
design machine group
University of Washington

Seattle WA USA 98195-5720
http://depts.washington.edu/dmachine

Ambiguous Intentions:
A paper-like interface for creative design

 Gross, M.D. and E. Do.

Proceedings ACM Conference on User Interface Software
Technology (UIST) ‘96

Seattle, WA. 183-192

1996

http://depts.washington.edu/dmachine

Ambiguous Intentions:
 a Paper-like Interface for Creative Design

Mark D Gross
College of Architecture and Planning and

Institute of Cognitive Science
University of Colorado at Denver and Boulder

Boulder, CO 80309-0314
mdg@cs.colorado.edu

Ellen Yi-Luen Do
College of Architecture

Georgia Institute of Technology
Atlanta, GA 30332-0155
ellendo@cc.gatech.edu

ABSTRACT

Interfaces for conceptual and creative design should
recognize and interpret drawings. They should also
capture users’ intended ambiguity, vagueness, and
imprecision and convey these qualities visually and
through interactive behavior. Freehand drawing can
provide this information and it is a natural input mode for
design. We describe a pen-based interface that acquires
information about ambiguity and precision from freehand
input, represents it internally, and echoes it to users
visually and through constraint based edit behavior.

KEYWORDS: Pen based systems, drawing, design
environments, ambiguity and imprecision, graphical
techniques.

INTRODUCTION

From mechanical engineering to the graphic arts,
designers comprehensively reject the use of computers in
the early, conceptual, creative phases of designing. For
example, we observed real designers attempting to use two
knowledge based design environments: Janus [5] and
Archie II [4]. Although they valued each program’s
potential for providing useful information, designers
complained that its stilted interface limited their ability to
work and think fluidly. We conjecture (based on
observation and interviews) that designers prefer to use
paper and pencil because it supports ambiguity,
imprecision, and incremental formalization of ideas as
well as rapid exploration of alternatives. Paper and pencil
is a direct manipulation interface par excellence—you draw
what you want, where you want it, and how you want it
to look. Structured mouse-menu interactions force
designers into premature commitment, demand
inappropriate precision, and are tedious to use compared
with pencil and paper. Yet computers offer advantages:
editing, 3D modeling, and rendering, as well as
simulation, critiquing, case bases, and distance
collaboration. Ideally we would like the best of both
worlds.

UIST ‘96 Seattle Washington USA pp 183-192
© 1996 ACM 0-89791-798-7/96/11 ..$3.50

An interface for design should capture users’ intended
ambiguity, vagueness, and imprecision and convey these
qualities visually and through interactive behavior. Schön
described design as a ‘graphical conversation with the
materials’ [22]. The designer makes a drawing, which
stimulates recall of similar forms, visual analogs, or rules
and constraints; and the designer reacts in turn by making
another drawing. If the drawing is vague or ambiguous,
so much the better for stimulating a wider range of recall.
Yet most internal CAD representations do not support
ambiguity or imprecision; accordingly, neither do their
user interfaces. Current design software, which restricts
visual representations to precisely drawn geometric
elements, stifles this graphical conversation. The CAD
drawing eliminates the suggestive power of the sketch.
Therefore, good designers defer using computers until they
feel ready to be definite and precise. Then, in a virtually
irreversible step, they transfer their work to the CAD
environment. Typically this happens late in the design
process, well after they have made many essential
decisions. If designers could begin to design in a freehand
drawing environment and move smoothly to more
structured and precise representations, they could reap the
benefits of computational assistance early without
sacrificing the comforts of traditional media.

Although we would like eventually to support both
diagramming and sketching, we concentrate here on design
diagrams of the sort made on whiteboards and cocktail
napkins. As distinct from sketches (though admittedly the
distinction is blurry) diagrams are simple, often childish-
looking constructions. For example, figure 1 shows a
diagram made (on paper) during a discussion about Web
page design. Like this one, most diagrams are composed
of primitive elements chosen from a small universe of
simple symbols—boxes, circles, blobs, lines, arrows.
This simplifies the demands on low level recognition;
however merely recognizing symbols is not enough. We
want the design environment to interpret the drawing as
well, to decide, for example, whether a box represents an
integrated circuit chip, a desktop computer, a step in a
process, or a house. Only if a program can represent the
drawing’s semantics can it support higher-level design
advising. To take recognition further than identifying
primitive elements, the program must also identify
context.

Figure 1. A diagram made during a discussion on Web
page design.

In this paper we describe interface techniques used in the
Electronic Cocktail Napkin, a pen based collaborative
design environment. First we discuss how freehand
drawing supports abstraction, ambiguity, and imprecision.
Next we review related work on pen based interfaces.
Then we describe the Electronic Cocktail Napkin,
focusing on its support for abstraction, ambiguity, and
imprecision: It supports abstraction through end user
programming of graphical rewrite rules. It supports
ambiguity by carrying alternative interpretations, using
context to resolve unintended ambiguities. It supports
imprecision with constraint based interactive behavior.
Finally we discuss our formative evaluation approach that
includes users in the ongoing interface design, and we
conclude with directions for further work.

ABSTRACTION, AMBIGUITY & IMPRECISION

A freehand drawing indicates not only a designer’s
decisions but also the associated degrees of ambiguity,
precision, and commitment. These are crucial
characteristics of representations used in conceptual,
creative design [6]. Relevant drawing techniques include
overtracing and multiple lines, shading and hatching, and
outline or formless blob shapes.

Abstraction
A common technique in conceptual design is graphical
abstraction, in which a symbol takes the place of a more
detailed configuration of parts, enabling a designer to work
with components without specifying their internal
structure. Graphical abstractions are employed in top-
down design, where the designer draws a simple picture,
then returns later to fill in detail. Alternatively, in
bottom-up design, the designer may recognize a
configuration of elements as an instance of a higher-level
abstraction, and redraw the design showing a simple
picture in place of the detailed configuration.

Ambiguity and Vagueness

An ambiguous representation is another way to postpone
commitment yet retain a marker for a later decision. The
designer may have several alternative interpretations in

mind, but not necessarily a more detailed specification.
One technique is to draw a formless or blob-like shape;
another is to draw a shape that could be interpreted in one
of several ways. Architects often draw a bubble diagram
for a floor plan, in which semi-rectangular shapes indicate
approximate sizes and positions of rooms. The bubble
representation enables a designer to work with sizes and
positions without worrying about exact shapes, walls,
windows, and doors.

Designers often intentionally make drawings vague or
ambiguous. In that case we want to support the
ambiguity, and not try to resolve it. However, sometimes
drawings are unintentionally ambiguous when read by
others without enough contextual information. For
example, the designer may draw a perfectly clear
arrangement of chairs around a dining room table. Out of
context though, a reader might interpret the drawing as
houses around a lake. In general we want to resolve
ambiguity, but it should not trouble us if we cannot
always do it right away.

Imprecision
Imprecision is also valuable. Designers need only rough
dimensions to decide on a basic layout. A soft fat pencil
or marker ensures that a drawing retains the look and feel
of quick, rough thinking and it discourages overly fine-
grained decisions. Thus a designer can work with
approximations or ranges, confident that more exact
calculations may follow.

In summary, freehand drawing supports abstract,
ambiguous, and imprecise representations. Abstraction
permits postponing detailed specification and allows
detailed configurations to be replaced by higher-level
elements. Ambiguity permits entertaining several
alternatives for the selection or identity of an element.
Imprecision permits postponing decisions about exact
dimensions and positions. These graphic techniques all
serve to reassure the designer that certain decisions remain
open—the design is still flexible—while providing
explicit visual place holders for issues that remain to be
resolved. Therefore an interface for early, conceptual
design should provide (1) the means for users to express
abstractions, ambiguity, and imprecision; (2) the means
for the machine to represent these qualities internally; and
(3) the means for the machine to express them in its
output and interactive behavior.

RELATED WORK

Discussions of creative design (e.g. [24]) often stress the
value and advantages of freehand sketching; yet they
rarely mention computational support for these activities.
First generation commercial products such as the Newton
Message Pad, although promising, make it clear that
further work is needed to develop effective pen-based
interfaces for drawing. Some of this work is under way.
For example, Lakin’s work on visual grammars

highlights the need for both formal and informal treatment
of drawings [14]. In particular, Lakin observes that a
visual parser need not account for the entire drawing, i.e.,
a drawing may be partly parsable. Moran et al’s approach
to supporting group whiteboard discussions relies on
implicit structures in the domain to parse free form
documents, e.g., lists, text, tables, and outlines [17].
Their Tivoli program identifies these structures and
provides gestural commands to manipulate them. Ishii and
Kobayashi’s Clearboard project, like the present work,
supports informal graphical conversation with a gestural
interface, but it does not recognize or interpret users’
input [10]. Saund and Moran’s PerSketch program [21]
employs computer vision techniques toward many of the
same goals we pursue here. Kramer’s work on
translucent patches [11] explores the uses of translucent
trace layers in a freehand interface. Landay and Myers
note the value of recognizing and interpreting freehand
input in conceptual design, and they support incremental
formalization from a sketched diagram to a working
prototype [15]. However, their SILK program for the
design of user interfaces relies on previously compiled
parsing rules specific to interface design, and it does not
maintain internal representations for ambiguous or
imprecise drawings.

Constraints have a venerable history both in graphical
user interfaces [1, 13, 19, 23] and in design [20].
Constraint based techniques used in programming by
demonstration and example have been explored,
particularly for user interface development [18]. However,
the application of these techniques in freehand drawing
environments and end-user programmable design
environments has not been a focus of this work.

Computational representations of ambiguity and
uncertainty used in AI [16] include Bayesian belief
networks, fuzzy logic, and certainty weights attached to
expert system production rules. However, user interface
techniques for controlling these systems are primitive.
They typically involve setting numerical values
(probabilities) through text-based interfaces. Our work,
which represents ambiguity by carrying multiple
interpretations and imprecision, with constraints, focuses
on obtaining information about imprecision and
ambiguity that is implicit in users’ input, and providing
users with an interface that carries and reflects this
information.

ELECTRONIC COCKTAIL NAPKIN

The Electronic Cocktail Napkin [9] is a freehand drawing
environment for design, implemented in Macintosh
Common Lisp, using Wacom digitizing tablets, Apple
Newton PDAs, and the mouse or trackball for input. Its
goal is to support the kind of informal drawing that
designers do on the back of an envelope or a cocktail
napkin during conceptual design. As ‘intelligent paper’,
the Cocktail Napkin aims to support not only making,

editing, and managing diagrams, but also using freehand
drawings as the central medium for information retrieval,
simulation, design critiquing, and collaborative work. We
have used it as a prototype interface for other programs:
retrieving images from visual databases, providing
diagram bookmarks for a case based design aid, and as a
front end to interactive simulations. Figure 2a shows the
Cocktail Napkin drawing board, with command buttons
(left), tabs to select and manipulate tracing layers (right),
and previously set aside trace layers (top). Figure 2b
shows the program’s Sketchbook for storing and
retrieving collections of drawings.

Figure 2. [a] Cocktail Napkin drawing area; [b]
Sketchbook for storing interesting sketches.

The user draws on a digitizing tablet or other input device
and marks appear in the Drawing Board or Sketchbook
window. Each physical input device can be associated
with a simulated instrument (pen, pencil, brush) and
color, which may respond to varying pressures. For
example, harder pressures cause the brush instrument to
display a darker thicker line. At first, the program appears
to be a simple paint program. But the Cocktail Napkin
tries to recognize the glyphs the user draws, and it may
(depending on switches) echo this recognition by
displaying the name of the glyph (Box, Circle, Line). It
may also remain silent as the user continues to draw.
Unlike many pen based draw programs, the Cocktail
Napkin retains and displays the as-inked representation
rather than automatically cleaning up the drawing
(although this option is available). The user can edit the
diagram as with structured draw programs, selecting,
moving, resizing, and rotating drawing elements. The
Napkin also supports two or more users collaborating,
drawing with two pens on the same tablet, two separate
tablets, a tablet and a mouse or Newton, or two Napkins
running on connected machines.

Recognizing Configurations
In addition to the primitive marks that make up a drawing
at its lowest level, drawings typically have a structure of
higher level configurations and a knowledgeable reader can
parse primitive elements into these configurations. A
configuration is a group of elements and while working a
designer may choose to redraw it more abstractly.
Alternately, she may just recognize the configuration
without redrawing it.

The Napkin provides support for recognizing
configurations in a drawing, with user defined patterns and

graphical rewrite rules. For example, a designer working
on a floor plan might draw a configuration of four boxes
around a larger box, which (an appropriately prepared)
Napkin could recognize as an instance of a ‘dining table’
configuration. In the context of drawing floor plans of
rooms, a small box is interpreted as a chair; a larger box
as a table. When (again, in the context of rooms) the
Napkin finds this spatial arrangement of these elements, it
assembles them into a configuration. The user has
provided a graphical abstraction (D in a box), so the
program replaces the lower-level elements (the table and
chairs) with the more abstract picture (figure 3). Later,
drawing the abstract symbol can bring in the more detailed
configuration of tables and chairs.

T1 type Table
C1 type Chair
C2 type Chair
C3 type Chair
C4 type Chair

C1 Left T1
C2 Right T1
C3 Above T1
C4 Below T1

Figure 3. Individual Table and Chairs are replaced by
Dining Table symbol.

The Napkin’s configuration recognizers operate as
dæmons. When the user pauses more than five seconds
they run, looking over the drawing for their patterns. The
five second delay ensures that the recognizer won’t
interrupt the user and prematurely parse a partially
completed configuration. Together the configuration
recognizers make up a set of production rules for parsing
drawings.

Figure 4. Defining a configuration by example: The
Napkin shows relations, the user edits them.

Recognizers are user defined and context dependent. To
define a configuration recognizer, the user draws examples.
Defining a configuration is a special event, so the Napkin
provides a special pattern definition window (figure 4)
where it identifies the element types and spatial relations
both graphically and as symbolic expressions. These
form the pattern the Napkin will use for matching. The
user can edit this pattern explicitly, deleting unwanted or
incidental relationships and making the type and spatial
relation constraints more general or specific, or adjust the

pattern implicitly by drawing additional examples. The
user names the configuration (Dining Table) and may
provide an abstract view to replace the more detailed view
of its parts. The user draws this abstract view directly
over the parts using a semi-transparent tracing overlay.

Recognizing configurations depends on context. As the
selection at the lower left of figure 4 shows, the Dining
Table configuration is defined in the Room context. In
another context the same configuration of rectangles
might have a quite different interpretation. The context
may restrict the diagnosis of spatial relations. For
example, while in the Room context adjacencies and
alignments are reported; however in the Circuits context,
the pattern definition window only identifies connections.

Ambiguity and Context
Inevitably users will make marks the Cocktail Napkin
cannot identify. The marks may be intentionally vague or
ambiguous, or they may not. The program cannot tell
whether (1) the user has drawn something intentionally
ambiguous, (2) the ambiguity is temporary, about to be
resolved, or (3) its own recognition algorithm has failed.
Therefore, the program maintains a representation for
unknown and ambiguous elements and configurations
until it can resolve their identities. It carries alternative
interpretations of a drawing element or configuration until
it finds additional information elsewhere in the drawing or
later in time, or until the user explicitly resolves the
ambiguity.

Suppose the user draws a blob-like glyph the Napkin can
only recognize as an instance of either ‘circle’ or ‘box’
(figure 5a). Rather than trying to decide immediately, the
Napkin retains both identifications as alternatives. The
ambiguity can be resolved later in one of two ways: The
user can identify the element by drawing over it, this time
more clearly as a box (figure 5b). When the user
overtraces an glyph, the new glyph replaces the old (and if
tracing paper is in use, the old one is copied to a trace
layer). Or, the program may find that the glyph is part of
a known configuration, in a position that resolves the
ambiguity (figure 5c).

Figure 5. (a) A blob shape matches both Circle and
Box. (b) The user resolves it as a Box by drawing over
it, or (c) the Napkin resolves it as a Circle from its
position in a configuration.

Figure 5c shows how local context can resolve an
unintended ambiguity—the blob must be a Circle because
it plays the role of a wheel in a wagon. As noted earlier,
context is essential to understanding drawings. If the
program knows that a drawing is a flow chart, then a box
is a process step, and lines connecting boxes indicate

flow-sequence. If on the other hand, it’s a map, then the
box is a building and lines are roads.

Figure 6. A curlicue maps to different domain
interpretations.

Thus, specific contexts map primitive elements to
different interpretations. For example, in a child’s
drawing a curlicue indicates hair; in a circuit diagram, a
coil; in a mechanical diagram, a spring (figure 6).
Suppose the Napkin finds a curlicue. Until it finds
additional information in the drawing to help choose
between the various contexts, the program carries all
interpretations and identifies the curlicue (ambiguously) as
‘either a spring, a coil, or hair.’

Of course the user can state the context explicitly: “This
is an analog circuit” and many ambiguous elements may
be resolved. Often, however, the program can identify
context when it finds a single unique symbol or
configuration. For example, a resistor symbol, found
only in the circuits context, identifies a drawing as a
circuit diagram. This directs further recognition to search
first in the circuits context, then outward in more general
contexts. Alternately, the face configuration (two eyes
above nose above mouth, centered) could identify the
context of the child’s drawing. In summary: Context
plays a dual role: once the Napkin knows a drawing’s
context, it can better interpret elements and
configurations. On the other hand, a single unique
element or configuration can often determine context.

Representing Imprecision with Constraints
The Cocktail Napkin maintains an internal, constraint
representation that provides interactive edit behavior. For
example, after recognizing a diagram as a graph of nodes
and arcs, the Napkin establishes connection constraints.
The user can drag the nodes and the graph connectivity
remains intact. The constraint representation also allows
for imprecision. For example, after recognizing a diagram
as a room in floor plan, the Napkin establishes adjacency
and alignment constraints on the positions of the rooms,
but also approximate constraints on their sizes. Within
these size constraints, the user can edit the floor plan;
dragging and stretching the rooms. The Napkin can
display constraints explicitly as superimposed drawing
annotations (as in [7]; see also figure 4), and the user can
edit constraints by selecting these annotations.

The user does not apply constraints explicitly; rather, the
Napkin identifies spatial relations among drawing

elements, such as ‘immediately above’, ‘contains’,
‘connects’, and asserts them as constraints on the drawing.
The Napkin filters the spatial relations it finds in the
drawing, so not every relation becomes a constraint.
Schemes to infer graphical constraints from drawings
must determine which relationships are incidental (it
happens the drawing was made that way) and which are
intended. One technique is to observe the user’s editing
moves, and use this dynamic information to identify
intended constraints [12]. Instead, we employ a contextual
and domain-oriented approach. Only context relevant
constraints are asserted; for example, if the user is drawing
in the Circuits context, then only connections and not
spatial layout constraints will be recognized and asserted.
When the Napkin recognizes a configuration, only the
relations that belong to its definition are asserted as
constraints.

Any scheme to infer constraints from a drawing won’t
always get it right. It can either tend to over-constrain or
under-constrain the drawing. Our scheme errs in the
direction of over-constraint—it tends to assert unwanted
incidental constraints in the drawing. We think this is
likely to provide a better fit to the designers’ intentions.
It is easier to eliminate unwanted constraints than to
determine new constraints and apply them. Of course,
after the Napkin has tried to infer the intended constraints
on a drawing users can add, delete, and modify them.

Incremental Refinement and Formalization
Ambiguity and imprecision are all very well during early
and conceptual design, but ultimately the aim of design is
to make definite decisions. Therefore it is important to
support incremental refinement and formalization of
designs, from the ambiguous imprecise early sketch to the
well-defined, highly articulated hard line drawing. At
some point the designer will move from sketchy diagrams
of conceptual design to more rigid drawings of schematic
design (figure 7).

Figure 7. Design drawings undergo a process of
gradual refinement.

Although the Napkin does not support this entire process
smoothly, the representations we use can be employed.
For example, the user can gradually tighten constraints by
making more specific decisions, and switch from as-drawn
to rectified views of drawing elements.

IMPLEMENTATION

Three main mechanisms support the features of the
Cocktail Napkin described in the preceding section: (1) the

low level recognition of hand drawn glyphs, (2) the
higher level recognition of configurations, and (3) the
maintenance of constraints on and spatial relations among
diagram elements. These three mechanisms are employed
with respect to a simple representation for context. The
implementation of these mechanisms and their
interactions with contexts are described below.

Low Level Recognition
The low level recognizer’s job is to identify the best
match(es) in a given context for an input glyph along
with a certainty value for the match (1-5 where 1 is most
certain). Recognition of each glyph is typically performed
immediately after input, but it may also be postponed for
later batch processing. A glyph is time-delimited by
when the user lifts the pen for longer than a certain time
out period. Therefore a glyph can include more than one
stroke made in rapid succession. Raw data from the
digitizing tablet is stored as a sequence of x,y points,
pressures, and pen-down marks. In the first processing
step, the glyph’s bounding box is identified, its aspect
ratio and size classified into a set of ‘fuzzy’ categories
(e.g., tall, square, wide; tiny, normal, gigantic), and the
point coordinates rectified to a 3x3 grid inscribed within
the bounding box. The rectified coordinates are coded to a
sequence of numbers (1-9) that indicate the grid squares of
the pen path. The sequence only discerns crude shape (for
example, [1 2 3 6 9 8 7 4] describes both a clockwise
circle and a box); therefore a corner count helps to
distinguish shapes with the same pen path. Corners are
identified when the change in heading of segments
between raw points exceeds 45 degrees (see figure 8).

Figure 8. Features of simple glyphs: the 3x3 path grid,
raw x, y points, and corners.

These features—pen path, aspect ratio and size of the
bounding box, stroke and corner count—describe a glyph.
After analyzing the input glyph, the recognizer compares
these features against a library of previously stored glyph
templates, each of which records a range or list of
allowable values. Where an individual glyph records a
single value (e.g., a corner count of 4), the glyph template
records a constraint on acceptable values (e.g., a set of
possible corner counts {3 4 5}). Templates also contain
a slot that indicates which transformations of a glyph are
permitted; for example, unlike boxes and circles,
alphanumerics cannot be drawn in reflection.

The match proceeds as follows: First, any templates that
match the input glyph’s pen path sequence are selected as
candidates. (A hash table of templates keyed on pen paths
makes this first comparison fast). If any templates match
the input glyph’s pen path, their other features are
compared; candidates that match all features are selected.

If this stage of matching finds only one candidate it is
assigned a certainty value of 1 (most certain). If several
candidates matched the input glyph’s pen path as well as
all its other features, the set of successful candidates is
assigned a certainty value of 2 (pretty good match).

Next, the input glyph’s pen path is permuted, to
determine whether the input glyph matches a template
drawn backwards, rotated, or reflected. For example, the
square-circle path [1 2 3 6 9 8 7 4] is permuted to [3 2 1
4 7 8 9 6], which describes a circle drawn
counterclockwise from top right (see figure 8a, b, and c).
Any matching permutations are filtered for other features
as above. Successful candidates are then checked for
whether they permit rotation and reflection. Candidates
found at this stage of matching are also assigned a
certainty value of 1 and 2.

Straight lines and dots are treated as special cases. Any
very small glyph is a dot; straight lines are identified by
examining the deviation of raw points from the segment
connecting the first and last points. Lines and dots
identified in this way are assigned a certainty value of 1.

If the pen path or its permutations cannot be found, the
recognizer attempts a weaker match. First, candidates
with otherwise matching features whose pen path differs
by only one or two squares are sought. A single match is
assigned a certainty value of 3 (okay match); a multiple
match, a certainty value of 4 (weak match). Finally, if no
templates can be found whose pen path is close to the
input glyph’s, any templates with otherwise matching
features are assigned a certainty value of 5 (very weak
match).

Training the low level recognizer The user can introduce
new templates on the fly, by drawing examples of the
glyph to be trained and entering its name. The Napkin
constructs a new template for the glyph, adds the features
of the training samples to the corresponding slots of the
new template, and adds the pen path to the hash key for
the new template. If a template already exists, features
from the sample are added to slots of the existing
template. For example, a user may add a 4-stroke Box to a
training set containing only 1-stroke Boxes. The
template’s strokes slot would be expanded from the list [1]
to the list [1 4]. Thus, constructing and refining training
sets may occur at any time during use. Features from the
new samples are used to adjust the low level recognition
constraints.

Recognizing Configurations
A configuration is a set of elements (glyphs or
configurations) of certain types arranged in certain spatial
relations. To identify configurations, the program runs
recognizer functions over all pairs of appropriately typed
elements in the diagram to look for these patterns. A
small number of hand coded binary predicates (e.g.,
overlaps, contains, connects, right-of, above) support this

recognition. When a recognizer finds an instance of the
pattern it is looking for, it replaces the individual
elements by a configuration whose parts are the
individuals. For example, a recognizer for ‘labeled graph
node’ configurations looks for patterns of a Letter
contained by a Circle. When it finds this pattern, it
replaces the letter and the circle by a new ‘labeled graph
node’ configuration. The new configuration may then be
parsed as an element in a larger ‘graph’ configuration.

The configuration recognizers can resolve (coerce) the
types of previously ambiguous glyphs. After low level
matching, some glyphs may still not be uniquely
identified; the matching routines may have only been able
to narrow them down to a list of candidates. Then, these
ambiguous glyphs may be identified by the role they play
in a configuration. For example, a glyph initially
identified as either Box or Letter D may be resolved by the
labeled-graph-node recognizer as the Letter D, if it occurs
inside a circle.

Constructing configuration recognizers. As with the
glyph recognizer, the user trains the configuration
recognizer by showing examples, from which the Napkin
extracts constraints on the types of elements and their
spatial relations. Each recognizer is a Lisp function,
which the program builds in response to the designer’s
examples and subsequent adjustments, then compiles for
rapid execution. For example, given a circle containing
the letter A as an example of a labeled-graph-node, the
Napkin builds this recognizer function:

(defun labeled-graph-node (circle1 letter2)
(and (glyph-type circle1 ‘circle)

(glyph-type letter2 ‘letter)
(contains circle1 letter2)))

Examples are combined disjunctively. For example, if
the user draws an additional example (say, a box
containing a letter), a similar predicate is constructed, and
the two predicates are combined with an OR.

(defun labeled-graph-node (glyph1 letter2)
(or (and (glyph-type glyph1 ‘circle)

 (glyph-type letter2 ‘letter)
(contains glyph1 letter2))

(and (glyph-type glyph1 ‘box)
 (glyph-type letter2 ‘letter)
 (contains glyph1 letter2))))

The Napkin also provides a more explicit way to adjust
the configuration recognizers, the pattern definition
interface shown above in figure 4 (with the Dining Table
example). Here, the designer can view each clause of the
recognizer predicate, and explicitly adjust the types and
spatial relations in each clause. The interface shows the
example for each clause, with its elements and spatial
relations displayed both graphically and textually. The
user can select an element or relation in either the text or
the graphic view.

The General, Specific, and Delete buttons operate on the
selected element or spatial relation. If the example
inadvertently includes extraneous elements or undesired
incidental spatial relations, the user can delete these from
the recognizer predicate. The General and Specific buttons
allow the user to adjust the element type and spatial
relations parts of the predicate. For example, performing
the General operation on the type constraint (Circle1
Circle) converts the description to (Glyph1 Shape).
Conversely, performing the Specific operation on (Glyph1
Shape) allows the user to choose a specific type from the
various Shape glyphs.

The user can also adjust the relations descriptors.
Suppose in the example for labeled-graph-node that the
letter happens to have been drawn concentric with the
circle. The spatial relation will then read (Concentric
Circle1 Letter2). The General operation will change this
to (Contains Circle1 Letter2), and the Specific operation
would change it back to Concentric. Spatial relations
belong to classes; for example ‘topology’ constraints
include line connections and containments; ‘spatial layout’
constraints include the above, below, right and left-of
relations. Relations are also organized by the types of
objects they apply to. For example, some relations only
apply between lines; others only to shapes. Transitivity
and commutativity properties are recorded for each
relation, and these are used to ensure a non redundant
relations diagnosis. Finally, the relations are ordered by
degree of specificity. For example, Concentric is a more
specific version of Contains which in turn is more
specific than Overlaps. When identifying spatial relations
among drawing elements, the Napkin chooses the most
specific version that applies.

Contexts
The Napkin maintains a list of all known contexts, a
‘current context’ and a ‘current context chain.’ Recognizers
look first in the current context for glyph templates and
configurations. The current context chain specifies a
sequence of other contexts that may contribute to
recognition, most specific contexts listed first. This is
the search path for contextual recognition. The Napkin
sets and resets the current context and the context chain as
it identifies glyphs and configurations that belong to a
specific domain.

A context has four components: glyph templates,
configuration recognizers, spatial relations, and mappings
of glyphs from other contexts. For example, glyph
templates in the Circuits context include resistors and
capacitors. The recognizers in this context include series
and parallel resistor configurations. The spatial relations
are limited to forms of connection, because only
connections are relevant in circuit diagrams. Finally, the
mappings indicate that Line glyphs (from the general
Lines context) should be interpreted as Wire glyphs.
Mapping enables a glyph to be interpreted differently in
different contexts, without duplicating the template or the
recognition effort. In the general context a line is just a

line. In the Circuits context it is interpreted as a Wire and
in the Floor plans context it is interpreted as a Wall.

Contextual recognition. All recognition—of both simple
glyphs and configurations— takes place with respect to
context. The first recognition attempt is in the current
context, but all contexts in the current context chain are
consulted. Only glyphs unique to a context are stored
there, so for example, the circuit context stores only
glyphs for electronic components. Other glyphs that may
appear in a circuit diagram (but also in other kinds of
diagrams), for example shapes and letters, are found in
more general contexts further along the context chain.

The matching procedure for simple glyphs described above
is performed against the template libraries in each of the
active contexts in the order prescribed by the current
context chain. After each match-in-context attempt,
mappings from the current context are applied (e.g.,
changing Line to Wire). This results in a list of matches
and associated certainty values for each context; only the
most certain matches are retained. If as often happens
there is only one match, it is returned. If there are several
matches they are returned as a list of alternatives, in the
order their contexts appear in the context chain.

Recognizing context. The Napkin’s initial context is the
most general one, which includes only shapes,
alphanumeric characters, and lines; these are basic
elements of all diagrams. The initial current context chain
contains only this one context. As soon as the user
draws a glyph or makes a configuration that the Napkin
can identify as belonging to a more specific context, the
Napkin adjusts the current context and the current context
chain. For example, if the Napkin identifies a Resistor,
the current context is set to Circuits, and the current
context chain becomes (Circuits General). The current
context can be changed by recognizing a glyph or
configuration that is unique to a context. Once set, the
context will not change until the window is cleared, or
until the user begins to draw glyphs and configurations
that indicate a new domain.

Constraints
The features slot values in the glyph template establish
unary constraints on the properties of each glyph. For
example, a Bed may be restricted to certain size (small)
and aspect ratio (tall or wide) constraints. The Napkin
maintains these constraints, and permits users to size the
Bed only within this size and aspect ratio range. If the
user tries to directly resize the bed beyond its constrained
limits, the bed does not accept the new size, but snaps
back to its previous dimension.

Each binary spatial relation that the Napkin can diagnose
also contains code to implement one-way constraints for
the relation. For example, the Immediately-Right-Of
constraint contains code to adjust the position of the right
edge of the left element (if the right element is moved), or
the position of the left edge of the right element (if the

left element is moved). Each relation keeps track of the
most recent direction of propagation. Each element
contains a ‘stretchy-p’ flag that tells the constraint
propagator whether its size or position is to be adjusted in
response to changes.

The Napkin’s constraint routines are limited to value
propagation, though more sophisticated methods could
obviously be added. It handles conflict resolution in two
ways. First, recently changed values are more fixed than
older values, though the user can anchor any value.
Second, the classes of elements and their attributes can be
ordered. For example, properties of shapes can be set to
take precedence over those of lines, or dimensions are
more fixed than positions.

DISCUSSION

Evaluation with Users
Usability studies of the Archie case based design aid [3]
and informal observation of users of Janus and other CAD
environments were an initial impetus for the Cocktail
Napkin. It became clear that for designers, drawing is a
non-negotiable demand. We also conducted several pilot
studies of architects’ drawing conventions, to explore the
feasibility of machine understanding of freehand drawings.
In one study [8], fifty undergraduate students produced
diagrams from slides of buildings and drawings. In a
second study [8], twenty architects and design instructors
produced diagrams of famous buildings from memory. In
a third study [2] sixty-two design students were asked to
draw diagrams to illustrate design problems and responses
and to write textual explanations of diagrams. These
studies encouraged us to pursue recognition and
interpretation of freehand drawing.

Throughout development of the Cocktail Napkin we
engage undergraduate students and design instructors at the
University of Colorado’s architecture program to test the
interface. A training period of at least half an hour is
needed for a new evaluator to become comfortable using a
digitizing tablet while looking at a monitor. Typically
we ask users to carry out a sequence of simple tasks and
observe them, noting difficulties they encounter;
individual evaluation sessions have ranged in duration
from 15 minutes to 2 hours. We also ask evaluators for
an open-ended response to their experience and often we
ask specific questions about pieces of the interface we are
testing. Suggestions from users have strengthened the
interface details, as well as provided some novel ideas.
(For example, one user’s comments led us to implement a
selection decay option, where selected items gradually
deselect if not operated on). This formative evaluation
technique enables us to focus user testing on specific
aspects of the program we are currently working on, and
we can learn a great deal by observing only a small
number of users.

Most of our experience has been using the program with a
digitizing tablet, rather than a LCD digitizing display,
which we would prefer. LCD digitizing hardware for
Macintosh hardware has been scarce and expensive. (The
MCL programming environment commits us to the Mac.)
However, separation of drawing surface and display
imposes an annoying extra hand-eye coordination penalty
on users. That was the initial attraction of the Newton;
although low resolution, it provided an input-output
drawing device. Until LCD digitizing displays become
readily available, we are exploring alternatives, such as
using touch screen overlays to the Powerbook LCD
screen.

Many users sit down at the Cocktail Napkin and begin to
draw, ignoring its recognition facilities. Their primary
aim is to make a drawing. For these users, low level
interface details are exceedingly important: for example,
response time from putting the pen down to making a
mark must be minimized; in earlier versions users
accidentally selected previous marks by touching them
quickly; the time-out delay after drawing a glyph caused
problems, and even the feel of the pen and tablet are
important concerns. Observing these users has resulted in
a great deal of low level tuning and tweaking.

Designers often ask “why does it tell me I drew a box?”
Designers know what they draw, so echoing recognition
seems gratuitous. This suggests setting the Cocktail
Napkin with low level echoing and rectification turned off,
so as not to distract the user. However, most designers
have understood and appreciated the need for end-user
training of symbols and contextual definitions of
configurations.

DISCUSSION & FUTURE WORK

We have chosen to explore a general purpose drawing
environment that end users can make more specific.
Rather more effort than we would like is still needed to
construct the domain specific recognizers. However, we
favor this approach over building custom applications
because we believe there is inevitably a high degree of
idiosyncrasy, even within the drawing conventions of a
specific design domain.

Diagrams and Sketches
In future work, we would like to support true sketching,
in addition to the more symbolic diagram-making
described here. Sketching includes more overtracing, non
symbolic figures that explore shape, hatching, cross
hatching, and shape filling gestures. First steps will be to
recognize these graphical gestures and to filter sketches for
identifiable shapes and eliminate noise. For example, the
architectural sketch in figure 9a can be simplified to the
diagram in figure 9b, by substituting simple figures for
their overtraced equivalents. Or, the sketch plan in figure
10a can be filtered to identify the key shapes in figure

10b. We have begun to explore these ideas but are still at
a very early stage of implementing them.

Figure 9. Sketch for a museum and amphitheater,
architect Ping Xu

Figure 10. Sketch plan of Palladio’s Villa Capra.

Commitment and Certainty
Ambiguity, vagueness, and imprecision: all these correlate
in some way with the users’ certainty or commitment to
decisions. We believe a drawing also indicates the
designer’s degree of certainty and commitment, but we
have not tried to assess this. We intend to start by
looking at the drawing pressure and speed of the input
data, which so far we have ignored, and overtracing. The
Napkin echoes pen pressure visually but it does not
interpret this information. Likewise, because we record
pen strokes as a series of points in time, we can determine
pen speed. We can also detect overtracing, in which the
user repeatedly draws the same or a similar form. We
expect we can extract information about the user’s degree
of certainty and commitment, as well as intended precision
from drawing speed and pressure and overtracing. For
example, a rapid light drawing might indicate a rough but
sure set of decisions, while a slow heavy drawing might
indicate an uncertain attempt to be precise. To explore
this territory, we plan to carry out empirical studies of
pressure and speed in drawing, for which we propose to
use the Cocktail Napkin as a recording instrument.

Drawing as a Front End to Everything
We have described our work with drawing as a design
medium, but we would like to expand the range of
application for freehand drawing input. We believe it is a
natural medium for human users, who first learn to hold a
crayon in kindergarten. While most computer interfaces
today are text-based, we wonder how far we can push pen
based, freehand additions. We expect the greatest gains
will be in augmenting text based interfaces with optional,
alternate modes of interaction based on drawing.

ACKNOWLEDGMENTS

We wish to acknowledge the interest and patience of
students and instructors of Environmental Design who
participated in evaluating the Cocktail Napkin. The

anonymous reviewers provided valuable suggestions for
improving the paper, which we hope we have succeeded in
following. NSF grant DMII 93-13186 provided essential
material assistance.

REFERENCES
1. A. Borning, R. Duisberg., “Constraint-based tools for

building user interfaces” ACM Transactions on
Graphics, Vol. 5, No. 4, 1986, pp. 345-374.

2. E.Y.-L. Do, “What’s in a Diagram (that a computer
should understand)”, Computer Aided Architectural
Design Futures ‘95, Edited by M. Tan, Singapore,
1995, pp. 469-480.

3. E.Y.-L. Do, S.-W.D. Or, D.M. Carson, C.. Chang,
W.C. Hacker. “Usability Study of A Case-based
Design Aid Archie”, Georgia Tech, 1994.

4. E.A. Domeshek, J.L. Kolodner, C.M. Zimring, “The
Design of A Tool Kit for Case-based Design Aids”,
Artificial Intelligence in Design ‘94, Edited by J.
Gero, Kluwer Academic Publishers, Dordrecht, 1994.

5. G. Fischer, A. Girgensohn. “End-User Modifiability in
Design Environments”, CHI’90), ACM Press, pp.
183-191.

6. V. Goel, Sketches of Thought, MIT Press, Cambridge
MA, 1995.

7. M.D. Gross, “Graphical Constraints in CoDraw”,
IEEE Workshop on Visual Languages, Edited by S.
Tanimoto, IEEE Press, Seattle, 1992, pp. 81-87.

8. M.D. Gross, “Indexing visual databases of designs
with diagrams”, Visual Databases in Architecture,
Edited by A. Koutamanis, H. Timmermans, I.
Vermeulen, Avebury, Aldershot, UK, 1995, pp. 1-14.

9. M.D. Gross, “Recognizing and Interpreting Diagrams
in Design”, Advanced Visual Interfaces ‘94, Edited by
T. Catarci, M.F. Costabile, S. Levialdi, G. Santucci,
ACM Press, 1994, pp. 89-94.

10. H. Ishii, M. Kobayashi, “Clearboard: A seamless
medium for shared drawing and conversation with eye
contact”, CHI ‘91, Monterrey, CA, 1991, pp. 525-
532.

11. A. Kramer, “Translucent Patches - dissolving
windows”, ACM Symposium on User Interface
Software and Technology, ACM Press, Marina del
Rey, CA, 1994, pp. 121-130.

12. D. Kurlander. “Graphical Editing by Example”,
Human Factors in Computing (InterCHI), Addison
Wesley / ACM Press, pp. 529.

13. D. Kurlander, S. Feiner. “Interactive Constraint
Based Search and Replace”, CHI ‘92, ACM Press, pp.
609-618.

14. F. Lakin, J. Wambaugh, L. Leifer, D. Cannon,
C. Steward., “The electronic notebook: performing
medium and processing medium” Visual Computer,
Vol. 5, No. 1989, pp. 214-226.

15. J.A. Landay, B.A. Myers, “Interactive Sketching
for the Early Stages of Interface Design”, CHI ‘95
ACM Press, Denver, Colorado, 1995, pp. 43-50.

16. R.L.d. Mantaras, D. Poole, ed. Proceedings of
the 10th Conference on Uncertainty in Artificial

Intelligence. San Mateo, CA: Morgan Kaufmann,
1994.

17. T.P. Moran, P. Chiu, W.v. Melle, G.
Kurtenbach, “Implicit Structures for Pen-Based
Systems within a Freeform Interaction Paradigm”,
CHI ‘95, ACM Press, Denver, Colorado, 1995, pp.
487-494.

18. B. Myers, Creating User Interfaces by
Demonstration, Academic Press, Boston, 1988.

19. G. Nelson., “Juno — A Constraint-based
Graphics System” Computer Graphics, Vol. 19, No.
3, 1985, pp. 235-243.

20. M. Sapossnek. “ Research on Constraint-Based
Design Systems.”, Proc. 4th Intl. Conf. Applications
of AI in Engineering, Cambridge, England.

21. E. Saund, T.P. Moran. “A Perceptually-
Supported Sketch Editor”, ACM Symposium on User
Interface Software and Technology, ACM Press, pp.
175-184.

22. D. Schön., “Designing as Reflective
Conversation with the Materials of a Design
Situation” Knowledge Based Systems, Vol. 5, No. 3,
1992.

23. I. Sutherland. Sketchpad - a Graphical Man-
Machine Interface [Ph.D. Dissertation]. M.I.T., 1963.

24. M. Tscheligi, S. Houde, R. Kolli, A. Marcus,
M. Muller, K. Mullet. “Creative Prototyping Tools:
What Interaction Designers Really Need to Produce
Advanced Interaction Concepts”, CHI ‘95 ACM Press,
pp. 170-171.

