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Abstract

A game-theoretic framework that allows for explicitly randomized strategies is

used to study the effect of ambiguity aversion on equilibrium outcomes. The no-

tions of “independent strategies” as well as of “common priors” are amended to

render them applicable to games in which players lack probabilistic sophistication.

Within this framework the equilibrium predictions of two player games with ambi-

guity averse and with ambiguity neutral players are observationally equivalent. This

equivalence result does not extend to the case of games with more than two players.

A translation of the concept of equilibrium in beliefs to the context of ambiguity

aversion yields substantially different predictions - even for the case with just two

players.
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1 Introduction

The Ellsberg paradox shows that people treat risky situations in which they know the odds

of all relevant outcomes differently from ambiguous situations in which they can only guess

these odds. It has inspired a large range of different generalizations of expected utility

theory that can accommodate for the apparent aversion to ambiguity. This branch of

decision theory continues to thrive.1 If anything we might expect that ambiguity aversion

is more relevant for strategic decision making than it is for single person decision making

as people are quite generally harder to predict than natural processes.

It is surprising, then, that the literature on games among players that are ambiguity

averse stayed comparatively small. A review of some applications can be found in Mukerji

and Tallon [26]. It is important to mention that in many of the applications of such

games the players are assumed to be uncertain about the environment rather than about

each other’s strategies, see Bade [3], Levin and Ozdenoren [22], Bose, Ozdenoren and

Pape [7]. In contrast the present paper concerns the case in which players are assumed

to be uncertain about each others’s strategies.

To do so, the present paper takes up the interpretation of mixed strategy equilibrium

according to which it it assumed that players explicitly randomize over actions and re-

places the assumption that players are expected utility maximizers with the assumption

that players are averse to ambiguity. It is shown that for the class of two player games

the equilibrium predictions are not affected by such a change in the assumption on the

players attitudes towards subjective uncertainty.

To accommodate different attitudes towards ambiguity I introduce the assumption that

players can choose to play “ambiguous strategies”. The players in the present approach

can not only base their strategies on objective randomization devices such as dices or

roulette wheels, they can also use subjective randomization devices. Players can, for

instance, base the choice of their strategy on the draws from an Ellsberg urn, on a horse

race or even on their feelings. This generalization of the players strategy spaces makes it

possible to endow players with different attitudes towards ambiguity.

1For a review on the experimental evidence see Camerer and Weber [9]. Some of the seminal con-

tributions to the decision theory of ambiguity aversion are Schmeidler [28], Gilboa and Schmeidler [16],

and Bewley [5], for a very recent treatment that generalizes many of the available representations see

Cerreira, Maccheroni, Marinacci, and Montruccio [11].
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The generalization suggested so far actually overshoots the mark of parsimonious devi-

ation that allows us to identify the effect of the players ambiguity attitude on equilibrium

predictions: The introduction of all kinds of subjective randomization devices does not

only allow for different attitudes towards ambiguity but also for correlation devices and

wildly diverging beliefs. Sections 3.1 and 3.2 are devoted to tacking these two issues. This

is somewhat harder than one might initially think as I cannot rely on probabilistic beliefs

on the state space to define the notions of “independent strategies” and “common priors”.

Once these hurdles are taken I use the standard Nash equilibrium concept to define an

Ambiguous Act Equilibrium in section 4 as a profile of ambiguous act strategies such that

no player has an incentive to deviate given all other players’ strategies.

The definition of an Ambiguous Act Equilibrium can be seen as an answer to the

first of three questions that Mukerji and Tallon [26] identified as the guiding questions in

research on game theory with ambiguity averse players. In their review of applications

of David Schmeidler’s concept of uncertainty aversion they describe these three questions

as follows: “(1)... how should solution concepts ... be defined? (2) questions about the

general behavioral implications of the new solution concepts (3) questions about insights

such innovations might bring to applied contexts”. My main contribution to the 2nd

question is a negative one: In the main result of the present paper Theorem 1 I show that

the ambiguous act equilibria and the mixed strategy equilibria of a two player game are

observationally equivalent. In sections 6 until 10 I ask and answer the following questions:

are there any action profiles that can arise in mixed strategy equilibrium but would never

arise in ambiguous act equilibrium? Conversely, are there any action profiles that are

consistent with the assumption of equilibrium play by ambiguity averse players but are

inconsistent with mixed strategy equilibrium? Can the observation of an action profile tell

us whether the players are ambiguity neutral or averse? For games between two players

with transitive and monotone preferences the answer is negative. In such games the set of

all ambiguous act equilibria is observationally equivalent to the set of all mixed strategy

equilibria, in the sense that any action profile that is consistent with equilibrium play

among uncertainty averse players is consistent with equilibrium play among uncertainty

neutral players. In the present context the answer to Mukerji and Tallon’s questions

numbers (2) and (3) is that the general behavioral implications of uncertainty aversion

are not different from the general behavioral implications of expected utility maximization
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and consequently that there is little hope for new insights in applied contexts.

I go on to show in sections 11.2 and 11.3 that the prospects for different behavioral

implications of different ambiguity attitudes do no look as bleak once we leave the setup

of this paper. I show in particular that observational difference between the equilibrium

play of ambiguity averse players can either arise when there are more than two players or

when the equilibrium concept proposed here is replaced by an equilibrium concept that

extends the notion of equilibrium in beliefs to the context of ambiguity averse players.

I also show that some of the existing results of behavioral difference in the literature

on games with ambiguity averse players mainly derive from the assumption that allows

for players’ beliefs to diverge “extremely”. I juxtapose my definition of ambiguous act

equilibrium with existing equilibrium concepts in section 5, I compare my results to some

of the equilibrium predictions in the literature on games with ambiguity averse players in

section 11.4.

2 General Ambiguous Games

Two player normal form games (in mixed strategies) are denoted by G = (A,%) with

A : = (A1, A2), the players’ sets of pure strategies, which are assumed to be finite. The

players preferences are summarized by % : = (%1,%2). They are defined on the set ∆(A),

where ∆(N) denotes the set of all lotteries on any (finite) N . A general ambiguous

act extension of G is a game G′ = (Ω, A,%′) with the following interpretations of Ω

and %′: the state space Ω can be represented as the product Ω1 × Ω2 of two finite “state

spaces” Ω1 and Ω2. The preferences %′= (%′1,%
′
2) are defined over all acts f : Ω→ ∆(A);

the restriction of these preferences to the set of all constant acts equals the preferences

in the original game G, formally %′i |∆(A) =%i for i = 1, 2. The set of player i’s strategies

in the ambiguous act extension G′ is the set of all acts fi : Ωi → ∆(Ai). A strategy

profile (f1, f2) induces an act f : Ω → ∆(A) with f(ω)(a) = f1(ω1)(a1)f2(ω2)(a2) for all

a ∈ A. So the probability that an action-profile a = (a1, a2) is being played in state ω

is determined as the product of the probabilities that the two players play action ai in

state ω. I denote the act induced by a strategy profile (f1, f2) as well as the strategy

profile itself by f . A game G′ is called a general ambiguous game , if it is a general

ambiguous act extension of some game G.
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The assumption that player i’s action space consists of all acts fi : Ωi → ∆(Ai) implies

an assumption on player i’s knowledge: Player i can only base his actions on the i’th

component of the state since he only knows this aspect of the state. Player i’s knowledge

can be described by the event algebra Si on Ω such that Ei ∈ Si if ω ∈ Ei implies that

(ωi, ω
′
−i) ∈ Ei for all ω′−i ∈ Ω−i.

2 This assumption is without loss of generality as I could

have defined player i’s strategy space equivalently as the set of all Si-measurable acts

f : Ω→ ∆(Ai). It is convenient to define the events ω∗i : = {ω|ωi = ω∗i }.
The assumption on strategy spaces also implies that players have access to objective

randomizing devices, that can generate any lottery on the action spaces Ai. A player

that can choose any fi : Ωi → ∆(Ai) is free to generate his strategic choices using roulette

wheels, dices, objective computer generators or similar things. In the games under study

players are equally free to base their choices on their mood of the day, or on any other

subjective random device to which they have access. The definition of a game does not

depend on this notion of an act.

Let me note as an aside that games could also be defined for an environment with

Savage acts f : Ω → A, in which no objective lotteries are assumed. This could be

interesting as the empirical evidence on mixed strategies suggests that “normal” people

are not able to play mixed strategies. Chiappori, Levitt and Groseclose [10], Palacios-

Huerrta [27], and Walker and Wooders [29] therefore use “abnormal” people, namely

athletes, to test the predictions of mixed strategy equilibrium. Games played by “normal”

people could be studied in a framework in which strategies are acts f : Ωi → Ai.

2.1 Notation

I use the letters f, g, fi, gi to denote acts. Lotteries on action profiles and action spaces

are denoted by p, q ∈ ∆(A) or pi, qi ∈ ∆(Ai) respectively. As a shorthand I denote a

constant act f with f(ω) = p for all ω ∈ Ω and some p ∈ P(A) directly by p (and

accordingly for fi). Degenerate lotteries, that is lotteries p ∈ ∆(A) and pi ∈ ∆(Ai)

such that p(a) = 1 for some a or pi(ai) = 1 for some ai are denoted a or ai. Finally

constant acts with f(ω) = a or fi(ωi) = ai for all ω ∈ Ω or ωi ∈ Ωi are denoted by a

and ai respectively. Constant acts a correspond to pure strategy profiles, constant acts

ai correspond to pure strategies. Constant acts p and pi correspond to mixed strategy

2I follow the usual convention and define x−i = x2 if i = 1 and x−i = x1 otherwise.
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profiles and mixed strategies respectively. In short, pure and mixed strategies are naturally

embedded in the framework of general ambiguous games.

The mixture αf + (1− α)g of two acts f, g is defined component wise, meaning that

(αf + (1 − α)g)(ω)(a) = αf(ω)(a) + (1 − α)g(ω)(a) for all a ∈ A and all ω ∈ Ω. The

complement of an event E ⊂ Ω is denoted by E. For any three acts f, g, h and any

mutually exclusive events E,F ⊂ Ω I define the act (f : E, g : F, h : E ∪ F ) by

(f : E, g : F, h : E ∪ F )(ω) =


f(ω) for ω ∈ E,
g(ω) for ω ∈ F,
h(ω) otherwise

An event E is i-null if (f : E, g : E) ∼i (f : E, h : E) holds for all acts f, g, h : Ω →
∆(A). If an event is not i-null, then it is called i-non-null .

3 Parsimony

The goal of the present study is to see how the equilibrium predictions for a game change

when the assumption of players maximizing expected utility is replaced by the assumption

of ambiguity averse players. To reach this goal the games studied here should differ from

standard games in mixed strategies in only this one respect. Said differently, the games

studied here should reduce to standard games in mixed strategies when all players pref-

erences have expected utility representations U = (u, π) consisting of utility functionals

u : ∆(A) → R and priors π ∈ ∆(Ω) such that f % g holds for two acts f, g : Ω → ∆(A),

if and only if U(f) =
∑

ω∈Ω π(ω)u(f(ω)) ≥ U(g) =
∑

ω∈Ω π(ω)u(g(ω)). The general am-

biguous act extensions defined above are too general for the purpose of this study. They

not only allow for various ambiguity attitudes, they also allow for correlation devices and

wildly diverging beliefs.

In fact the notion of a general ambiguous game corresponds to the definition of a

game that Aumann [1] uses in his introduction of the concept of correlated equilibrium.

Aumann starts out with the same general definition of a game and goes on to impose

an expected utility representation. The present project can be seen as complementary to

Aumann’s: How would the set of equilibria change, if we dropped the assumption that

players are expected utility maximizers but retained the assumption that players cannot
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rely on any correlation devices? With the goal of the most parsimonious deviation from

standard theory that allows for the introduction of a new aspect I should proceed by

imposing that the strategies of all players are independent and that all players share some

common belief on the underlying state space. In the following two subsections I develop

notions of strategic independence and common beliefs that can be applied to games that

do not allow for an expected utility representation of preferences. This allows me to define

the notion of ambiguous act extensions, as general ambiguous act extensions that satisfy

the requirements of strategic independence and common beliefs.

3.1 Independent Strategies

Strategies are considered independent, if the randomization devices (namely state spaces

Ω1 and Ω2) on which players can condition their strategies are stochastically independent.

The definition of stochastic independence advocated here builds on the idea that the value

of a mixed strategy pi should not depend on the event Ei ⊂ Ωi in which it is played. It

is helpful to consider the standard case in which preferences have an expected utility

representation as defined above to develop and understand this definition. Consider an

act f = (f1, f2) and assume that π(ω1) > 0 for all ω1 ∈ Ω1. Observe that U(f) can

alternatively be expressed as the weighted sum of conditional expected utilities:

U(f) =
∑
ω1∈Ω1

π(ω1)
∑
ω2∈Ω2

u(f1(ω1)× f2(ω2))
π(ω1 ∩ ω2)

π(ω1)
.

Observe that Ω1 and Ω2 are stochastically independent according to the standard defini-

tion if and only if π(ω1∩ω2)
π(ω1)

= π(ω2) for all ω ∈ Ω. This in turn implies that the conditional

value of a mixed strategy p1 does not depend on the event in which it is played, in other

words, the value of U((p1 × f2)|ω1) =
∑

ω2∈Ω2
u(p1 × f2(ω2))π(ω1∩ω2)

π(ω1)
does not depend on

ω1 as π(ω1∩ω2)
π(ω1)

is equal to π(ω2) no matter which ω1 we choose.

So in a sense, with independent state spaces Ω1 and Ω2, strategies become “exchange-

able”: The mixture p1 yields the same conditional value whether it is played in the event

ω1 or in the event ω′1. This, however, does not mean that for independent strategies

players are indifferent between any acts ((p1 : E, q1 : E), f2) and ((q1 : E, p1 : E), f2). If

the two events E,E do not have the same size, the acts might yield a different expected

utility. The definition of stochastic independence proposed here builds on the idea of

event exchangeability corrected for the different size or importance of different events.
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Definition 1 Take a general ambiguous game G′ = (Ω, A,%′). Then Ω1 and Ω2 are

called k-independent if for all strategy profiles f : Ω → ∆(A), all mutually exclusive

k-non-null events E,F ⊂ Ωi and all mixtures pi, qi ∈ ∆(Ai) there exists an α ∈ [0, 1] such

that either

((pi : E, qi : F, fi : E ∪ F ), f−i) ∼′k ((αpi + (1− α)qi : E, pi : F, fi : E ∪ F ), f−i)

or

((pi : E, qi : F, fi : E ∪ F ), f−i) ∼′k ((qi : E,αpi + (1− α)qi : F, fi : E ∪ F ), f−i).

The parameter α acts as a corrective for the possibly different “size” of E and F .

If players have a prior on Ω, these “sizes” can straightforwardly be identified with their

probability as can been seen in the proof of the following lemma. When agents do not base

their decisions on a (single) prior this identification fails and the value of the corrective

parameter α is therefore allowed to adjust endogenously.

Lemma 1 If a player’s preferences have an expected utility representation then the be-

havioral notion of independence given in Definition 1 coincides with the standard notion

of independence.

Proof Assume that Ω1 and Ω2 are independent according to the standard definition.

Then we have for any act ((pi : E, qi : F, fi : E ∪ F ), f−i) with π(E) ≥ π(F )

U
(
(pi : E, qi : F, fi : E ∪ F ), f−i)

)
=

= π(E)
∑
ω2∈Ω2

u (pi × f2(ω2))
π(E ∩ ω2)

π(E)
+ π(F )

∑
ω2∈Ω2

u (qi × f2(ω2))
π(F ∩ ω2)

π(F )
+R =

= π(E)
∑
ω2∈Ω2

u (pi × f2(ω2))π(ω2) + π(F )
∑
ω2∈Ω2

u(qi × f2(ω2))π(ω2) +R =

= π(F )
∑
ω2∈Ω2

u (pi × f2(ω2))π(ω2) + π(E)
∑
ω2∈Ω2

u ((αqi + (1− α)pi)× f2(ω2))π(ω2) +R =

= U
(
((pi : F, αqi + (1− α)pi : E, fi : E ∪ F ), f−i)

)
with R =

∑
ω2∈Ω2,ω1 /∈E∪F u(f1(ω1)× f2(ω2))π(ω1∩ω2)

π(ω1)
and α := π(F )

π(E)
.

Conversely assume that Ω1 and Ω2 are not independent according to the standard

definition. Then there exist non-null events E ⊂ Ω1 and F ⊂ Ω2 such that π(E ∩ F ) >

π(E)π(F ), π(E ∩ F ) > π(E)π(F ), π(E ∩ F ) < π(E)π(F ) and π(E ∩ F ) < π(E)π(F ).
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Define a game in which player 1 can choose among the strategies T and B, and player 2

can choose from L and R such that the payoffs to player one are as follows: u(T ×L) = 1,

u(B × R) = π(F )

π(F )
and u(T × R) = u(B × L) = 0. Define strategy f2 := (L : F,R : F ).

Observe that

U1

(
(T : E,B : E)× f2

)
= π(E ∩ F ) + π(E ∩ F )

π(F )

π(F )
>

π(E)π(F ) + π(E)π(F )
π(F )

π(F )
= π(F )

while on the other hand

U1

(
(B : E,αT + (1− α)B : E)× f2

)
=

= π(E ∩ F )
π(F )

π(F )
+ απ(E ∩ F ) + (1− α)π(E ∩ F )

π(F )

π(F )
=

= α

(
π(E ∩ F )

π(F )

π(F )

)
+ π(E ∩ F ) + (1− α)π(F ) ≤

≤ α

(
π(E)π(F )

π(F )

π(F )
+ π(E)π(F )

)
+ (1− α)π(F ) = π(F )

U1

(
(αT + (1− α)B : E, T : E)× f2

)
=

= απ(E ∩ F ) + (1− α)π(E ∩ F )
π(F )

π(F )
+ π(E ∩ F ) =

= α
(
π(E ∩ F ) + π(E ∩ F )

)
+ (1− α)

(
π(E ∩ F )

π(F )

π(F )
+ π(E ∩ F )

)
≤

≤ απ(F ) + (1− α)

(
π(E)π(F )

π(F )

π(F )
+ π(E)π(F )

)
= π(F )

for all α ∈ [0, 1]. So there does not exist an α to satisfy the demanded indifference. �

The intuition behind the latter part of the proof translates to preferences that are not

representable by expected utility functions. Suppose player 2 conditions his strategy on

some event F . Consider player 1’s best reply under the assumption that he can condition

his strategy on an event E which is correlated with F . Given this correlation player 1 will

choose different strategies for the case that E does happen and the case that E does not

happen. The correlation also implies that switching these two choices with each other will

lower player 1’s utility as he would now play the strategy which fits player 2’s strategy in
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the event F best in the event E which is negatively correlated with F and similarly for F .

A simple correction for the size of the events (the parameter α) will not suffice to elevate

player 1’s utility to the level achieved when playing the best response.

I am aware of three alternative behavioral definitions of independence in the literature

by Branderburger, Blume and Dekel [8], Klibanoff [19] and Bade [4]. None of the three

definitions builds on the idea of event exchangeability. Brandenburger, Blume and Dekel’s

definition of independence uses updated preferences to say that an event E is independent

of an algebra S if preferences over two S-measurable acts f and g never change when

learning (and updating with respect to) the independent event E. Defining stochastic

independence through updating in the present context would be unpractical as there is

little agreement on how to update preferences of decisionmakers whose preferences are

not representable by expected utility functions. Klibanoff [19] defines two algebras S1

and S2 independent, if an agent is indifferent between any σi-measurable act f and any

corresponding act fE according to which f is played only if some event E in σ−i obtains

and the certainty equivalent of f is paid otherwise. Bade [4] characterizes independent

events for preferences that can be represented by minmax utilities following Gilboa and

Schmeidler [16] following various modifications of Klibanoff’s notion of independence.

The question how the definition of stochastic independence given above relates to the

definitions provided by Klibanoff [19] and Bade [4] remains open.

3.2 Agreement

In addition for correlation devices general ambiguous games allow for wildly diverging

beliefs. To see this take the following game between two players that can either travel

to Rome or to Paris. Consider a state space Ω1 = {ω1, ω
′
1} and a strategy profile which

prescribes that player 1 goes to Rome, if and only if state ω1 occurs. Finally specify

beliefs such that player 1 is sure that ω1 occurs and player 2 is sure that ω′1 occurs. We

can find a pure strategy equilibrium even if we specify preferences such that one player

prefers meetings to being in different cities whereas the other has the inverse preference.

The constructed game together with its unappealing equilibrium fly in the face of the

common prior assumption. In keeping with the goal of a parsimonious deviation from the

theory of mixed strategy equilibrium, I need to impose a condition that would eliminate
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such games from consideration. The difficulty lies in the fact that the common prior

assumption, just like strategic independence, is defined in terms of the players expected

utility representations. When players have no priors on the state space, they cannot be

common.

To derive a notion of common beliefs observe that the set of i-null states can be

interpreted as the set of states that are “never” going to happen following player i’s

belief. If player i prefers an act f to an act g, even though these two acts only differ on a

state ω player i should better believe that this event could possibly happen. Conversely if

player i is indifferent between all acts that differ only on a state ω this event is irrelevant

for player i’s payoff, he might as well think that this event will “never” happen. Instead of

“common priors” I propose, to require that an event is 1-null if and only it is 2-null. This

assumption can be interpreted as the assumption that players agree on the set of states

that could possibly happen. Observe that this requirement is generally strictly weaker

than the requirement of “common priors”: If the players preferences are representable by

expected utilities players agree on null events if and only if they agree on probability zero

events. Given the agreement on null-events one can sensibly define an event as null if

and only if it is null for player 1 or 2 and as non-null otherwise. The set of all non-null

states of player i is denoted by Ωnn
i .

4 Ambiguous Games and Ambiguous Act Equilibria

A general ambiguous game G′ = (Ω, A,%′) is considered an ambiguous game , if Ω1

and Ω2 are both 1- and 2-independent and if an event is 1-null if and only if it is 2-

null. Analogously, a general ambiguous act extension G′ = (Ω, A,%′) of G = (A,%) is

considered an ambiguous act extension of G = (A,%) if it is an ambiguous game.

Ambiguous games and ambiguous act extensions do not reduce to standard games in

mixed strategies or standard mixed extensions of normal form games, when imposing the

requirement that all players’ preferences are representable by expected utilities, since the

requirement that players agree on non-null events is not sufficient to establish common

priors. Remember though that the main result of this paper (Theorem 1) is a negative

one: it states that the equilibrium play of ambiguity averse and ambiguity neutral agents

is observationally equivalent. Consequently the main result of this paper is strengthened
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by the fact that ambiguous games with expected utility representations are a superclass

of games in mixed strategies: No observational difference can be derived from varying the

degree of ambiguity aversion and the degree of disagreement between players - as long as

they agree on null events. This finally sets the stage for the definition of ambiguous act

equilibria as Nash equilibria of ambiguous act extensions.

Definition 2 Let G = (A,%). A strategy profile f is called an ambiguous act equi-

librium (AAE) of G, if G has an ambiguous act extension, G′ = (Ω, A,%′) such that

f %′i (f ′i , f−i) for all f ′i : Ωi → ∆(Ai) for i = 1, 2.

The notion of ambiguous act equilibrium straightforwardly extends the notion of mixed

strategy equilibrium to the context of players whose preferences do not have expected

utility representations. Just as for the case of mixed strategy equilibrium it is assumed

that each player explicitly randomizes to maximize his own utility given his correct belief

about the strategy of the other. The definition of ambiguous act equilibrium differs from

the definition of mixed strategy equilibrium in that players are assumed to know the

probability with which the different actions are chosen by the players according to the

latter definition. While under mixed strategy equilibrium players need to pick objective

mixtures as their strategies, subjectively mixed strategies are permitted in the case of

ambiguous act equilibria. In Section 11.3 I discuss the option to use ambiguous games to

define another equilibrium concept that would extend the notion of equilibrium in beliefs

to the context of ambiguity averse players. In analogy to the acronym AAE I use the

acronym NE to denote a Nash equilibrium p of a game G = (A,%).

5 Alternative Concepts of Equilibrium

The definition of AAE proposed here differs from the definitions of equilibrium by Klibanoff [18],

Dow and Werlang [12], Lo [23], Eichberger and Kelsey [13], Marinacci [25] and Lehrer [21]

in that they all use some particular representation of preferences in their definitions of

equilibrium. No particular representation of preferences is assumed in the present context.

Different from Dow and Werlang [12], Eichberger and Kelsey [13] and Marinacci [25]

who all extend the notion of equilibrium in beliefs (which I will discuss further in Sec-
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tion 11.3), the present paper assumes that players explicitly randomize. In that aspect the

definition advocated here is closer to the definitions presented by Klibanoff [18], Lo [23]

and Lehrer [21] as they all assume that players choose mixtures as their strategies. How-

ever, since Klibanoff [18], Lo [23] and Lehrer [21] all assume that all players’ strategy

spaces contain only pure or mixed strategies they cannot directly apply the Nash equi-

librium concept to obtain an analogue to mixed strategy equilibrium for the case of

uncertainty averse players. A player cannot on the one hand know the other player’s

mixed strategy and at the same time be uncertain about it. Klibanoff [18], Lo [23] and

Lehrer [21] all assume that players maximize against their belief on the strategy of the

other players, they do however not assume that this belief coincides with the strategy

of the other. Instead their notions of equilibrium require some conditions of consistency

between beliefs and strategies, which I will elaborate on further in Section 11.4.

This differs markedly from the present definition. I allow for ambiguous strategies.

Consequently, the use of the Nash equilibrium concept to define AAE does not eliminate

uncertainty. The novelty of the present approach lies in the definition of a game, the

equilibrium concept itself is not new, I use Nash equilibrium. In case of the present

definition players maximize given their belief on the strategy of the other player and this

belief coincides with the actual strategy of the other. There does, however, remain some

scope for uncertainty as no player needs to hold a probabilistic beliefs on the underlying

state space.

The current paper is closest to the approaches proposed in Section 7 of Lo [23], by Ep-

stein [14] and by Azrieli and Teper [2]. Lo constructs a state space and strategies mapping

states to actions for all players to ground his equilibrium concept in an environment in

which player preferences are defined over fundamentals. Lo acknowledges that the proper-

ties of agreement and stochastic independence need to be defined for this environment and

goes on to define these properties in terms of the particular representation of preferences

he chose. Epstein embeds normal form games in a model of strategic uncertainty similar

to mine. Different from my approach he is interested in a notion of rationalizability for

players whose preferences cannot be represented by expected utilities, he therefore does

not impose any properties of strategic independence or common priors on the games he

studies. While Azrieli and Teper’s notion of games and equilibria with uncertainty averse

players is quite similar to mine it differs insofar as that neither correlation devices nor

13



diverging beliefs are ruled out and that they allow for uncertainty about the environment

as well as for uncertainty about other player’s actions.

In Section 11.4 I will compare the main results of the present study with some of the

results that are based on the above mentioned definitions of equilibrium for uncertainty

averse players.

6 Observational Equivalence: Definition

The main claim of this study is that the Ambiguous Act Equilibria and the Nash equilib-

ria of a two player game G = (A,%) are observationally equivalent when the preferences

of all players satisfy Schmeidler’s uncertainty aversion in addition to some very standard

assumptions on preferences, such as completeness and monotonicity. Observational equiv-

alence captures the idea that an outsider who only observes the action profiles that players

choose cannot tell whether the players are ambiguity neutral or ambiguity averse. In short,

two strategy profiles are considered observationally equivalent if their supports coincide.

To proceed any further I need to define the notion of the support of an ambiguous act.

Definition 3 An action profile a is said to be in the support of strategy profile f if there

exists a non-null state ω such that f(ω)(a) > 0. The set of all actions in the support of f

by is denoted by supp(f). Two acts f, g are called observationally equivalent if they

have the same support. Two sets of acts F ,G are called observationally equivalent if for

every f ∈ F there is an observationally equivalent g ∈ G and vice versa.

The support of a constant act p equals the support of the lottery p in the usual sense.

It is important to note that players agree on null-events in ambiguous games. The present

notion of the support of a strategy profile cannot be applied to general ambiguous games

as the set of 1-null states need not coincide with the set of 2-null states in such a game.

Without this assumption the notion of “support” is not well-defined.

The question underlying the definition of observational equivalence is: is there any

action profile that is consistent with equilibrium play among players with particular at-

titude towards ambiguity - neutral or averse - without being consistent with equilibrium

play among players with a different attitude towards ambiguity. Said otherwise, is there

any action profile that “proves” that players are ambiguity averse in the sense that this
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action profile is in the support of ambiguous act equilibrium, but is not contained in the

support of any mixed strategy equilibrium?

So one might ask: can an observer not use more than just one action profile to

determine whether the players are ambiguity neutral or averse? Aren’t the frequencies

with which all action profiles are being played also observable? Yes they are, however, the

question whether some frequencies are consistent with a subjective act is very much open

to debate. To see this take an act f : Ω → ∆(A) with Ω = {ω1, ω2}, A = {a1, a2} and

f(ω1) = a1, f(ω2) = a2 and both ω1 and ω2 non-null. This act entails no prediction about

the frequency of the occurrence of a1 and a2. I would need to impose further assumptions

on players preferences to relate the observed frequencies to the played acts f . I chose to

avoid this by using the equality of support as my criterion of observational equivalence.

However, ambiguity aversion could be used to explain frequencies that cannot be produced

by mixed strategy equilibria as equilibrium phenomena. As long as players’ learning is too

limited to learn the correct frequencies many different frequencies are consistent with the

predictions of ambiguous act equilibria. Keeping this in mind the theory of ambiguous act

equilibria can be used to interpret some of the existing empirical evidence against mixed

strategy as equilibrium play of ambiguity averse players.

7 Preferences

Until now I have not specified the preferences of the players beyond requiring the proper-

ties of independent strategies and agreement on non-null events. To get any results some

further requirements will have to be imposed. The four basic properties defined next will

be assumed from here on, if not explicitly mentioned otherwise.

(RAT) Preferences are transitive and complete.

(EU) Preferences over constant acts - that is preferences over lotteries - have an ex-

pected utility representation; for any player i there exists an affine function ui : ∆(A)→ R
that represents the players preferences over constant acts (lotteries) ∆(A).3

(MON) Take two acts f, g. If f(ω) %i g(ω) holds for all non-null states ω ∈ Ω, then

f %i g. If in addition f(ω′) �i g(ω′) holds for some non-null state ω′, then f �i g.

3Clearly, I could have stated some more basic properties on the player’s preferences over constant acts

that imply (EU). I chose to summarily state these assumptions as (EU) for the sake of brevity.
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(UA) For any two acts f, g : Ω→ ∆ with f ∼ g it holds that αf + (1− α)g % f .

The first two assumptions (RAT) and (EU) are very much standard, I only mention

in passing that Bewley’s [5] representation of preferences for Knightian uncertainty does

not assume completeness, and therefore violates (RAT) as defined here. The definition of

monotonicity provided here is somewhat stronger than the most commonly used definition

of monotonicity (MON’) which only requires that f %i g holds for two acts f, g with

f(ω) %i g(ω) for all non-null states ω ∈ Ω. To see the difference between the two versions

of monotonicity, observe that the stronger axiom (MON) requires that an act f is strictly

preferred to an act g, if f is strictly preferred to g for a non-null set of states (f(ω) �i g(ω)

for ω ∈ E with E non-null) and indifferent on all other states (f(ω) ∼i g(ω) for ω /∈ E).

In this case the weaker axiom (MON’) only requires that f is weakly preferred to g.

Following the proof of the main result of this paper, Theorem 1, I will discuss how the

result would change if one was to replace (MON) by the weaker (MON’). The axiom (UA)

was introduced by Schmeidler [28]. He defined “ambiguity aversion” as a preference for

randomization: if an agent is indifferent between two uncertain acts then he should like

an objective mixture of these two acts at least as much as either one of them.

Preferences that can be represented by an expected utility satisfy all of the four axioms.

Gilboa and Schmeidler [16] show that preferences satisfy (RAT), (EU), (MON’) and (UA)

in addition to a continuity requirement and a restriction of the independence axiom to

mixtures with constant acts if and only if preferences have a maxmin expected utility

representation U(f) = minπ∈C
∑

ω∈Ω π(ω)u(f(ω)) for some convex and compact set

of priors C and an expected utility functional u : ∆(A)→ R. The stronger monotonicity

axiom (MON) holds for a maxmin expected utility representation, if and only if all priors π

in the set C are mutually absolutely continuous, in the sense that π(E) > 0 for some π ∈ C
holds if and only if π′(E) > 0 for all π′ ∈ C and all E ⊂ Ω. Mutual absolute continuity

of the priors in the maxmin expected utility representation has been axiomatized by

Klibanoff [18] and Epstein and Marinacci [15]. Preferences that have a Choquet expected

utility representation following Schmeidler [28] always satisfy (RAT), (EU) and (MON’),

they satisfy (UA), if and only if the capacity is convex. Cerreira, Maccheroni, Marinacci

and Montruccio [11] characterize the representation of all preferences that satisfy (RAT),

(EU), (UA), (MON’) and some form of continuity. Variational Preferences following

Macceroni, Marinacci and Rusticchini [24], Multiplier Preferences following Hansen and
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Sargent [17] and Smooth Ambiguity Averse Preferences following Klibanoff, Marinacci and

Mukerji [20] all constitute special cases of the preferences described in Cerreira et. al. [11].4

Abstracting from the slight strengthening of the monotonicity axiom the four axioms given

here (RAT), (EU), (MON) and (UA) encompass a very large set of preferences described

in the literature.

8 Observational Equivalence: the Main Result

The assumption of (RAT), (EU), (MON) and (UA) is sufficient to show that the set of

Ambiguous Act Equilibria of a game is observationally equivalent to the set of its Nash

equilibria. If these 4 axioms are valid, then there does not exist a single action profile

that is in the support of an equilibrium when players are ambiguity averse without being

in the support of any Nash equilibrium of the game or vice versa. This is the main result

of this paper.

Theorem 1 Let G = (A,%). The set of AAE of G is observationally equivalent to the

set of NE of G.

The next section is devoted to showing the preliminary result that a constant act p

is a NE of G, if and only if it is an AAE of G. This already allows us to conclude that

there are no NE that are not observationally equivalent to any AAE. The following section

establishes the converse conclusion.

9 Mixed Strategy Equilibria

In this section it is shown that a strategy profile p is an NE of a game G = (A,%) if

and only if it is an AAE of that game. The main building block towards that result is

the observation that for any strategy profile f player 1 has a mixed strategy p∗1 that is

weakly preferred to f1 keeping the other player’s strategy fixed at f2. This observation is

the content of the next Lemma.

4The Axiom MON also corresponds to an assumption of mutual absolute continuity in the case of the

Cerreira et. al. [11] framework (and all its special cases). I owe this insight to a private conversation with

Massimo Marinacci. A proof is available from the author upon request.
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Lemma 2 Let G′ = (Ω, A,%′). For any strategy profile f and either player i = 1, 2 there

exists a mixed strategy p∗i such that (p∗i , f−i) %i f and supp(p∗i ) = supp(fi).

Proof If there exists a pi such that the event {ωi : fi(ωi) 6= pi} is null then we are done

as (pi, f−i) ∼i f and supp(pi) = supp(fi) both hold. If no such event exists fi can be

represented as fi = (pi : E, qi : F, fi : E ∪ F ) with pi 6= qi and E,F ⊂ Ωi both non-null.

Since Ω1 and Ω2 are stochastically independent an α can be found such that either

f =
(
(pi : E, qi : F, fi : E ∪ F ), f−i

)
∼′k
(
(αpi + (1− α)qi : E, pi : F, fi : E ∪ F ), f−i

)
or

f =
(
(pi : E, qi : F, fi : E ∪ F ), f−i

)
∼′k
(
(qi : E,αpi + (1− α)qi : F, fi : E ∪ F ), f−i

)
.

Assume w.l.o.g that the first indifference holds. Uncertainty aversion implies that i

prefers any mixture of the two indifferent acts to f , so we have in particular that

f =
(
(pi : E, qi : F, fi : E ∪ F ), f−i

)
-′i
(
(βpi + (1− β)qi : E, βpi + (1− β)qi : F, fi : E ∪ F ), f−i

)
=(

(βpi + (1− β)qi : E ∪ F, fi : E ∪ F ), f−i
)

for β = 1
2−α . If Ωnn

i ⊂ E ∪ F we are done. If not the same step can be repeated once

again. The finiteness of the state space Ωi implies that this process will end after finitely

many repetitions of this step: a p∗i such that (p∗i , f2) %i f can be found.

To see that supp(p∗i ) = supp(fi) observe first of all that supp(p∗i ) ⊂ supp(fi) as p∗i is

a mixture over the lotteries fi(ωi) for all non-null ω ∈ Ω. Next observe that the mixing

parameter β constructed above assigns positive probability to both pi and qi, the same

would have held for the alternative case in which we would have found an α such that

f ∼i ((qi : E,αpi + (1 − α)qi : F, fi : E ∩ F ), f−i). We conclude that the lottery over

lotteries fi(ωi) has full support and therefore supp(p∗i ) = supp(fi). �

The assumption of independent state spaces Ω1 and Ω2 is crucial for the above proof as

it permits the generation of indifferent acts by permuting the strategies played in different

events. Uncertainty aversion implies that any convex combination of these indifferent acts

is at least weakly preferred. Finally it is a matter of simple algebra to show that there

always exists such a mixture that evens out any uncertainty over the different events that

were involved in the permutation of strategies.
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Theorem 2 Let G = (A,%). A mixed strategy profile p is an AAE of G if and only if

p is a NE of G.

Proof Let p be an AAE of the ambiguous act extension G′ = (Ω, A,%′) of G. So p %′i
(fi, p−i) holds for all deviations fi in particular it holds for deviations p′i, so p %i (p′i, p−i)

holds and therefore p is a NE of G′. Next assume that p is a NE of G′. Suppose p

was not an AAE of G, that is suppose that there exists a deviation fi for player i such

that (fi, p−i) �′i p. By Lemma 2 we have that there exists a p∗i such that (p∗i , p−i) %
′
i

(fi, p−i) �′i p a contradiction with the assumption that p was a Nash equilibrium. �

Theorem 2 should not come as a big surprise. As shown in the preceding lemma, un-

certainty aversion implies that players can always be made weakly better off by objectively

mixing over all the lotteries they use according to their ambiguous act strategies. Given

that the opponent plays a mixed strategy p−i, player i cannot be made strictly better

off by an ambiguous strategy. It should be noted though from the proof that Theorem 2

could be strengthened to say that p is a NE of G, if and only if it is an AAE of any

ambiguous act extension of G. As a direct consequence we get the following corollary

Corollary 1 Any ambiguous game G = (Ω, A,%) has an AAE.

10 Observational Equivalence: the Proof

To prove Theorem 1 I first show that mixtures that are “dominated”, in a sense to

be defined precisely, will never be used in an AAE (Lemma 3). I will then go on to show

that this implies that a player’s belief on the equilibrium strategy of the other can always

be represented by a probability (Lemma 4). These two lemmata yield the proof of the

main result of this paper (Theorem 1). It is convenient to use matrix algebra to state and

prove all these results. Some more notation needs to be introduced.

A generic vector x is assumed to be a column vector, row vectors are obtained by

taking the transpose x>. For any two vectors x, y of the same length the relations “ > ”

and “ ≥ ” are defined by x ≥ y if and only if xt ≥ yt for all components t and x > y if

and only if x ≥ y but not y ≥ x. For any α ∈ R, I denote the vector (α, α, ..., α)> by α.
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For a fixed strategy profile f define an |A1| × |Ωnn
2 |-matrix X(f) with u1(aj1, f2(ωk2)),

the entry in row j and column k, the expected utility player 1 derives from playing aj1

when player 2 plays the mixed strategy f2(ωk2). The submatrix of X that consists only

of the rows j associated with actions aj1 ∈ supp(f1) is called Y (f), the complementary

submatrix (consting only of the rows associated with actions that 1 never plays under

f) is called Z(f). If p>1 X(f) > q>1 X(f) holds for some p1, q1 ∈ ∆(A1) then we say that

p1 dominates q1 at f2. Observe that p>1 X(f) > q>1 X(f) implies that player 1 weakly

prefers playing p1 to playing q1 in every non-null state ω2 and sometimes strictly prefers

doing so. Consequently, given the assumption of (MON) we have that (p1, f2) �1 (q1, f2)

holds, when p1 dominates q1 at f2. Since I consider a fixed strategy profile f , I drop the

argument f in the expressions X(f), Y (f) and Z(f) in the sequel.

Lemma 3 Let G′ = (Ω, A,%′). Let f be an AAE of G′. Then there do not exist any

p1, q1 ∈ ∆(A1) with supp(q1) ⊂ supp(f1) such that p1 dominates q1 at f2.

Proof Suppose there existed some p1, q1 ∈ ∆(A1) with supp(q1) ⊂ supp(f1) such that

and p>1 X > q>1 X. By Lemma 2 there exists a mixed strategy p∗1 ∈ ∆(A1) such that

(p∗1, f2) %′1 f and supp(p∗1) = supp(f1) . Since supp(p∗1) = supp(f1) ⊃ supp(q1) there exists

some r1 ∈ ∆(A1) with supp(r1) ⊂ supp(f1) and an γ ∈ (0, 1] such that p∗1 = γq1+(1−γ)r1.

We obtain that

(p∗1)>X = (γq1 + (1− γ)r1)>X < (γp1 + (1− γ)r1)>X.

So γp1 + (1 − γ)r1 dominates p∗1 at f2 which implies that ((γp1 + (1 − γ)r1), f2) �′1
(p∗1, f2) %′1 f , a contradiction with the assumption that f is an AAE. �

The next lemma shows that it is precisely the condition derived in the prior lemma,

namely the absence of two p1, q1 ∈ ∆(A1) with supp(q1) ⊂ supp(f1) such that p1 dominates

q1 at f2, that allows us to conclude that there exists a p̃2 with supp(p̃2) = supp(f2) such

that player 1 is indifferent between playing any action aj1 ∈ supp(f1) when player 2 plays

p̃2 and (weakly) prefers playing any of these actions to playing any of the other actions

aj1 /∈ supp(f1). The mixed strategy p̃2 is constructed as the composite lottery of some

lottery p2 over all mixed strategies f2(ω2) that player 2 plays according to f2. Using

matrix algebra the desired result can be expressed as follows: There exists an α ∈ R and
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a p2 ∈ ∆(Ωnn
2 ) such that Y p2 = α and Zp2 ≤ α, where the matrices Y and Z are defined

as described above.

Lemma 4 Let G′ = (Ω, A,%′). Suppose there do not exist any p1, q1 ∈ ∆(A1) with

supp(q1) ⊂ supp(f1) such that p1 dominates q1 at f2. Then there exists a probability

p2 ∈ ∆(Ωnn
2 ) with full support and an α ∈ R such that Y p2 = α and Zp2 ≤ α.

Proof

(⇒) Suppose there exists a p2 ∈ ∆(Ωnn
2 ) with full support and an α ∈ R such that

Y p2 = α and Zp2 ≤ α. Suppose we also had p1, q1 ∈ ∆(A1) with supp(q1) ⊂ supp(f1) such

that p>1 X > q>1 X. This yields a contradiction as α = q>1 α = q>1 Xp2 < p>1 Xp2 ≤ p>1 α = α.

(⇐) Suppose there exists no p2 ∈ ∆(Ωnn
2 ) with full support and α ∈ R such that

Y p2 = α and Zp2 ≤ α. This is equivalent to S ∩ r = ∅ for S, r ⊂ R|A1|, r := {α|α ∈ R},
and

S := {s|sY = Y p2 and sZ ≥ Zp2 for some p2 ∈ ∆(Ωnn
2 ) with supp(p2) = Ωnn

2 }

where sY = (sj)aj
1∈supp(f1) and sZ = (sj)aj

1 /∈supp(f1) are defined as the subvectors of s

that correspond to actions aj1 in the support and outside the support of f1 respectively.

Since S is a convex set there exists a separating hyperplane H such that r ⊂ H and

H ∩S = ∅. Let this plane H be described by a vector λ such that λ>x = 0 implies x ∈ H
and λ>x > 0 for all x ∈ S. Since 1 ∈ r ⊂ H we have that

∑
λi = 0.

Next define two vectors κ and ρ by κl = λl if λl > 0, κl = 0 otherwise, ρl = −λl if

λl < 0 and ρl = 0 otherwise. Observe that
∑
κl =

∑
ρl > 0.5 Define λ̃, κ̃ and ρ̃ by

λ̃l =
λl∑
κl
, κ̃l =

κl∑
κl
, ρ̃l =

ρl∑
κl

Observe that λ̃ and λ as normal vectors describe the same plane and that ρ̃, κ̃ are elements

of ∆(A1). Consequently we have that λ̃>x > 0 for all x ∈ S. As λ̃ = κ̃− ρ̃ we have that

κ̃>x > ρ̃>x for all x ∈ S.

I show next that ρ̃j = 0 for all j that are associated with actions alj /∈ supp(f1).

Suppose we had ρ̃j > 0 for such a j. Fix an x ∈ S, observe that κ̃>x > ρ̃>x has to hold

5The vectors κ and ρ are defined such that
∑
κl =

∑
ρl ≥ 0. If we had that

∑
κl =

∑
ρl = 0 we also

had λ = 0, a contradiction with the assumption that λ describes the hyperplane H
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for this x as this has to hold for all x ∈ S. Next define x̃ by x̃−j = x−j and x̃j >
κ̃>x−ρ̃>−jx−j

ρ̃j
.

By our construction of S we can find such an x̃ that is also an element of S. Observe that

ρ̃>x̃ = ρ̃>−jx̃−j + ρ̃jx̃j > ρ̃>−jx−j + ρ̃j
κ̃>x− ρ̃>−jx−j

ρ̃j
= κ̃>x = κ̃>x̃

Where the very last equality follows from the fact that on the one hand ρ̃j > 0 implies

κ̃j = 0 and on the other hand x−j = x̃−j. But ρ̃>x̃ > κ̃>x̃ stands in contradiction with

κ̃>x > ρ̃>x holding for all x ∈ S. We conclude that ρ̃j = 0 for all j that are associated

with actions alj /∈ supp(f1). Therefore supp(ρ) is a subset of supp(f1).

To conclude this proof observe that κ̃Xk ≥ ρ̃Xk for all columns k of the matrix X as

any such column Xk can be approached by a sequence xn ∈ S. Finally, it cannot be true

that κ̃Uk = ρ̃Xk for all columns k as we could then find x ∈ S with κ̃x = ρ̃x. So it must

be true that κ̃Xk′ > ρ̃Xk′ for some columns k′. So we found two probabilities κ̃ and ρ̃

such that κ̃>X > ρ̃>Y . �

Combining the preceding two lemmata yields the main result of this paper, which is

proved next:

Proof of Theorem 1

(⇐) Let p be an NE of G, then by Theorem 2 p itself is an AAE of G, so G has an

AAE with the same support.

(⇒) Let f be an AAE of G. Following Lemma 3 there do not exist any p1, q1 ∈ ∆(A1)

with supp(q1) ⊂ supp(f1) such that p1 dominates q1 at f2. Applying Lemma 4 we conclude

that there exists a probability p2 on Ωnn
2 with full support such that all aj1 ∈ supp(f1) are

best replies to p̃2 which is defined by p̃2(a2) =
∑

ω2∈Ω2
p2(ω2)f(ω2)(a2). Construct p̃1 in

the same fashion exchanging the names of player 1 and 2 in the above results. The mixed

strategy profile p̃ is an NE of G with supp(p̃) = supp(f), as all ai ∈ supp(fi) are best

replies to p̃−i for i = 1, 2. �

Theorem 1 is the main result of this paper. This result establishes that an outside

observer cannot distinguish the behavior of two uncertainty averse players, from the be-

havior of two uncertainty neutral players when he observes only the outcomes of their play.

Of course, certain conditions have to hold for this result to apply: it is shown that obser-

vational equivalence holds for two player games, where both player’s are expected utility

maximizers with respect to lotteries, have monotonic preferences and satisfy Schmeidler’s
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axiom of uncertainty aversion. The assumption (EU) was used to define the matrix U , the

assumption (MON) was used to conclude that (p1, f2) �′1 (q1, f2) holds when p1 dominates

q1 at f2, finally (UA) was used in Lemma 2 which in turn played an important role in the

proof of Lemma 3.

11 Discussion

11.1 Monotonicity

Weakening (MON) to (MON’) the domination of q1 by p1 at f2 only implies that

(p1, f2) %1 (q1, f2). To see that (MON’) is not sufficient to obtain Theorem 1 consider the

following example of a game that has an AAE that is not observationally equivalent to

any NE.

Example 1

Let the ambiguous game G′ = (Ω, A,%′) be defined by Ω1 a singleton, Ω2 = {ω1, ω2}
and the payoff matrix:

L R

T 10, 1 0, 0

B 11, 0 0, 1

Assume that both players have a maxmin expected utility representation following

Gilboa and Schmeidler [16] with C1 = [0, 1/2] and C2 = {1/2} the players’ sets of beliefs

on ω1. Having maxmin expected utility representations both player’s preferences auto-

matically satisfy (MON’). On the other hand, player 1’s preferences do not satisfy the

stronger condition (MON) as the priors in C1 are not mutually absolutely continuous.

Observe that the strategy profile f according to which player 1 equally randomizes over

his two actions and f2(ω1) = L and f2(ω2) = R has full support and is an AAE of the

game. To see this it is important to note that, given the belief set C1 and player 2’s

strategy f2 player 1 completely discounts the occurrence of the state ω1 which is more

favorable for him. However, ω1 is not a null state, for some different payoffs ω1 could very
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well be relevant for player 1’s preference over two acts that differ only on ω1. The game

does not have an NE with full support.

The equilibrium constructed in the prior example strikes me as particulary unappeal-

ing. Why would player 1 choose to play T with positive probability when playing B is

never worse and strictly better in some non-null event? Since the equilibrium predictions

using (MON’) differ from the equilibrium predictions using the stronger axiom (MON)

only insofar as that under the more common axiom of monotonicity players might use

strategies in equilibrium that are never better than some others and that can be improved

upon strictly for some non-null events, I chose to study mainly preferences satisfying

(MON).

11.2 Games with More than Two Players

Most definitions in this paper can easily be extended to n-player games. In the present

section I will show that the main result of this paper, Theorem 1, does not extend to n-

player games. A theory of games with more than two ambiguity averse players carries the

potential to yield substantially different predictions from the standard theory of mixed

strategy equilibrium. I will first discuss an example of a 3-player game with an AAE

that is observationally different from any NE in that game. I will then go on to provide

some reasons why a detailed study of this question lies beyond the scope of this paper, as

the basic understanding of “common priors” developed here does not suffice to tackle the

case of n-players. A better grasp of this concept is needed to fully understand the case

of games with more than two players. The following example builds on Example 2.3 in

Aumann [1].

Example 2 Consider the three player game given by the following payoff matrix.
l

L R

T 0, 8, 0 3, 3, 3

B 1, 1, 1 0, 0, 0

r
L R

T 0, 0, 0 3, 3, 3

B 1, 1, 1 8, 0, 0

Let Ω1 and Ω2 be singletons and let Ω3 = {ω1, ω2}, assume furthermore that all

three players’ preferences can be represented by maxmin expected utility functions with
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Ci = [1
4
, 3

4
] for i = 1, 2, 3.

The strategy profile f with f1 = T, f2 = R and f3(ω1) = l, f3(ω2) = r is a AAE of

this game. To see this observe that player 3 does not have an incentive to deviate as his

utility is 3 no matter which of the two boxes he picks. Secondly player 1 and 2’s utilities

from playing their pure strategies against f−i the fixed strategies of the others can be

calculated as:

U1(T, f−1) = min
π∈[ 1

4
, 3
4

]
π × 3 + (1− π)× 3 = 3

U1(B, f−1) = min
π∈[ 1

4
, 3
4

]
π × 0 + (1− π)× 8 =

3

4
× 0 +

1

4
× 8 = 2 < 3

U2(R, f−2) = min
π∈[ 1

4
, 3
4

]
π × 3 + (1− π)× 3 = 3

U2(L, f−2) = min
π∈[ 1

4
, 3
4

]
π × 8 + (1− π)× 0 =

1

4
× 8 +

3

4
× 0 = 2 < 3.

Aumann [1] shows that the game in Example 2 has no NE with (TRr) or (TRl) in

its support. At the same time he shows that the game has an equilibrium with non-

common priors in which the first two players play T,R. A necessary condition for the

existence of such a “correlated equilibrium” is that player 1 assigns a higher probability

to player 3 playing l than does player 2. Aumann shows in particular that there is such

an equilibrium if player 1 assigns a probability of 3/4 to player 3 choosing l, whereas

player 2 only assigns a probability of 1/4 to that event. The set Ci = [1
4
, 3

4
] used in the

example, implies that the two first players will use exactly these priors when calculating

their respective minimal expected utility of strategy profile f in the above example.

So is a game theory with ambiguity averse players going to herald a revival of game

theory without common priors? Is any NE without common priors observationally equiv-

alent to an AAE with ambiguity averse players? Yes it is - in a very unsatisfactory way.

To see this observe that ambiguous games with expected utility maximizers allow for

non-common priors as long as all players agree on probability zero events. An equivalence

result between the AAE and the NE with non-common priors would not be driven by

the players ambiguity aversion (in fact players would be assumed to be expected utility

maximizers). The assumption that players only agree on null-events is strong enough for

the purpose of the present paper: the observational equivalence result for two players

could be derived using only this weak assumption on the players agreement of beliefs.
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The condition would have to be strengthened considerably for a study of games with

more than two players.

It could be interesting to derive a non-probabilistic axiom of “common beliefs” from

the observation that for the case of risk averse expected utility maximizers the com-

mon prior assumption holds, if and only if full insurance allocations are Pareto optimal.

Billot, Chaetauneuf, Gilboa and Tallon [6] use exactly this observation to develop a no-

tion of “sharing beliefs” for the case of maxmin expected utility maximizers. Example 2

withstands such a strengthening of the requirement of “common beliefs”. In fact, the

above example would probably satisfy many different notions of “common beliefs” for

uncertainty averse agents as the sets of beliefs of all three players exactly coincide in the

example.6

11.3 Equilibrium in Beliefs

For the case of expected utility maximizers, any mixed strategy equilibrium can be

interpreted as an equilibrium in beliefs. According to this interpretation it is assumed

that each player picks a pure strategy. Players do not know the pure strategies picked

by their opponents, instead they form (probabilistic) beliefs about the actual choices

of their opponents. A set of such beliefs constitutes an equilibrium in beliefs if every

action in the support of a player’s belief is a best response given the belief of the player

choosing that action. For the case of a two player game with expected utility maximizers

the distinction between equilibrium in beliefs and mixed strategy equilibrium is purely

philosophical. Two probabilities on the set of all actions of the two players constitute a

mixed strategy equilibrium, if and only if they constitute an equilibrium in beliefs.

This changes dramatically once we allow for ambiguously mixed strategies and am-

biguous beliefs. To see why this would be true observe that objective mixing allows an

agent to smooth out subjective uncertainty. So some actions that are not best responses

6Lo [23] covers games with more than 2 players. He assumes that preferences can be represented

following Gilboa and Schmeider [16] and assumes that the belief sets of all players have to be equal. This

is unsatisfactory as we do not have an axiomatic foundation for the assumption that belief sets should

coincide exactly. Eichberger and Kelsey [13] acknowledge that common priors matter for the context of

games with more than 2 players. They do not attempt to tackle this questions in their article.
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when played as pure strategies can be played with positive probability in an AAE. To

formally state and prove the divergence of the two notions of equilibrium observe first

of all that the definition of AAE presented in the present paper generalizes the standard

definition of mixed strategy equilibrium in the sense that it allows for ambiguously mixed

strategies in addition to objectively mixed strategies.

Just as for the definition of AAE we take ambiguous games as the starting point for

the definition of equilibria in beliefs. An act fi is no longer interpreted as the strategy

chosen by player i, but rather as player −i’s belief about the pure strategy of player

i. This generalizes the standard definition of equilibrium in beliefs insofar as that the

belief on the strategy of the other need not be an objective mixture but can be any act.

Consequently, we could call a strategy profile f an equilibrium in beliefs, if every action

in the support of fi is a best response (among the pure strategies) for player i given his

belief f−i about the other player’s strategy.

Some gaps need to be filled in this definition. Just as for the case of AAE the difference

between equilibria in ambiguous beliefs and equilibria in beliefs should not be driven by

any extraneous changes in the definition of a game. In short, we need to check whether

the conditions of strategic independence and agreement provided above can also be used

in the present context. The condition that players agree on non-null events would amount

to some condition of “non-delusion”. Just as in the above case the condition allows us to

construct the notion of the “support” of an act. The definition of stochastic independence

needs to differ though. Stochastic independence in the present context should mean that

player i’s ranking over his response to a belief f−i about the other should not depend on

the event ωi, which is observed by player i, when the state is ω. In the context of expected

utility maximizing agents this definition of stochastic independence is equivalent to the

definition of stochastic independence given above. Outside this context these definitions

need not coincide. With all this in mind we can now give an example of a game in which

equilibria in beliefs and equilibria in ambiguous beliefs do not coincide.

Example 3 Let the ambiguous game G′ = (Ω, A,%′) be defined by a singleton Ω1 and

Ω2 = {ω1, ω2} and the following payoff matrix:
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L R

T 0, 0 1, 0

M 1, 0 0, 0

B .4, 0 .4, 0

Observe that this example represents a version of the classical Ellsberg example as a

game between the experimental subject (player 1) and the experimenter (player 2). The

experimenter is not supposed to have any preferences over the outcome of the game, so

his utility is evaluated at the constant value 0. Now interpret the two states of Ω2 of

drawing a blue or a green ball from a classical two color Ellsberg urn. If the subject is

uncertainty averse, she might prefer to obtain .4 for sure rather than obtaining 1 only

if a ball of a particular color is drawn from the urn. In that case the act f1 = B and

f2(ω1) = L, f2(ω2) = R is an equilibrium in ambiguous beliefs. This strategy profile is

not an AAE, as the subject would be strictly better off by objectively mixing between T

and M .

The marked difference between the two solution concepts generates the need to take

sides. Which one of the two concepts is the appropriate solution concept? The answer

very much depends on whether players (or people) are able to commit to randomize

their strategies. Would a subject in the above experiment be able to commit to a mixed

strategy? Would she be able to ignore her ability to reconsider the action prescribed

by the mixture? Answers to questions like this one certainly depend on a) the time

frame of the decisions and b) what is at stake. Either extreme, namely the assumption

that players either are able to commit fully as well as the assumption that players are

completely incapable to commit seems too strong. In the context of expected utility

maximizers the two assumptions yield the same predictions, so there was no need to

generate an intermediate assumption. In the present context of ambiguity averse players,

the predictions strongly depend on the assumption on the ability to commit to randomized

strategies. Further research may find a good way to compromise between the two extreme

assumptions.

11.4 Observational Difference: Other Equilibrium Concepts
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When comparing the notions of equilibrium of the present study with some of the

preceding notions of equilibrium I already pointed out in section 5 that prior definitions

build on particular representations of the players preferences. Klibanoff [18] as well as

Lo [23] use Gilboa and Schmeidler’s maxmin expected utilities to define their respective

equilibrium concepts, whereas Dow and Werlang [12], Eichberger and Kelsey’s [13] as

well as Marinacci’s [25] use Schmeidler’s Choquet utility representation to define their

equilibrium concepts. It is puzzling then, that only Lo finds that “the observed behavior

of the uncertainty averse players (the actual strategies they choose) is consistent with

[expected] utility maximization” (Lo [23] page 463), even though the preferences assumed

by all the mentioned studies satisfy (RAT), (EU), (MON’) and (UA). I already showed

above in section 11.1, that the weakening of (MON) to (MON’) allows for AAE that are

observationally different from all NE of a game. To see that the difference between the

results of the preceding studies and Theorem 1 depend on more than just the difference

in the monotonicity axiom, let me discuss Klibanoff’s notion of equilibrium at the hand of

an example. A mixed strategy profile is an equilibrium following Klibanoff if each player

maximizes their utility given their belief on the other and if a consistency condition be-

tween beliefs and and actually chosen strategies holds. The consistency condition requires

that the (mixed) strategy of player i must be part of player −i’s belief set Ci about the

strategy of player i. Formally the definition can be stated as follows:

Definition 4 Take a game G = (A,%). A profile of mixed strategies p∗ is considered an

equilibrium or short KE, if there exist two convex and compact belief sets Ci ⊂ P(Ai)

i = 1, 2 such that p∗i maximizes minp−i∈C−i
ui(pi × p−i) and p∗i ∈ Ci for i = 1, 2.

Let me use the following example of Klibanoff [18] to show that the difference between

KE and AAE goes beyond the assumption of different axioms of monotonicity.

Example 4 Let the normal form game G = (A,%) be defined by the payoff matrix

L R

T 3,0 1,2

B 0,4 0,-100

.

Klibanoff shows that (T, L) is a KE. To see this let C1 = [.1, 1] and C2 = {1}. Player

2’s utility of his strategy p2 can be written as minq∈[.1,1] 2(1− p2)q+ 4p2(1− q)− 100(1−
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p2)(1 − q). Player 2’s utility is maximized at p2 = 1. On the other hand T is player

1’s best reply to the pure strategy L. Next observe that (T, L) and C1, C2 satisfy the

consistency requirement. Finally observe that the unique NE of the game is (T,R).

To better understand the difference between the concepts of AAE and KE let me

rewrite the above example to fit the present framework: Consider a general ambiguous

act extension G′ = (Ω, A,%′) of the above game G with Ω1 = {ω1, ω2} and Ω2 a singleton.

Define f such that f1(ω1) = T , f1(ω2) = B and f2 = L. For this profile to be an

equilibrium ω2 has to be 1-null as T strictly dominates B. On the other hand ω2 cannot

be 2-null, as in that case R would be player 2’s unique best reply. We conclude that

players must disagree on null events for (T, L) to be an equilibrium. In accordance with

the section on observational equivalence (section 6) the connection between this strategy

profile (T, L) to some empirical predictions becomes difficult: If the researcher was to

agree with player 1 he should be utterly surprised if, B was ever observed. If, on the

other hand, he agrees more with player 2’s view of the world, the play of B should be

perceived as normal.

Next it is important to observe that the assumption that players disagree on null events

alone can generate the same strategy profile - uncertainty aversion is not needed. The acts

f1, f2 are best replies to each other when both players are expected utility maximizers

with divergent priors π1(ω1) = 1 and π2(ω1) = 1/10. Finally it should be noted that

(MON) needs to be violated for (T, L) to be a KE, as the consistency condition requires

that p1 = 1 ∈ C1 which must contain other priors that assign positive probability to ω2

as was argued above.

The equilibrium concepts of Lo and Klibanoff differ only insofar as that Lo requires

a stronger consistency condition between strategies and beliefs. This condition is strong

enough to imply that players must agree on non-null events; Lo therefore also obtains

a result of observational equivalence. Interestingly, disagreement on null events also un-

derlies most examples provided by Dow and Werlang and Marinacci even though their

concepts could generate observationally different results without such disagreement as

they extend the notion of equilibrium in beliefs to the case of uncertainty averse players

(see the discussion in section 11.3).
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12 Conclusion

The first contribution of this paper is to put Aumann’s 1974 framework of games into

service for the analysis of strategic interactions between ambiguity averse players. This

framework allows me to base the definition of an ambiguous analogue to mixed strategy

equilibrium on the standard notion of Nash equilibrium. The second main contribution

of the paper is the proof that an outside observer cannot distinguish whether a game is

played by two uncertainty averse players or two uncertainty neutral ones if players use

explicit randomization devices. The third main contribution concerns the interpretation of

alternative equilibrium concepts for uncertainty averse players. I show that the behavioral

differences predicted by prior equilibrium concepts in the literature are not so much

a result of the assumption of uncertainty aversion but rather a result on the players

disagreements on the possible occurrence of all events in the state space. Is there any hope

for a manageable theory of games with uncertainty averse players that yields predictions

that differ from standard theory?

For me, the answer is a clear yes. I see the following avenues for future research. We

might want to give up on the assumption that players should agree on null events. If

this is the case then we should do so in a controlled manner: Marinacci [25] does exactly

that. The advantage of his equilibrium concept is that he parameterizes the uncertainty

of players in a game. In the light of the present study such a parametrization seems

very important as it allows us to gradually relax the assumption that players agree on

null events. Marinacci’s approach allows us to find equilibrium predictions for ambiguity

averse players that differ from the equilibrium predictions of mixed strategy equilibrium

while retaining control over the gap between the player’s actual strategies and other

players beliefs on these strategies.7 Marinacci’s main contribution is a proof of existence

of ME for any level of uncertainty. The concept has yet to prove its merits in applied

studies.

Even if we insist on players agreeing on null events a game theory with uncertainty

averse players might yield observationally different results. Theorem 1 crucially depends

on the assumption that there are just two players. In section 11.2 I showed that the

extension of the present theory to more than two players can yield observationally different

7Eichberger and Kelsey [13] provide an alternative parametrization of the degree of uncertainty in a

game.
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results. Schmeidler’s [28] assumption of uncertainty aversion (UA) also plays a certain role

for the validity of Theorem 1. If games with ambiguity averse players are instead modeled

following Bewley [5], predictions that differ observationally from the standard theory of

mixed strategy equilibrium can be obtained. In section 11.3 I showed that a translation of

the concept of equilibrium in beliefs to the context of ambiguity averse players can yield

observationally different results from the concept of mixed strategy equilibrium. In short:

the negative result for the model of two players games introduced here should highlight the

potential for all the positive results that could arise when relaxing the various assumptions

made in the present model.
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