) the SDU utility process for c computed 
relative to beliefs given by Q, that is, (VtQ) is the unique solution (ensured by 
Duffie and Epstein (1992a)) to 

(2.13) VtQ = EQ[ ff(cSVQ) dsIJt] O<t<T. 

The structure of the atemporal multiple-priors model suggests defining utility as 
the lower envelope 

(2.14) VJ7=minV7Q, O<t<T. 
QE,9@' 

We show shortly that (2.14) admits a unique solution (Vt) for each c in D. Thus 
we can vary c and obtain the utility function V0(.), or simply V(.) or V. When 
we wish to emphasize the underlying consumption process, we write (Vt(c)). 

The definition (2.14) is the continuous-time counterpart of (2.4). One would 
expect, therefore, that if our construction of 95' captures the appropriate notion 
of rectangularity, then we should obtain dynamic consistency of (Vt,()) by estab- 
lishing a counterpart of (2.5).16 This is achieved in the theorem to follow. 

Not surprisingly, the way to exploit fully the analytical power afforded by 
continuous-time (both in order to prove dynamic consistency and for subsequent 
analysis) is to express the recursive relation for utilities in differential terms. 
Accordingly, the theorem shows that the utility process defined by (2.14) can be 
characterized alternatively as the unique solution to a backward stochastic dif- 
ferential equation (BSDE).'7 

15 In the terminology of Duffie and Epstein (1992a), f is a normalized aggregator. The transfor- 
mations of f that lead to ordinally equivalent utility processes below are identical to those described 
in the cited paper. 

16 Dynamic consistency, defined as in Duffie and Epstein (1992a, p. 373), is the requirement that 
for all stopping times T and all consumption processes c and c' satisfying c' = c on [0, T], P(V (c') > 

V,(c)) = 1 =: VO(c') > VO(c), with strict inequality holding if P(V,(c') > V,(c)) > 0. 
17 See Appendix A for a brief outline and El Karoui, Peng, and Quenez (1997) for a comprehensive 

guide to the theory of BSDE's as well as to previous applications to utility theory and derivative 
security pricing. 
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To illustrate, notice that the SDU process (VJ/) defined by (2.6) can be 
expressed alternatively as the unique solution to the BSDE 

(2.15) dVtp = -f(ct, Vtp)dt+oft dWt, VTJ = 0. 

In fact, because the volatility oatp is endogenous and is part of the complete 
solution to the BSDE, it is more accurate to say that "(VtP, o-tP) is a (unique) 
solution." However, as our focus is on the utility component of the solution, we 
abbreviate and write "(Vtp) is a unique solution"; similar abbreviated terminology 
is adopted throughout. To see that the BSDE characterization follows from (2.6), 
observe that, by the latter, 

V/P + f (c, VsP) ds = E[ f (cs, VP) ds I Gt 

which is a martingale under P. Thus the Martingale Representation Theorem 
delivers (2.15) for a suitable process (oftp) (that depends on c). This argument 
may be reversed by using the fact that fot ofP dWt is a martingale in order to 
establish that (2.15) implies (2.6). 

A similar reformulation is possible for the SDU process (VtQ) defined in (2.13) 
and corresponding to an agent with probabilistic beliefs given by Q in $?P&. If Q = 

Q6 (see (2.9)), then the Girsanov Theorem implies that (VtQ) solves the BSDE, 

(2.16) dVtQ [-f(ct, VtQ) + at * crtQ] dt + rtQ * dWt, vQ = 0. 

In comparison with (2.15), the drift is adjusted by the addition of Ot * otQ in order 
to account for the fact that (Wt) is not a Brownian motion under Q.8 

We are now ready to state our main theorem. 

THEOREM 2.2: Let e and f satisfy the preceding assumptions. Fix c in D. Then: 
(a) There exists a unique (continuous) process (Vt) solving the BSDE 

(2.17) dVt = [-f(ct, Vt) + max Ot - t] dt + St dWt, VT = O. 

(b) For each Q= Q' E -P, denote by (VtQ) the unique solution to (2.13), or 
equivalently to (2.16). Then (Vt) defined in (a) is the unique solution to (2.14) and 
there exists Q' E Y* such that 

(2.18) Vt=Vt , O< t < T. 

(c) The process (Vt) is the unique solution to VT = 0 and 

(2.19) Vt = min EQ[ f (cs Vs) ds + V7 I Jr v < t < r< T. 

18 The Girsanov Theorem and the Martingale Representation Theorem are the key tools that we 
employ from stochastic calculus. They are standard in finance-see Duffie (1996), for example. 
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Part (b) refers to the initial definition (2.14). Part (a) is the BSDE character- 
ization that is the counterpart to (2.15). Part (c) makes explicit the recursivity 
of utility and justifies the name recursive multiple-priors utility for our model of 
utility. Equation (2.19) is the promised counterpart of the discrete-time rela- 
tion (2.5). 

Comparison of (2.17) and (2.14) yields some insight into our construction. If 
the volatility of utility were denoted by -at rather than at, then the maximum in 
(2.17) would be replaced by a minimum, paralleling (2.14). With this change of 
notation in mind, the integral and differential characterizations reveal an equiva- 
lence between the global minimization over 9P& and the continual instantaneous 
optimization over &, just as in the discrete-time setting. This equivalence is due 
to our construction of & via (2.11) as rectangular. It is easy to understand the 
importance of (2.11). By (B.1), the maximum in (2.17) is equal to maxYE,t Yt .t, 
the solution of which at every t and co in general permits the optimizer more 
freedom than does the global optimization problem in (2.14), where a single 
measure, or equivalently, a single 0, must be chosen at time 0. Thus if one begins 
with a general nonrectangular set e of density generators, local and global opti- 
mization would yield different results. There is equivalence here because (2.11) 
imposes that & is the Cartesian product of its projections. 

Turn to interpretation, particularly the nature of the ambiguity modeled via 
recursive multiple-priors utility; a more formal treatment of ambiguity is pro- 
vided in Section 4.2. Only one of the measures in 29, namely P, makes the 
driving process (Wt) a Brownian motion. Thus there is ambiguity about whether 
(Wt) is a Brownian motion. More specifically, Girsanov's Theorem implies that 
if Q = QO is in P@', then WtQ _ Wt + t0Q ds is a Brownian motion under Q. Thus 
ambiguity concerns (and is limited to) the drift of the driving process. The fact 
that ambiguity is limited to the drift is a consequence of the Brownian environ- 
ment and the assumption of absolute continuity. 

Several extensions of the theorem seem possible. The assumption of a Brown- 
ian filtration can be relaxed along the lines indicated in El Karoui, Peng, and 
Quenez (1997). The terminal value of 0 in (2.17) can be generalized and util- 
ity can be well-defined without the Lipschitz hypothesis (Lepeltier and Martin 
(1997)). Finally, we suspect that the extension from a finite horizon to an infi- 
nite horizon can be carried out in much the same way as it is done in Duffie 
and Epstein (1992a) for stochastic differential utility. Related results for BSDE's 
defined on an infinite horizon may be found in Chen (1998) and Pardoux (1997). 

Finally, note that BSDE's have been used to price securities in markets that 
feature incompleteness, short-sale constraints, or other imperfections.19 These 
lead to nonlinear BSDE's characterizing (upper or lower) prices that are for- 
mally very similar to the BSDE (2.17) used here to define intertemporal utility. 
The similarity is suggested by the fact that, with imperfect markets, no-arbitrage 
delivers a nonsingleton set of equivalent martingale measures. In our setting, 

19 See El Karoui, Peng, and Quenez (1997) for some references. 
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the multiplicity of measures arises at the level of utility and is due to ambiguity 
rather than features of the market. 

The coming sections illustrate, interpret, and apply the recursive multiple- 
priors model of utility. 

3. EXAMPLES 

3.1. Deterministic and Risky Consumption Processes 

It is important to keep in mind that out is endogenous in the BSDE (2.17). 
To illustrate this endogeneity and the consequent dependence of at on the con- 
sumption process, consider (2.17) for two particular consumption processes. First, 
suppose that c is deterministic. Then out = 0 and utility is given by the ordinary 
differential equation 

dVt=-f (ct, Vt) dt, VT = O. 

This is the recursive utility model for deterministic consumption processes pro- 
posed in Epstein (1987). 

For the second example, let 

(3.1) R={i: 1<i<d,(0)= Ofor all 0 in 0} and 

(3.2) cyyR -u(W i e R,s<t). 

Then all measures in s?P' agree with P for events that are ST-measurable and it 
is natural to view such events as unambiguous or purely risky. We elaborate upon 
this interpretation in Section 4.2. Here we wish merely to clarify the mechanics of 
the BSDE (2.17). Accordingly, let c be adapted to the filtration {fJtR}. Then oi = 

0 for i ' R and maxo Ot - ot = 0, implying that the SDU utility process Vtp defined 
in (2.15) is the solution to (2.17). That is because the consumption process c just 
described is viewed by the consumer as being purely risky. 

3.2. Standard Aggregator 

The aggregator underlying the expected additive utility model (2.7) is 

(3.3) f (c, V) = U(C) - 8V, '8 > 0. 

For this aggregator, there exists a closed-form representation for recursive 
multiple-priors utility, as we now show (assuming the appropriate measurability 
for u). By Theorem 2.2(b), it is enough to have a representation for VtQ for each 
Q in -I?k. However, from (2.13), 

t- EQ [Te13(st)u(cs) ds SIJ. 
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Conclude that 

(3.4) VJ =min EQ[j e- (s-t)u(c)ds I 

which is the desired closed-form expression. 
While this functional form may seem the 'obvious' way to formulate a multiple- 

priors extension of the usual model (2.7), the subtlety is the rectangularity of 
OP', which, as explained above, is responsible for recursivity. The latter takes the 
form (by Theorem 2.2(c)) 

Vt = min EQ[ eCP(s-t)u(cs) ds + e-(T-t)VT i t <7. 

The remaining examples are concerned primarily with illustrative specifications 
for &. 

3.3. K-IgnOrance 

Fix a parameter K = (K1, . . . , Kd) in Rd and take 

et(-) = {y E R d: Iyi < Ki for all i}. 

Then 

= {(Ot) :sup{lIOtl : 0< t < T <Ki, i =1,. . . ,d}. 

The following notation will be useful. Denote by I oIt the d-dimensional vector 
with ith component l11til, and similarly for other d-dimensional vectors. Define 

(3.5) sgn(x) _ xl/x if x :A O, 
O otherwise, 

and K s sgn(oUt) (K1 sgn(oJtl ), . .. , Kd sgn(oJtd)). 
Then 

maxOt *0-t = 67* *0t = K. 10-tl, 
OEO 

where 

(3.6) 07=K ?sgn(or), or 
K 

= (f t IuI/utJ if (otl:0, 
O t 0 otherwise. 

Consequently, the utility process solves 

(3.7) dVt = [-f(ct, Vt) + K *I otuI] dt + oJt dWt, VT = 0 

Though it is customary to think of a volatility such as o-t as tied to risk, the 
above BSDE cannot be delivered within the risk framework of SDU. We inter- 
pret the term K - IotI as modeling ambiguity aversion rather than risk aversion 
(see Section 4.2). For example, in the two-dimensional case, K1 = 0 and K2 > 0 
indicate that W2 is ambiguous but W1 is purely risky. Further interpretation of 
the K-ignorance specification is provided in the next section. 
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3.4. IID Ambiguity 

For a generalization of K-ignorance, let K C Rd be a compact and convex set 
containing the origin and define 

et(.) = K for all t. 

Recalling the interpretation of et(@) as the set of one-step-ahead conditionals, 
the constancy of this set indicates the lack of learning from data. As suggested 
in the introduction, there are situations in which some features of the environ- 
ment remain ambiguous even asymptotically. The current specification models 
the agent after he has learned all that he can. The label 'IID ambiguity' is natu- 
ral given the analogy with the case of a single-prior that induces one-step-ahead 
conditionals that are constant across time and states; further support is given 
shortly. 

The utility process generated by this specification for (0t) solves 

dVt = [-f (ct, Vt) + e(t)] dt + ? t dWt, VT = 0, 

where e(.) is the support function for K defined by 

(3.8) e(x)= maxy x, xeRd, 
yEK 

corresponding to a special case of (2.12) where the support function is indepen- 
dent of both time and the state. 

By the theory of support functions (Rockafeller (1970)), the process 0* asserted 
by Theorem 2.2(b) is given by 07 E de(ot) for every t, where de(x) denotes the 
set of subgradients of e at x. 

Denote by Ki the projection of K onto the ith coordinate direction and let 
d, denote both {1 < i < d: K' : {0}} and its cardinality. We can decompose K 
into a product {od-dl } x K1, where K1 c Rd. It will be convenient to add the 
assumption that 

(3.9) Od, (= int(KJ) C R l 

In words, for those process (W)l%Edl for which there is not complete confidence 
that P describes the underlying distribution, then P is not on the 'boundary' of 
the set of alternative conceivable measures. The corresponding property of e is 
that, for all x E Rd ,20 

(3.10) e(x) = 0 ==: xi = 0 for all i such that Ki : {0}. 

The assumption (3.9) is included in any reference below to IID ambiguity. 

20 e(x) = 0 iff y x < 0 for all y E K. Suppose there exists i such that K + {0}. (Otherwise, (3.10) 
is obvious.) Then it follows from (3.9) that xi = 0. The reverse implication in (3.10) is evidently also 
true. Alternatively, (3.9) is equivalent to the assumption that the polar of K is {0}. 
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The special case 

(3.11) K = {y E Rd: IyiI < Ki all i} 

delivers K-ignorance. An alternative special case has 

(3.12) K = {YER Rd: K11i 1i2 < 6 
I{i: KiO} 

where K = (K1, . . . , Kd) > 0, leading to e(x) = (K *X2)1/2; X2 denotes the d- 
dimensional vector with ith component x2. 

By restricting the aggregator f, we can compute utility explicitly for consump- 
tion processes of the form 

(3.13) dc,/c,=,uc dt+sCdWt, 

where uc and Sc are constant. Suppose the aggregator is given by 

(3.14) f (C v) - 
cP - 

P(aVy 

for some B> 0 and nonzero p, a < 1.21 This is the continuous-time version of the 
so-called Kreps-Porteus functional form (Duffie and Epstein (1992a, p. 367)). It 
is attractive because the degree of intertemporal substitution and risk aversion 
are modeled by the separate parameters p and a respectively. The homothetic 
version of the standard aggregator (3.3), with u(c) = ca /a, is obtained when 
a =p. 

The corresponding utility process can be computed explicitly by verifying the 
trial solution 

Vt = At 
Ca 

/a,S 

where 

APla = A-(1 - ek(t-T)) 

A = / - p(uc - (1 - a)sC . sC/2 - e(sC)). 

The associated volatility is 

(3.15) at = AtCaSC. 

Evidently the utility of the given consumption process is increasing in initial 
consumption and in (,uc - (1- a)sC . sC/2 - e(sC)), the mean growth rate adjusted 
both for risk (via the second term) and ambiguity (via the third term). Support 
for the latter interpretation will follow in Section 4.2 from the interpretation 

21 This aggregator violates the Lipschitz condition for Theorem 2.2 and thus existence of utility is 
not ensured. See further discussion in Section 5.4. 
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provided there for a and e(.).22 Observe that the risk premium is quadratic in 
the consumption volatility SC, whereas the ambiguity premium is linearly homo- 
geneous in sC. The ambiguity premium is K ISCI in the case of K-ignorance. 

Finally, we clarify the meaning of IID ambiguity and K-ignorance by describing 
properties of the utility processes that they deliver. Because (We) is a P-Brownian 
motion, P induces the following properties: (i) (We) is Markovian with identically 
and independently distributed increments; (ii) increments are contemporaneously 
independent and (iii) normally distributed with the familiar means and variances. 
A natural question is which of these properties, suitably reformulated, survive 
under ?P', that is, in spite of ambiguity. The next theorem shows that (i) survives 
under IID ambiguity, while (ii) is also valid under K-ignorance. Thus in the latter 
case, 9P' models ambiguity about (iii) alone. 

When we wish to vary the length T of the horizon and want to make explicit 
the particular horizon being discussed, we write VOT(.) for the utility function 
defined as in Theorem 2.2. 

THEOREM 3.1: Suppose that 0 is given by IID ambiguity. For each r in [0, T], 
let ?t = a - W t > s > r) for t > r and = {0, Q2} otherwise. 

(a) If c is adapted to the filtration {fgr}, then (Vt(c)) is deterministic for t < r. 
(b) If c' = c on [0, r) x Q2, and both processes are adapted to {fgr}, then 

(3.16) VOT(Cl)>' VT(C) T? VT-r(rCf) > VT-r(rC) 

(c) If ct is a (Wt)-measurable for each t in [0, T], then so is Vt(c). 
(d) If e is given by K-ignorance and if c is adapted to the filtration {Jt'}, where 

t < d and <- = ao(Ws: s < t, i < f), then (Vt(c)) is also adapted to yit<. 

For interpretation, consider each of these statements when & = {0} and thus 
when beliefs are represented by the single prior P. Suppose as in (a) that con- 
sumption is deterministic until time r and thereafter depends only on increments 
Ws- Wr. Because (Wt) is Brownian motion relative to P, such increments are 
independent of it for any t < r. Thus the time t conditional utility Vt (c) is deter- 
ministic until r. We are led to interpret (a) as expressing a form of independence 
in beliefs about future increments even when 0 is a nonsingleton. 

Part (b) implies that calendar time matters only because it implies a different 
length for the remaining horizon. Under P, this is due to the stationarity of 
Brownian motion (the unconditional distribution of Ws - Wr is identical to that 
of Ws-r). Accordingly, we interpret (b) as expressing a form of stationarity in 
beliefs under IID ambiguity. 

With regard to (c), let 7 > t. Then the Markov property of Brownian motion 
implies that, under P, time t conditional beliefs about WT and hence also con- 
ditional utility at t depend only on Wt. Part (c) asserts that this Markov-type 
property is preserved under IID ambiguity. 

22 For further interpretation of e(.), see Lemma A.2. 
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For a general IID model, V,(c) can depend on W,2 even if c is adapted 
to Ou(W1: s < t); this may happen because of a contemporaneous dependence 
between components of Wt. Part (d) states that this is impossible, however, 
given K-ignorance. Thus (d) expresses a form of contemporaneous independence 
between components of the driving process. This reflects the fact that under K- 

ignorance, the set {0 E Rd: IdOl < Ki} of admissible distortions in coordinate i is 
independent of the distortions in other coordinates. 

It merits emphasis that each of the properties in the theorem has behavioral 
significance. The latter is explicit for (b). Given two consumption processes c' 
and c as in part (c), their conditional ranking at t depends on time t information 
only via Wt. Similarly, for the significance of (a) and (d). 

4. AMBIGUITY 

Under suitable assumptions, the utility function we have defined has a number 
of classical properties, such as monotonicity, concavity, and continuity. They can 
be proven as in Duffie and Epstein (1992a) or El Karoui, Peng, and Quenez 
(1997, Prop. 3.5). As noted prior to Theorem 2.2, dynamic consistency is an 
immediate consequence of the recursive construction of utility via (2.17).23 

In the sequel, we focus primarily on properties of preference related to ambi- 
guity. 

4.1. Behaviorally Distinct 

This subsection supports earlier claims that probabilistic sophistication (suit- 
ably defined) provides a behavioral distinction between recursive multiple-priors 
utility and all other continuous time intertemporal utility functions in the cur- 
rent literature.24 Probabilistic sophistication implies indifference to ambiguity, 
both informally in that it is contradicted by Ellsberg-style behavior, the canonical 
illustration of nonindifference to ambiguity, and also on formal grounds (Epstein 
and Zhang (2001) and Ghirardato and Marinacci (2002)). Thus only recursive 
multiple-priors can accommodate a concern with ambiguity. 

The formulation of our result is complicated by the fact that the Machina- 
Schmeidler (1992) notion of probabilistic sophistication is not appropriate in a 
dynamic setting. It requires 'primarily' that there exists a probability measure 
P on (12, 5T) such that the utility of any c depends only on the probability 
distribution induced by c: 12 -+ Re[o,T] and P. However, it imposes also, through 
their adoption of the Savage Axiom P3 or the associated property of monotonicity 
with respect to 'first-order stochastic dominance,' restrictions on intertemporal 
aspects of preference that have nothing to do with probabilities. For example, 
SDU is probabilistically sophisticated in the sense of Machina and Schmeidler 

23 More precisely, it follows from the Comparison Theorem A. 1 for BSDE's stated in Appendix A. 
24 These include, for example, SDU and utility functions with intertemporal nonseparabilities due 

to habit formation or learning-by-doing. 
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only in the special case of the standard intertemporally additive expected utility 
function. Thus we describe a variation of probabilistic sophistication that excludes 
such extraneous restrictions and isolates the property that preference is based on 
probabilities. 

Denote by D, c D the set of consumption processes c such that (i) cT is deter- 
ministic for 0 < r < t and (ii) cT is St-measurable for each t < r < T. Processes 
in Dt are such that all uncertainty is resolved at the single instant t and thus 
we refer to elements in UT_ D as timeless prospects. Call the utility function 
V: D -+ R' probabilistically sophisticated for timeless prospects if V restricted to 
uT=0 Dt is probabilistically sophisticated in the sense of Machina and Schmeidler. 

The Machina-Schmeidler axiomatization may be adapted to deliver an axiom- 
atization of our modified notion. Thus probabilistic sophistication for timeless 
prospects is a meaningful behavioral notion. Finally, it is satisfied by all existing 
models of continuous-time utility, but typically not by the multiple-priors model, 
as we now show.25 

THEOREM 4.1: The recursive multiple-priors utility function V defined in 
Theorem 2.2 is probabilistically sophisticated for timeless prospects if and only if it 
conforms to SDU. 

It is well known that in an atemporal setting, there exist probabilistically sophis- 
ticated multiple-priors preferences where priors do not agree on all events. Thus, 
Marinacci (2000) establishes such global agreement only under the supplemen- 
tary assumption that there exists an 'interior' event where all measures in the set 
of priors agree. It is noteworthy that in our setting where the set of priors is rect- 
angular, corresponding to dynamic consistency of preference, no supplementary 
assumption is needed. 

4.2. Ambiguity, Ambiguity Aversion, and Risk Aversion 

We attempt now to treat ambiguity and ambiguity aversion more formally. 
At a formal level, ambiguity (or unambiguity) is most naturally defined as a 

property of events. Identify the class W of unambiguous events as consisting of 
those events where all measures in _2)0 agree, that is, 

(4.1) 3d = {B E FT: Q(B) = P(B) for all Q in $?1}. 

Call all other events ambiguous. 
Foundations for this identification are provided by the two behavioral or 

preference-based definitions of ambiguity in the literature, namely Ghirardato 

25 Continuous time is not important for this result or for Theorem 4.4 below. Similar results can be 
proven in the discrete-time model of Epstein and Wang (1994) assuming nonatomic priors, though 
that was not apparent at the time that paper was written. We now have the benefit of Marinacci (2002) 
as well as of recent advances (Epstein and Zhang (2001) and Ghirardato and Marinacci (2002), for 
example) in understanding the behavioral meaning of ambiguity. 
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and Marinacci (2002) and Epstein and Zhang (2001). For the former definition, 
it is immediate that (4.1) characterizes unambiguous events. For the latter defi- 
nition, the characterization (4.1) is valid for 'most' events under the assumption 
of IID ambiguity (see Lemma E.1).26 

To obtain a further characterization in terms of the primitive density genera- 
tors, let 

O ={0= (0t): 0 E 0 i 11 .. * . d). 

Denote by {5Y/} the filtration generated by the ith driving process (Wt). For IID 
ambiguity, we can prove the following lemma. 

LEMMA 4.2: Let S correspond to IID ambiguity. Then for any F E 5iT, all mea- 
sures in $9J,6 agree on F (that is, Q(F) = P(F) for all Q in $?k) if and only if: for 
each i, 

(4.2) =-{O} or P(Fj| T)=? or P(Fj| T)=1. 

Consequently, 

Gd = {F E ST: for each i, &'= {0} or P(F I ST) = 0 or 1}. 

To illustrate, in the K-ignorance model let K1 = 0 and Ki > 0 for i > 1. Then 
unambiguous events are those determined by the first driving process (Wtl). 

Given the preceding designation of unambiguous events, we adopt the 
approach advocated in Epstein (1999) and Epstein and Zhang (2001) to define 
the distinct notions of ambiguity aversion and risk aversion. Roughly, the 
approach is to identify consumption processes that are adapted to {W nf it } as the 
unambiguous processes. The restriction of utility V to unambiguous consumption 
processes embodies attitudes towards risk. The decision-maker's attitude towards 
ambiguity, on the other hand, is reflected in the way in which ambiguous pro- 
cesses are ranked relative to unambiguous ones (in a sense to be made precise). 
In this way a conceptual distinction can be achieved between attitudes towards 
risk and towards ambiguity. 

To proceed more precisely, define c to be an unambiguous consumption process 
if ct is W-measurable for each t < T. When it is important to make explicit the 
underlying utility function, refer to c as V-unambiguous. 

Given utility functions V and V* with corresponding classes 0t and Vt of 
unambiguous events, say that V* is more ambiguity averse than V if both 

(4.3) t D G* and 

(4.4) V(cua) > (>)V(c) = V*(cua) > (>)V*(c), 

for all consumption processes c and Cua, the latter V*-unambiguous. The inter- 
pretation is that if V prefers the V*-unambiguous process Cua, which is also 

26 We suspect, but have not been able to prove, that (4.1) characterizes all unambiguous events. 
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unambiguous for V, then so should the more ambiguity averse V*. The weak 
nesting condition (4.3) ensures that the more ambiguity averse decision-maker 
views more events as ambiguous. 

Say that V* is more risk averse than V if both 

(4.5) t C W* 

and 

(.)V(C > (>)V(C,a) ==: V*(C) > (>)V*(Cua), 

for all V-unambiguous consumption processes cua and deterministic processes c. 
Symmetric with the prior definition, the more (risk) averse agent is assumed, via 
(4.5), to perceive more risk. Implicit is the presumption that 'unambiguous' and 
'risky' are synonymous and thus that unambiguous consumption processes con- 
stitute the appropriate subdomain for exploring risk attitudes. For comparative 
purposes, 'unambiguous' must apply to both utility functions and hence mean 
'V-unambiguous'. Finally, the intuition for the definition is that any risky process 
that is disliked by V relative to a riskless c, should be disliked also by the more 
risk averse V*. 

Consider an extreme case where 

W* = {0, Q}, 

that is, all nontrivial events are ambiguous according to V*. Then V* is more risk 
averse than V if and only if W = {0, Q} and V* and V agree in the ranking of 
deterministic processes. This may seem odd at first glance, but is a natural con- 
sequence of the fact that there is no risk according to either agent. Accordingly, 
differences in the 'certainty equivalents' assigned to any consumption process by 
V and V* are attributed entirely to differences in ambiguity aversion. In partic- 
ular, in this case V* is more ambiguity averse than V if and only if 

V(c) > (>)V(c) == V*(c) > (>)V*(c), 

for all c and c, the latter deterministic. Similarly, ambiguity aversion is uninter- 
esting at the other extreme where W* = XFT and there is no ambiguity. 

The definitions are best clarified by application to canonical functional forms- 
Kreps-Porteus aggregators (3.14) and K-ignorance for &. The utility function V 
generated by any such pair (f, &) can be identified with a quartet of parameters 
(/3, p, a, K). The temptation, to which we have yielded above, is to interpret 1 
and p as describing time preference and willingness to substitute intertemporally 
given deterministic processes, a as a risk aversion parameter, and to view K 

as modeling ambiguity aversion. Partial support is provided by the facts that 
the ranking of deterministic processes uniquely determines ,B and p and that it 
is unaffected by a and K. Additional support for the above interpretations is 
described next.27 

27 We continue to ignore the existence and uniqueness issues for the Kreps-Porteus aggregator. 
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THEOREM 4.3: (i) (/3*, p*, a*, K*) is more ambiguity averse than (/3, p, a, K) if 
(13*, p*, a*) = (13, p, a) and K* > K. The converse is true if K* = 0 for some i. 

(ii) (/*, p*, a*, K*) is more risk averse than (1, p, a, K) if (/3*, p*) = (/3, p), a* < 
a and for each i, Ki = 0 implies K* = 0. The converse is true if Ki = 0 for some i. 

Ambiguity aversion alone is increased by increasing the ignorance parameter, 
while risk aversion alone is increased by reducing a. In this comparative sense 
these two aspects of preference are modeled by separate parameters, and sepa- 
rately from properties of the ranking of deterministic process.28 

The above theorem generalizes in a straightforward way to general aggregators 
and IID ambiguity. 

THEOREM 4.4: Consider aggregators f and f * and let e and &* correspond to 
IID ambiguity with corresponding sets K and K* as described in Section 3.4. Then: 

(i) (f *, K*) is more ambiguity averse than (f, K) if 

(4.7) f =f* and K* D K. 

The converse is true if K*i = {O} for some i. 
(ii) (f *, K*) is more risk averse than (f, K) if 

(4.8) f *(c, h(v)) = h'(v)f (c, v), 

for some transformation h with h' > 0 and h" < 0, and for each i, Ki = {O} implies 
K*i = {O}. 

The proof is similar to that of the preceding theorem, with reliance also on 
Sections 3.3 and 5.6 of Duffie and Epstein (1992a) in order to deal with (4.8). We 
refer the reader to the just cited paper for clarification of (4.8) and for an alter- 
native to (4.8) that is more intuitive (but too involved to include here). We merely 
note that the transformation in (4.8) implies that V* = h(V) when restricted to 
deterministic consumption processes. Thus they rank such processes identically, 
which is a necessary condition for their risk attitudes to be comparable. 

The converse in (ii) is not true in general because of the presumption in (4.8) 
that the function h relating V* and V is twice differentiable. However, if we 
restrict attention to this case and if Ki = {O} for some i, implying that there is 
some nontrivial risk common to both utility functions, then V* more risk averse 
than V implies the conditions stated in the theorem. 

We use the preceding theorems to justify the interpretation of various expres- 
sions as capturing the effects of risk aversion or of ambiguity aversion. An exam- 
ple is the lognormal consumption process described in Section 3.4, where we 
suggested that (1 - a)sc . sC/2 represents a premium for the riskiness of c and 
that e(sc) represents a premium for its ambiguity. A later example is a decom- 
position of the equity premium (5.22). 

28 It is not possible to change the two forms of aversion simultaneously, because the change from a 
to a* makes ambiguity attitudes noncomparable. This parallels the inability within the Kreps-Porteus 
functional form to change simultaneously the elasticity of intertemporal substitution (1 - p)-1 and 
the degree of risk aversion; the change from p to p* makes risk attitudes noncomparable. 
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5. ASSET RETURNS 

5.1. Supergradients 

The asset pricing applications to follow make use of the notion of supergradi- 
ents for utility. A supergradient for V at the consumption process c is a process 
(i7T) satisfying 

(5.1) V(c') -V(c) < E[ 7T, 
- (Ct -Ct) dt] 

for all c' in D. Denote by dV(c) the set of supergradients at c. 
Because V is a lower envelope of SDU functions VQ (Theorem 2.2(b)), we can 

use a suitable envelope theorem to relate dV(c) to supergradients of {VQ: Q E 

9?J}. For each SDU function VQ, the set of supergradients may be completely 
characterized, following Duffie and Skiadas (1994), under the added assumption 
that there exists k > 0 such that 

(5.2) sup(If(x, v)1, I f(x, O) I) < k(1+ I x 1), for all (x, v) E C x R1. 

The above reasoning leads immediately to the following characterization of 
dV(c). It uses the notation 

&c= {* E S: O* E argmaxy - ot all t}, 

for any c E D, where (o) is the (unique) volatility of utility defined by (2.17); 
recall (B.1). 

LEMMA 5.1: Suppose that f is continuously differentiable and that it satisfies 
(5.2) and the assumptions of Theorem 2.2. Then: (a) 

(5.3) dV(c) D H 

T: 3 * (i e SC, 7r = exp (It fv(c,, VI(c))ds)fc(ct, Vt(c))zo all t. 

(b) Suppose further that V is concave and that c lies in the interior of the domain 
D. Then V(c) = H. 

See Appendix D for a proof. The set H is alternatively expressed as 

H = {dvQ(c) Q = QO and O* e c 

the set of of supergradients for the SDU functions VQ* where Q* satisfies (2.18). 
Evidently, dV(c) is a nonsingleton in general. For example, if c is deterministic, 
then Oc = 6 because the appropriate o-t vanishes. Under the conditions in (b), the 
containment in (5.3) can be strengthened to equality. The scope of (b) is limited, 
however, by the fact that the non-negative orthant of the Hilbert space of square 
integrable processes has empty interior. Thus the interiority assumption can be 
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satisfied only if V is well-defined for some processes where consumption may be 
negative. We include (b) in order to show a sense in which divergence between 
dV(c) and H can be viewed as 'pathological.' In the asset pricing application 
that follows, we restrict attention to supergradients lying in H and thus possibly 
to a proper subset of equilibria. 

5.2. The Optimization Problem 

Consider a consumer with recursive multiple-priors utility. Her environment 
is standard (see Duffie (1996) for elaboration and supporting technical details). 
There is a single consumption good, a riskless asset with return process rt and 
d risky securities, one for each component of the Brownian motion Wt. Returns 
Rt to the risky securities are described by 

dRt= btdt+stdWt, 

where st iS a d x d volatility matrix. Assume that markets are complete in the 
usual sense that st is invertible almost surely for every t. Market completeness 
delivers a (strictly positive) state price process iTt. Let 

(5.4) - dgTt/ lt = rt dt + r1t d Wt, vo = 1, 

where ?t = St s(bt - rtl) and is typically referred to as the market price of risk. 
We refer to it as the market price of uncertainty to reflect the fact that security 
returns embody both risk and ambiguity. 

Denote time t wealth by Xt and the trading strategy by it, where i/ is the 
proportion of wealth invested in risky security i. Thus 1 - t 1 equals the pro- 
portion invested in the riskless asset. The law of motion for wealth is 

(5.5) dXt = ([rt + i/T7(bt - rt1)]Xt - ct) dt + Xt /T7stdWt, X0 > 0 given. 

Budget feasible consumption processes may be characterized by the inequality 

(5.6) E[ iTt Ct dt] < Xo. 

First-order conditions for optimal consumption choice are expressed in the 
usual way in terms of the supergradient of utility at the optimum c.29 In partic- 
ular, c is optimal if 

(5.7) exp( fv(cS, Vs(c))ds)fc(ct, Vt(c))z 0 = fc(co, V0)irT, for all t, 

for some process 0* in Oc, where, as mentioned earlier, we are restricting atten- 
tion to supporting supergradients in the set H defined in (5.3). The multiple- 
priors model is reflected in the presence of the factor z0* on the left side; z0* is 
identically equal to 1 if beliefs are represented by P. 

To develop implications of these fist-order conditions, assume henceforth that 
the consumer has a Kreps-Porteus aggregator (3.14), which affords a simple 

29 See Duffie and Skiadas (1994) and Schroder and Skiadas (1999) for details regarding first-order 
conditions and their connection to security pricing. 
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parametric distinction between the effects of intertemporal substitution and risk 
aversion.30 Suppose further that optimal consumption is an Ito process with time- 
varying drift and volatility, that is, 

(5.8) dc,/c, =puc dt + sc * dWt. 

Then (5.7), (5.4), and Ito's Lemma imply that for any process 6* in &c, 

1 c~ (2- p) 
(5.9) (1-p)Y (rt-P3) = 1 ,t _ 2 St * St _ ot S St 

+ (a [sc + 2-1 (t)] 

and 

(5.10) (1- p)sc = (a - p) ( +(--o I'a Vt 
N 

,t t) 

where Vt and ot are the level and volatility of utility along the optimal consump- 
tion process. Write 

(5.11) dXt/Xt = bMdt + sM dWt, 

where bM is the mean return to wealth (the market portfolio) and sM is its 
volatility. Then 

(5.12) o(t/(aVt) = p1 [sm + (p -1)Sc], 

along the optimal path.31 Finally, substitution into (5.10) yields the following 
restriction for the market price of uncertainty: 

(5.13) -t=p [a(l p)sc + (P )sm] + O- 

30 Theorem 2.2 and Lemma 5.1 do not apply because, for example, the Lipschitz condition is 
violated. We proceed assuming existence of an optimum and focus on its characterization. Schroder 
and Skiadas provide conditions for existence given a Kreps-Porteus aggregator and no ambiguity. 
It remains to be seen how their analysis may be extended to accommodate ambiguity. A second 
point is that the implied utility function V is concave and first-order conditions are sufficient for all 
admissible parameter values. Schroder and Skiadas prove this in the absence of ambiguity, while the 
multiple-priors structure 'adds concavity.' 

A final point is that we have defined the Kreps-Porteus aggregator so as to exclude zero values for 
a or p. However, it can be defined for those parameter values in the usual limiting fashion and some 
of the results to follow remain valid in those cases. 

31 Multiply through (5.7) by c, and integrate over time and states, using dt 0 dP, to obtain 

E [T exp( f'f(cs,Vs5(c))ds cjjc,,tV,(C))z, dt] 

= fc(co, VO)E[j fc,dt] = fc(co, VO)XO = copglX0(aV0)(a-P)/a, 

where we use the Kreps-Porteus aggregator. Given the latter, utility is homogeneous of degree a, 
that is, V(Ac) = AaV(c) for all A > 0. Therefore, by a form of Euler's Theorem, the left-hand-side 
above equals aV0. Deduce that aVo = (cOP-1XO)a/P. In the same way, aVt = (CP-lXj)a/P for all t. Now 
apply Ito's Lemma to obtain the desired expression for the volatility of V,. 
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The coming sections exploit this relation. Unless otherwise stated, K-ignorance 
is assumed. 

5.3. Optimal Portfolio 

Examine the optimal portfolio when the risk-free rate and market price of 
uncertainty are deterministic constants. Then the optimal consumption process 
is geometric. Thus32 

(5.14) sf = SC 

and (5.13) implies that the market price of uncertainty satisfies 

(5.15) nt=(1 -a)sc + 0* 

Therefore, 

sgn(sc' i) = sgn(rq - Ki sgn(sc' i)) for each i. 

Assume that ambiguity aversion is small in the sense that 

(5.16) 0 < Ki < I 7tl for all i. 

Then 

st > (<)O if t> (<)O. 

From (3.6), (5.12), and (5.14), infer that 6* = K0sgn(?7t) and 

(1- a)sc = ?t-K X sgn(7t). 

Finally, it follows from (5.5) and (5.14) that the optimal portfolio of risky assets 
is given by 

t= (1 -a)- (St )l(nt- K (Dsgn(nt)) 

Evidently, the optimal portfolio is not instantaneously mean-variance efficient 
if P is used to compute variance. Our interpretation is that this is due to ambi- 
guity being present in addition to risk.33 The mutual fund separation property is 
valid if and only if K is common to all agents. Though the composition of risky 
assets is independent of the risk aversion parameter a, it depends on preferences 
through K. 

32 By the homogeneity of intertemporal utility, c, and wealth X, are related by c, = a,X, for some 
deterministic at. The claim follows by Ito's Lemma. 

33 Alternatively, mean-variance efficiency is optimal if variance is computed using the appropriate 
measure Q*, as provided by Theorem 2.2(b). However, Q&* depends on preferences through K and 
thus the meaning of mean-variance efficiency is individual specific. 
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5.4. Ambiguity and Risk Premia 

Next we view consumption described by the Ito process (5.8) as a given endow- 
ment and we focus on characterizing the risk-free rate and market price of uncer- 
tainty that support it, in the sense of satisfying (5.7), as a representative-agent 
equilibrium. 

Re-examine briefly the first-order condition (5.7) from this perspective. A dif- 
ficulty in fitting aggregate time-series data to this relation when z = 1, is that 
the observed volatility of consumption is too small relative to that of state prices 
to be consistent with this equation (Hansen and Jagannathan (1991)). The pres- 
ence of the factor Z has the potential to increase the variability of the left side 
and thus come closer to fitting observed moments. (See (5.20) for elaboration.) 

Focus now on the implications of ambiguity for excess returns. From (5.13), 
we have the following model of excess returns:34 

(5.17) b -rtl = stt= p-1[a(1-p)sts' + (p- a)sts'"] + stO* 

The right side expresses excess returns as the sum of a risk premium (the first 
term) and the ambiguity premium stO6. The risk premium is identical to that 
derived in Duffie and Epstein (1992b). 

For the ambiguity premium, observe that, using common notation, 

st * o6 = -covt(dR', d4* /z4*), 

for each security i = 1, . . ., N, where sI denotes the ith row of st and ZH is as 
in (5.7). Thus the premium is positive if the asset's return has negative instanta- 
neous covariation with dz'* /4z. Recall from (2.9) that Z = dQ*/dP, where Q* 
is the restriction of Q* = Q`* to Yt. 

Alternatively, some insight into the ambiguity premium is provided by applying 
(5.12) to deduce that 07 solves 

max y [p1st + (1-p t 

This characterization of 67 is not completely satisfactory because though sc is 
exogenous in our endowment economy model, the volatility of the market return 
is endogenous.35 Thus we consider three specializations of the endowment pro- 
cess, presented in increasing order of complexity, that permit sharper character- 
izations. 

Geometric Consumption Process: Suppose that in (5.8) both tc and sc are deter- 
ministic constants. From (3.6), (5.12), and (5.14), 

07 solves max 6 SC, 
O, EK 

t 

34 Much of what follows in the remainder of this section extends from K-ignorance to IID ambiguity. 
Whenever we refer to 'expected returns' or other moments, the intention is expectation with respect 
to the reference measure P. When making connections to data, assume that P is the true probability 
measure. 

35 A similar criticism applies to the risk premium in (5.17) if a 0 p. See Campbell (1999) and the 
references therein for further discussion and for proposed solutions in risk-based models. 
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where K c Rd is the set corresponding to K-ignorance defined in (3.11). If 

(5.18) S C j+0 

for each component j = 1,... , d, then we have the closed-form expressions 

(5.19) O* = K 0s sgn(sc)- 

Thus (5.13) leads to the following expression for the market price of uncer- 
tainty: 

(5.20) m = (1 - a)sc + K 0 sgn(sc). 

In particular, -jt can be large even if consumption volatilities are small because 
the second term depends only on the sign of these volatilities and not on their 
magnitudes. 

For excess returns, we have 

(5.21) bti rt = (1 -a)st * St + K * (Soi sgn(stc)). 

The ambiguity premium (represented by the second term) for asset i is large 
if Si'"sgn(s`j) is large and positive for components j of the driving process Wt 
that are very ambiguous in the sense of having large Kj. Because the premium 
depends on the endowment process only via the signs of sc',] j = 1,... , d, large 
ambiguity premia can occur even if consumption is relatively smooth. 

Of special interest is the excess return to the market portfolio given by 

(5.22) bm -rt = ( 1- a)sc * Sc + K * Stc 

providing a decomposition of the equity premium in terms of risk (the first term) 
and ambiguity (the second term).36 The ambiguity premium for the market port- 
folio vanishes as sc approaches zero. However, because it is a first-order function 
of volatility, it dominates the risk premium for small volatilities. 

Combine the preceding to yield 

b - rt = t ' , t ))M (bm - r ) 

a variant of CAPM. Ambiguity leads to a large excess return for asset i if 
i, j M, I 

st st > 0 for components j of the Brownian motion for which K1 is large. 
For the risk-free rate, substitute (5.12) and (5.14) into (5.9) to obtain 

(5.23) rt- =(1-p)(U-c (1-a)(2-p) c c 

which is decreasing in risk aversion (1 - a) and in ambiguity aversion K. 

36 Under IID ambiguity, the ambiguity premium on the right side of (5.22) is given by e(sc). 
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Markov Consumption Process: Assume that the drift and volatility in (5.8) are 
of the form 

(5.24) y4 = (ct, t) and sc = S(c, t) 

for functions ,t and s. Then, under suitable restrictions, the corresponding utility 
process has the form 

Vt = H(ct, t), 

for some function H.37 If H is differentiable in the consumption argument, then 
the volatility of utility is simply ot = ctHc(ct, t)sc. In particular, if the noted 
derivative is everywhere positive (intertemporal utility is an increasing function 
of current consumption), we obtain the following simple characterization: 

O* solves max 0 * SC 

where K c Rd is defined in (3.11), or more generally, K is the set corresponding 
to IID ambiguity as in Section 3.4. Under K-ignorance, the formulae (5.19) and 
(5.21) are extended thereby to the present Markov specification. 

Stochastic Drift and Volatility: Generalize the Markov model by permitting more 
general specifications for the stochastic nature of the drift and volatility of con- 
sumption growth. Specifically, suppose that there exists an Re-valued state vari- 
able (ot such that the joint process (ct, (ot) is Markovian, that is (using slightly 
abused but transparent notation), 

dctlct = 1-tc(ct, tot) dt + stc(ct (tot) * d Wt 

and 
dt = t (Ct tw) dt + st'(ct ,(t) dWt. 

The new twist in this model relative to the earlier one is that we exploit the aux- 
iliary state process (tot) in order to model a situation in which there is ambiguity 
about the stochastic evolution of the drift and volatility of consumption growth 
but not about its conditional distribution. Formally, suppose the K-ignorance 
specification satisfies 

(5.25) KiS C i = 0, for i=1,...,d. 

This suggests the decomposition Wt = (Wtc, Wt4/) such that consumption growth 
is driven by Wtc, tot is driven by both Wtc and Wt1?, and there is ambiguity only 
about the latter. 

37 A detailed derivation could be based on the 4-step procedure from Ma, Protter, and Yong (1994) 
applied to solve the FBSDE consisting of (2.17), (5.8), and (5.24). Intuitively, the point is simply that 
under IID ambiguity and the Markov property for consumption, current consumption is the only 
state variable that is relevant for defining the utility process for (c,). 
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By arguments similar to those outlined for the Markov model, one can justify 
the following expression for the utility of the endowment process: 

Vt = H(ct, wt, t), 

for a suitable H. If the latter is differentiable, Ito's Lemma yields 

ort = ctHc(ct tot, t)sc +HCo(ct, tot, t)s. 

Apply (5.25) to deduce that 

ot * 0-t = Ot * (HO(Ct, Ot, t)SO ), E @. 

If some components of 
Hoso 

are zero, then maxye, y o(t has many solutions. 
Focus on that given by (3.6) and on the corresponding equilibrium. 

The implied excess returns are obtained from the appropriate form of (5.17). 
For convenience, we reproduce the result here in the special case a = p: 

bt- rtl = (1 - a)stsc + St[K 0 sgn(H,s )]. 

Three features of this result are noteworthy. First, in the standard expected util- 
ity risk-based model, mean excess returns at any time and state of the world 
depend on the endowment process only via its current volatility and hence via the 
associated conditional distribution of consumption. In contrast, ambiguity aver- 
sion leads, through sO, to a dependence also on the instantaneous change in the 
conditional distribution of consumption. 

Second, observe that the ambiguity premium can be large even if so is small 
in norm. For example, take the case where tot is real-valued and suppose that 
H. is everywhere positive (a globally negative sign would do as well). Then the 
ambiguity premium for the ith asset equals s [K 0 sgn(sOt)], which depends on 
so only through its sign. 

Finally, the ambiguity premium undergoes discrete jumps at points where com- 
ponents of HXoso change sign, even though the stochastic environment is Brown- 
ian and hence continuous. For example, if e = 1 and st" is constant, then O6 jumps 
wherever H. changes sign and rates of return follow a two-state switching model. 
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A. APPENDIX: BSDE's AND RELATED RESULTS 

For the convenience of the reader, this appendix outlines informally some material regarding 
BSDE's. See El Karoui, Peng, and Quenez (1997) and Peng (1997) for further reading and formal 
details that are ignored here. 
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The stochastic environment (f2, {f }o, P) used throughout the paper is assumed. 
Given f E L2(f2, YT, P) and a function g: R1 x Rd x l2 x [0, T] -- R1, consider the problem of 

finding processes (yt) and (v,) satisfying the BSDE 

(A.1) dy,==g(yt,a,t,cot)dt+?tydWt, YT=e. 

The existence of a unique solution may be proven under Lipschitz and other technical conditions for 
g.38 Our definition of intertemporal utility for a given consumption process c (Theorem 2.2) deals 
with the special case 

g(y, a, co, t) =-f (c (o), y) + max Ot (co) v. 

The following result (El Karoui, Peng, and Quenez (1997, Theorem 2.2)) was referred to in the 
text and is used in the sequel. 

THEOREM A.1 (Comparison): Consider the BSDE above corresponding to (g, () and that associ- 
ated with another pair (g', a'). Let corresponding unique solutions be (yt, a) and (y;, ot). Suppose that 

e' > e and g'(yt, at,o,t) ?g(yt,,uto,wt) dt0 dP a.e. 

Then y' > yt for almost every t E [0, T]. Moreover, the comparison is strict in the sense that if, in addition, 
y' = y, on the event A E Y, then e = on A and 

g'(yt, ow,t)= g(yt,at,to,t) on [,r,T]xA dt0dPa.e. 

A further specialization of (A.1) has f _ 0, or 

(A.2) dyt = [max0t, t]dt+qt dWt, YT =e. 

For a given & (satisfying our assumptions) and each t, the map g H-+ yt defines a nonlinear functional 
from L2(f2, FT, P) into Yt-measurable random variables. Use the notation W[e I i,] for yt, suggesting 
a form of nonlinear conditional expectation (Peng(1997)). In fact, 

[e I X,] = min EQ[e I C]. 
QsEJ8 

Evidently, E[I I - I ] is a form of premium due to ambiguity. 

LEMMA A.2: Consider a consumption process c satisfying 

(A.3) dct = luc dt + s,. dWt, 0 < t < T, co given, 

where (Iuc) and (sc) are continuous and bounded (adapted) processes. Let e(.) be as in (3.8). Then 

lim is c' in the sn of = 
) 

,T-r+ - r 

where the limit is in the sense of L 2 (f2 CT, P). 

38 The analysis in El Karoui, Peng, and Quenez relies on the predictability of (W, t) ~-+ g(y, a, w, t). 
In our context, this would require predictability of consumption processes. However, the arguments 
in Pardoux and Peng (1990) and Peng (1997) rely only on progressive measurability of the above map 
for each fixed (y, v). Thus the key existence and comparison theorems are valid for our setting. 
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The lemma provides the interpretation for e(.) promised in Section 3.4-it provides an instanta- 
neous, per unit time premium for ambiguity. A proof may be found in the working paper version of 
this paper that is available on request. 

B. APPENDIX: DENSITY GENERATORS AND THE SET OF PRIORS 

Assume throughout that e is defined by (2.11), where (0,) satisfies the regularity conditions in 
Section 2.4. 

Say that 6 is stochastically convex if for any real-valued process (At) with 0 < At < 1, 

0 and W'in e implies that (AtOt + (1 - At)0) E e. 

Abbreviate L-([O, T] x l2, _A([0, T]) 0 5T, dt0 dP) by L-([O, T] x l2) and similarly for Ll. 

LEMMA B.1: The set of density generators 6 satisfies: 

(a) 0 E 6 and sup{IIjIILj([O T]j.: 0 E @9 < 0o. 
(b) For any Rd-valued process (o), there exists (0*) E e such that 

(B.1) 0* 7.o = max0Ot -ot = max y uot. 
OE&9 YE&t 

(c) e is stochastically convex and weakly compact in L1 ([O, T] x 12). 

Part (a) describes a normalization and also the norm-boundedness of 6. Though the existence of 
maxYE<H(<) y* or is apparent for each (t, t) pair, (b) ensures that the maximizers 0*7(to) can be chosen 
to satisfy the measurability needed in order that 0* = (0*) constitutes a process. Then 0* achieves the 
first maximum in (B.1) for every t and there is equality between the two maximizations shown. 

PROOF: (b) The process 0* is delivered by the Measurable Maximum Theorem (Aliprantis and 
Border (1994, Theorem 14.91)), which ensures that there exists a progressively measurable selection 
from arg maxyEHt(.) y* ct(w). To apply the Maximum Theorem, use the progressive 0r-field on [0, T] x 
l2 (Revuz and Yor (1999, p. 44)). It ensures also that the value function for the latter problem is 
suitably measurable. 

(c) Stochastic convexity is obvious. Weak compactness follows from Dunford and Schwartz (1958, 
Theorems IV8.9, V6.1). Q.E.D. 

PROOF OF THEOREM 2.1: (b) Fix A E 3FT and Q0 E ?P&. By Girsanov's Theorem, Q0(A I yt) = yt, 
where (yt, o-t) is the unique solution to 

dyt = Ot cot dt + ot -dWt, YT = 1A- 

By the bounding inequality in El Karoui, Peng, and Quenez (1997, p. 20) and Uniform Boundedness, 
there exists k > 0 such that 

(Q0(A))2 < kE(1A) = kP(A), 

where k is independent of 0. This delivers uniform absolute continuity. Equivalence obtains because 
z4 > 0 for each 0. 

(c) For i = 1, 2, let Qi be the measure corresponding to O' E 6 and the martingale zt as in (2.9). 
Define 0 = (0t) by 

(01Z1 + 02Z2) 
t Zl + Z2 

(Recall that z' and Z2 are strictly positive.) Then 0 E 6 and d(zl + z2) = _(z1 + z2)0ot dWt, which 
implies that (Zl + Z24)/2 is the density for (Ql + Q2)/2. Conclude that the latter lies in SP@. Conclude 
similarly for other mixtures. 
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(d) Using the weak compactness of e (Lemma B.1), one can show that Z = {4Z: 0 E e} is norm- 
closed in L' (l2, 3FT, P). (The argument is analogous to the proof of Lemma B.2 in Cuoco and Cvitanic 
(1996).) Because Z is convex, it is also weakly closed. Clearly, Z is norm-bounded (E(Izl I) = 1 for 
all 0). Thus, Z is weakly compact by the Alaoglu Theorem. Finally, Z is homeomorphic to ?P' when 
weak topologies are used in both cases. 

(e) follows from Lemma B.1(b). Q.E.D. 

C. APPENDIX: PROOF OF EXISTENCE OF UTILITY 

PROOF OF THEOREM 2.2: (a) First prove Lipschitz continuity of the support function e defined 
in (2.12). Let x and x' be in Rd and suppose that et(x) = y x and e,(x') = y' .x' for y and y' in Et; 
dependence on w has been suppressed notationally. Then 

et (x) - e,(x') < y (x -x') < dYI yIIx - x'l 

and 
et (x) - e,(x') > y' (x -x') >- d Iy'l IlX- x'l. 

Now use Uniform Boundedness (&, (to) c K and K compact). 
By the existence and uniqueness result in Pardoux and Peng (1990), there exist unique solutions 

(V,, o-r) and (VQ, o-fQ) to (2.17) and (2.16) respectively. 
(b) The Comparison Theorem and 0 x_ < maxyE&t y . xt for any xt, imply that Vt < minQE9"9 t 

On the other hand, by Lemma B.1(b), there exists 0* in e such that 

(C.1) dVt = [-f(ct, Vt) + O* t] dt + o-t dWt, VT = 0; 

in other words, Vt = VtQ > minQE9,9 KtQ, proving equality and hence (2.14). Uniqueness is covered 
by the uniqueness results in Peng (1997). 

(c) Case 1: Suppose that f(c, ) is decreasing for each c in C. 
Let r = T. By Girsanov's Theorem, 

=VQ 
- 

EQ[|f f(c, Vs) ds I itJ 

Thus 

Vt = min VQ = min EQ f Tf(c, VQ) ds I (t 
QE2P'9 QE9f9 t 

< min EQ f(Cs, min VYQ)ds I5t] = min EQ[f Tf(cs, V)ds I 5t 
Q E9"9 

f t( QE, 9 QE9"9 

On the other hand, (C.1) and Girsanov's Theorem imply that 

Vt = EQ* [f f(cs Vs)ds I t] > min EQ[f f(cs, Vs)ds I t]. 

For general r, denote VT by 5. Then (Vt, o-t) is the unique solution to the BSDE (on [0, r]) 

dVt =[-f(ct, Vt)+ max Ot .otj dt+uot dWt, VT 

The fact that the terminal value 5 is nonzero is of no consequence for the preceding arguments. In 
particular, (Vt) solves 

Vt = min EQ [;f (cs, Vs) ds + 5 t 
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Case 2: Let f be arbitrary. For the given process c, define 

F(t, v) --Kv + eKtf (ct, e-Ktv), 

where K is the Lipschitz constant for f. Then, F(t, ) is decreasing and thus by Claim 1 (the time 
dependence is of no consequence), there exists a unique (Vt1) solving 

(C.2) Vt' = min EQ [f F(s, V1') ds I Ftj 

For this fixed (Vt'), define further the function 

H(t, v) _-Kv+ e Ktf (ct, eK Vt). 

Again by Claim 1, there exists a unique (Vt) solving 

(C.3) Vt = min EQ[ H(s, VD ds I 5ij. 

Comparison of (C.2) and (C.3) and the uniqueness of solutions yield the equality 

(C.4) Vt' = Vt. 

Furthermore, by (b), we have 

(C.5) Vt = mi VtQ', 
QE9P9 

where (VtQ) solves the BSDE 

IVtQ = [-H(t, VtQ) + Oto-j dt + o-t d Wt, VTQ = O. 

This linear BSDE has explicit solution 

VQeKt = EQ[fT f (cs, eK Vs)Jds I t], VQ E sP9. 

Combine with (C.4) and (C.5) to deduce that 

V'e-Kt = e-Kt - min VQe-Kt = min EQ [fT f (cs, e-Ks Vs') ds I Ft 
QEI?P9 QEIepe Ltj 

implying that Vt = VteKt solves Vt = minQE pe EQ[LTf(cs, Vs) ds I Yj. Similarly for r < T. Q.E.D. 

D. APPENDIX: PROOFS OF PROPERTIES OF UTILITY 

PROOF OF THEOREM 3.1: (a) and (b): To make explicit the dependence on the driving process 
(Wj), write VT(c, W) to denote the solution of 

VT (C, W) = f [f(cs, Vs (c, W)) - e(s(c))] ds _ fos(c) dWs 

Let 9Ot = o(Ws+-W,: s < t) and Wt = Wt+, -W, for O < t < T-r. Then (Wt)O<t<T-r is 195 & 
Brownian motion under P and (Ce)O<<TT = (Ct+)O<t<Ttr is { t}-adapted. Thus there is a unique 
solution (VT-r(c, W), u(5)) to 

Vt (c W) = s [f(5 vs (c, W)) - e(os(0))] ds - T o-(c) d Ws, 
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where t varies over [0, T - r]. After the change of variables 1 = t + r, this can be rewritten as 

T-r T-r 

J7_Tr(C W) = [( c7T r(5 W)) -e(os5())]ds- f os() dW, 
VI_ 

_r W 

for r < 1 < T. The further change u = s + r yields 

Vl_r (c W) = f 
[fI(cu-, V_T;r(c, W))-e(o_,-r(c))]du- jT C (C) dWur 

Because c = CU and dW,_, = dWU, deduce that (Vf7r(5, W), Ct-r(5))r<t<T solves (on [r, T]) 

(D.1) VT (c, W) = fT[f(c51 -eo(C, W))- e(o-(c))] ds - fT o(c) . dWs. 

That is, Vt'(c, W) = 7T (c, W) and c-tr,(c) = o-t(c) for t E [r, T]. In particular, choosing t = r, we 
have VrT(c, W) = c0Tr(5, W), which is deterministic. 

Rewrite (D.1) as 

VT (c, W) = V (c, W)?+ [f(CS, V(c W))-e(os(c))]ds-j o(c) dWs, 

for 0 < t < r. By hypothesis, ct is deterministic for 0 < t < r. By the unicity of solutions and the fact 
that VfT(c, W) is deterministic, it follows that (V,T(c, W), 0) is the solution of the ODE 

VT (c, W) = VT (c, W)+ 
f 

f(cs, VT(c W))ds, 

for 0 < t < r, proving (a). Because a corresponding representation is valid for c', (b) follows by the 
Comparison Theorem (restricted to ODEs). 

(c) Let r E [0, T] and adopt the other notation above. Then (Wt)o<t<T-r is {f}t<t<T-r-Brownian 
motion under P(. I o(W,)). Because ct is o(Wt)-measurable, ct = g(Wt) for a suitable function g and 
thus ct+r = g(Wt+r - Wr + Wr) is Yt-measurable relative to the probability space (l2, 3FT-r, {1it}I P(. I 

or(Wr)). By arguing as above, we can show that Vr(c) is deterministic relative to this probability 
space, implying that it is o-(W,)-measurable. 

(d) For notational simplicity, let e = 1 and d = 2. Because c is {1t-1 }-adapted, there exists a unique 
{ll }-adapted solution (Vt, ol) to 

dVt = [-f (ct, V,)+Kl IoI]dt+otdW,', VT = 0. 

Then (Vt, o-f, 0) is the unique {lt}-adapted solution to the corresponding 2-dimensional 
BSDE. Q.E.D. 

PROOF OF LEMMA 5.1: (a) Theorem 2.2(b) delivers Q* in ?P& such that V,(c) = VQ* (c). There- 
fore, for any other c', 

V(c') - V(c) = V(c') - VQ* (c) = min VQ(c') - VQ* (c) < VQ* (c) - VQ* (c) 
QE209 

< J EQ* [exp (f Jtf (cs, VQ* (c)) ds) fc (ct VtQ* (c)) (c - ct)] dt 

= Ep [JT t(c - c,) dt] 

The second inequality is due to the nature of supergradients for the stochastic differential utility 
function VQ* (.), as established in Duffie and Skiadas (1994). 

(b): The argument is virtually identical to the proof of Lemma 2.2 in Epstein and Wang 
(1995). Q.E.D. 
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E. APPENDIX: AMBIGUITY 

PROOF OF THEOREM 4.1: Assume probabilistic sophistication relative to P. Then P is 
nonatomic. 

Fix 0 < t, <t2 < T. Let B* and A* c Rd be Borel sets such that 

(E.1) 0< P(Bj nAA) = P(B1 nAA) < 1, where 

Bj{=): WWt E B*} and A1 = {t: W E2 E A }. 

Such sets exist by the nonatomicity of P. We show that all measures in ?P9 agree on B, n A1. Then 
Marinacci (2002) implies that they agree on all events in ct2* Since t2 < T is arbitrary, they agree on 

C~T . 
Define A2 = Al, A3 = A4 = A, B3 = Bl, and B2 = B4 = Bc. Then {Bi 12 1 and {Bi n Ai1}4 1 form 

partitions of l2. 
A real-valued and 9V2 -measurable random variable (or act) f can be associated with a consumption 

process cf such that ctt - 0 for t < t2 and such that f (w) = V2 (Cf, w), the continuation utility of cf. 
By the recursivity of utility, any such cf induces the identical utility Vo(cf), which can therefore be 
viewed as 'the utility of f.' In this way, we can think of utility and preference as defined on acts 
f rather than on consumption processes. Abuse notation and write Vo(f). The acts of particular 
relevance in what follows have the form f = yn x . where the xi's are real numbers. 

The hypothesis of probabilistic sophistication implies that 

(E.2) f-X 1BjlnAj +X21B2nlA2 +?jxixBinAi "X21BnAj +XllB2nA2 +Xi1BinAi. 
i>2 i>2 

because under (E.1) the two acts induce the same distributions over outcomes under P. We establish 
further implications from the fact that the stated indifference applies for all xi's. 

Rectangularity of ?P9 implies that the utility of f can be computed in the following two-stage 
manner: 

Q(B1) min(xlq(Al I Bj)+X3q(A3 I Bj)) 

(E.3) VO(f) = min 
~~qE29P 

(E.3) V0(f) = mmQE919 +(1 - Q(Bl)) min (x2q(A2 I B2) + x4q(A4 I B2)) 

Step 1: Let X4 < min{xl, x2} < max{xl, x2} < X3. Then 

Q(Bl)([max q(Al I Bl)](xl -x3) + x3) 
(E.4) V0(f) = min I 2P 

QE(E 4& + ( --Q(Bl )) ([min q (A2 I B2) (x2-X4) + X4) 
L ~~~~~~~qEgP(9 

= min Q(Bl) (max 

qA(A2 ( 

Bj) 
(xl-x3)-[min 

q(A2 I B2) (x2-x4) + x3-x4 

+ [min q (A2 I B2()[ (x2 -X4) + x4 . 

For many xi's the bracket multiplying Q(BI) is positive and thus Q is chosen to minimize Q(Bj), 
leading to 

Vo(f) = [min Q(Bi) max q(A II Bj)1x, + max Q(B2) min q(A2 I B2)]X2 + h(x3, X4), 

for a function h whose definition does not matter for what follows. By (E.2), the right-hand-side is 
symmetric in xl and x2. Deduce that 

(E.5) min Q(Bj) max q(Al I Bj) = max Q(B2) min q(A2 I B2). 
QE9P9 qEgJ9 QE9P9 qE9P9 
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Similarly, 

(E.6) max Q(BI) min q(Al I BI) = min Q(B2)maxq(A2 I B2). 
QE2P& p&E99 QE.2P& qEiP9 

Step 2: Let x, < X3 = X4 < X2. Then (E.4) is valid and calculations paralleling those above deliver 

Vo(f) = [max Q(BI) max q(Al I BI) x + min Q(B2) min q(A2 I B2)]x2 + h'(X3, X4). 
QE9"9@ qE2P9 QE!2P9 qE.3(9 

Step 3: Let X2 < X3 = X4 < xl. For X4 - X2 sufficiently larger than X3 - xl, compute 

Vo(f) = [max Q(Bj) min q(Al I B)lx? + [min Q(B2) max q(A2 I B2)X2 + h'(X31 X4)- 
LQEV9$ qE,9I9 LQE~P' Q(~aq(AEJJ '(P9x) 

The last two equations and (E.2) imply that 

max Q(BI) max q(Al I Bj) = min Q(B2) max q(A2 I B2). 
QE9?P9 qE#Pe QE'}59 qE!?P9 

Similarly, 

max Q(B2) max q(A2 I B2) = min Q(Bj) max q(Al I BI). 
QEP*O qEJ49 QEY9 qEP9P 

Combine with (E.6) to deduce that minqE*e q(Al I B1) = maxqE2p9 q(Al I B1) and 

(E.7) {q(Al I B1): q E ?P&} is a singleton. 

Now (E.5)-(E.6) imply 

> minQE3"9 Q(B1) maxQe9e Q(B2) > 
- 

maxQE2PO Q(B1) minQE.e9 Q(B2) - 

and thus {Q(Bj): Q E .9k} is a singleton. Combine with (E.7) to obtain that {Q(B1)Q(Al I Bj): Q E 

?P&} = { Q(Aj n Bj): Q E ?P'} is a singleton. Q.E.D. 

PROOF OF LEMMA 4.2: Assume (4.2). Given Q0 in ?P&, Q0(F) = yO where (yt, oat) is the unique 
{1t}-adapted solution to the BSDE 

dyt = ot -t dt + ot dWt, YT = 1F- 

If F E CT, then ot = 0 if P(F I YTi) = 0 or 1. Thus Ot cot = 0 and the BSDE reduces to the one defining 
P(F), namely where 0 = 0. Therefore, Q(F) = P(F). 

For the converse, suppose that all measures agree on F. Then yo = y', where 

dyt=mmaxOt o-t dt+uot dWt, YT=1F 
OE&9 

dy' =max Ot -dt+ odWt, YT=1F 
OE& 

T= F 

By the strict portion of the Comparison Theorem A.1, 

max 0 cr = min0O 0cr' 
eE19 t OE tt 

or, in terms of the support function (3.8), e(ot) =-e(-ot). By the nonnegativity of e, e(out) = 0. 
Apply (3.10) to conclude that if Ki =$ {0}, then oti =0, which implies P(F I 9T) = 0 or 1. Q.E.D. 
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PROOF OF THEOREM 4.3: (i) =: Because K* = 0 implies Ki = 0, it follows from Lemma 4.2 that 
W* c W. The consumption processes that are unambiguous for V* are those that are adapted to the 
filtration generated by {W/': Ki* = O}. On such processes, V and V* coincide with VP, the Kreps- 
Porteus utility having measure P and parameters (,B, p, a). That is, 

V(cua) = V*(Cua) = VP(Cua). 

Therefore, it is enough to prove that V*(c) < V(c) for all consumption processes c. This follows 
from K* > K, (3.7), and the Comparison Theorem A.1. 

: The above argument is reversible. First, W* c G implies that Ki = 0 whenever K* = 0. From the 
definition of 'more ambiguity averse' it follows that V and V*agree in the ranking of V*-unambiguous 
consumption processes. These processes are deterministic if K* >> 0, in which case we can conclude 
only that V and V* agree in the ranking of deterministic processes and therefore that (/3*, p*) = 
(/3, p). However, under the assumption that K1* = 0 for some i, there exist sufficiently many stochastic 
processes that are V*-unambiguous in order to conclude that the risk aversion parameters a and a* 
must be equal. Finally, apply (4.4), (3.7), and the Comparison Theorem to deduce that K* > K. 

(ii) 4= It follows from Lemma 4.2, that on V-unambiguous processes, V* agrees with VP,(13*,p*, a*) 

the Kreps-Porteus utility with measure P and parameters (,B*, p*, a*), while V agrees with VP(,'3 P a) 

defined similarly. Thus the comparative risk aversion statement follows from Duffie and Epstein 
(1992a). The converse is similar to (i). Q.E.D. 

Consider finally the relation between the designation (4.1) and the definition of ambiguous events 
in Epstein and Zhang (2001). It is immediate that an event where all measures agree is unambiguous 
in the sense of that paper. We show that, under IID ambiguity, and for 'many' events the converse 
is valid. 

LEMMA E.1: Suppose that e conforms to IID ambiguity. Let E be unambiguous according to 
Epstein-Zhang. If also E E 0(Ws: to < s < t) for some 0 < to < t < T, then Q(E) = P(E) for all Q in 
$p. 

PROOF: Exclude the trivial case e -{0}. Then there exists A in to such that 

(E.8) 0 < min Q(AC) :A min Q(A) > 0. 

(Under IID ambiguity, if all measures agree on to, then Lemma 4.2 implies that they agree on CT 

and hence ?_ {0}. This is the only point at which IID ambiguity is used; thus the lemma admits 
substantial generalization.) Define El = E n A, E2 = E n Ac, A1 = A n Ec, and A2 = AC n Ec. 

Proceed as in the proof of Theorem 4.1 to translate preference over consumption processes into 
preference over t-measurable real-valued random variables. In terms of this derived preference 
order, E unambiguous implies that 

Xl1A1+XlA2+Z1E"X1A1 +XlA2+Z1E iff 

X1A1 +XlA2 +Z1E X1A1 +X 1A2 +ZE. 

The fact that this invariance is required to hold for all choices of x*, x, z, and z', regardless of relative 
magnitudes, is the source of its power. 

Proceed as in the proof of Theorem 4.1 to exploit rectangularity and compute utilities in two 
stages, delivering thereby closed-form expressions for the utilities of the above acts. Then tedious 
algebra and application of (E.8) deliver 

max Q(E2 I AC) = min Q(E2 I AC) = min Q(Ej I A) = min Q(Ej I A), 
.95 go goe go 
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which implies, by the noted two-stage calculation, that 

min p(E) = min |P(A) min Q(El I A) + (1 P(A)) min Q(E2 I A') 

= min Q(El I A) = max Q(E1 I A) = max p(E). 
Hence am s s -a o 

Hence all measures in *9o agree on E. Q.E.D. 
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