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Abstract

We study joint chance constraints where the distribution of the uncertain parameters is only

known to belong to an ambiguity set characterized by the mean and support of the uncertainties

and by an upper bound on their dispersion. This setting gives rise to pessimistic (optimistic)

ambiguous chance constraints, which require the corresponding classical chance constraints to

be satisfied for every (for at least one) distribution in the ambiguity set. We demonstrate that

the pessimistic joint chance constraints are conic representable if (i) the constraint coefficients

of the decisions are deterministic, (ii) the support set of the uncertain parameters is a cone,

and (iii) the dispersion function is of first order, that is, it is positively homogeneous. We also

show that pessimistic joint chance constrained programs become intractable as soon as either of

the conditions (i), (ii) or (iii) is relaxed in the mildest possible way. We further prove that the

optimistic joint chance constraints are conic representable if (i) holds, and that they become

intractable if (i) is violated. We show in numerical experiments that our results allow us to

solve large-scale project management and image reconstruction models to global optimality.

1 Introduction

The optimal design or control of a physical, engineering or economic system is a ubiquitous prob-

lem that arises in numerous practical applications. Many systems of interest are impacted both
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by a vector of design decisions x, which are to be chosen from within a polytope X ⊆ Rn, as

well as an exogenous random vector ξ̃, which is governed by a known probability distribution Q

supported on Ξ ⊆ Rk. Suppose that the reliable operation of the system requires the satisfaction

of m uncertainty-affected safety conditions T (x)ξ̃ < u(x), where T (x) ∈ Rm×k and u(x) ∈ Rm

constitute affine functions of x. Then, a popular goal is to design a system at minimum cost c⊤x,

c ∈ Rn, that satisfies the safety conditions with a probability of at least 1 − ϵ, where ϵ ∈ [0, 1)

reflects the tolerated risk level. This scenario gives rise to the linear chance constrained program

minimize
x

c⊤x

subject to x ∈ X

Q
[

T (x)ξ̃ < u(x)
]

≥ 1− ϵ.

(1)

The probabilistic constraint in (1) is termed an individual chance constraint in case of a single

safety condition (m = 1) and a joint chance constraint if there are multiple safety conditions

(m > 1). We refer to the chance constraint in (1) as a strict chance constraint as it requires strict

satisfaction of the safety conditions. The closely related weak chance constraints replace the strict

inequality in (1) with a weak one and thus only require weak satisfaction of the safety conditions.

Initiated by the seminal work of Charnes et al. [15] and Charnes and Cooper [14], chance con-

strained programs have been employed in numerous application domains ranging from logistics [20],

finance [24], project management [54] and network design [57] to emissions control [1], design op-

timization [10] and call center staffing [33]. Despite their wide-spread use, chance constrained

programs suffer from two shortcomings: they require an exact specification of the distribution Q,

and they can lead to computationally challenging optimization problems.

Both the conceptual as well as the computational difficulties of model (1) can be alleviated if

we replace the classical chance constrain in (1) with an ambiguous chance constraint of the form

inf
P∈P

/

sup
P∈P

P
[

T (x)ξ̃ < u(x)
]

≥ 1− ϵ.

Ambiguous chance constraints acknowledge that the true distribution Q is only known to reside

within an ambiguity set P , and they admit a pessimistic or an optimistic formulation. The pes-

simistic version requires the safety conditions to hold with probability 1− ϵ in the worst case, that

is, when the probability of the system being safe is minimized over all possible distributions in P.

In contrast, the optimistic version of the ambiguous chance constraint requires the system to be
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safe in the best case, that is, when the probability of the system being safe is maximized over the

distributions in P . The ambiguity set is chosen so as to contain all distributions that are consis-

tent with the available a priori information on Q, such as structural characteristics (e.g., support)

or statistical properties (e.g., moment bounds). By considering all probability distributions that

are deemed possible under the available information, ambiguous chance constraints mitigate the

reliance on a precise characterization of the true distribution Q.

Note that the pessimistic ambiguous chance constraint constitutes a conservative approximation

(restriction) to the classical chance constraint in (1), while the optimistic version represents a pro-

gressive approximation (relaxation) whenever the true distribution Q is contained in the ambiguity

set P . The existing literature has almost exclusively focused on pessimistic chance constraints,

which are also referred to as robust chance constraints. They reflect a strict aversion to ambiguity

and are appropriate for decision makers who wish to hedge against any possible distribution P ∈ P .

In contrast, optimistic chance constraints will appeal to ambiguity-seeking decision makers. They

naturally arise, for example, in problems of statistics and machine learning, where the discovery of

some distribution P ∈ P that is likely to have generated a given set of observations is an essential

part of the decision problem.

Perhaps surprisingly, ambiguous chance constraints are often computationally tractable. In

fact, for several classes of ambiguity sets P, one can exploit classical probability inequalities to

equivalently reformulate or conservatively approximate robust individual chance constraints in a

tractable way. This has first been observed by Ben-Tal and Nemirovski [4] and Bertsimas and

Sim [9], who use Hoeffding’s inequality to derive tractable reformulations of robust individual chance

constraints when the components of ξ̃ are independent, symmetric and bounded random variables.

Chen et al. [17] also employ the Hoeffding inequality to approximate robust individual chance

constraints where the ambiguity set captures asymmetries in the distribution of ξ̃ via forward and

backward deviation bounds. Assuming that the components of ξ̃ are independent random variables

whose joint distribution belongs to a given convex and compact set, Nemirovski and Shapiro [44]

and Postek et al. [48] use large deviation-type Bernstein bounds to approximate robust individual

chance constraints. Calafiore and El Ghaoui [12] employ various statistical bounds to approximate

robust individual chance constraints where the ambiguity set specifies structural properties such as

radial symmetry, unimodality or independence. Bertsimas et al. [6] use statistical hypothesis tests
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to derive safe approximations to nonlinear robust individual chance constraints based on hypothesis

tests, where the ambiguity set accounts for the ambiguity associated with sampling from historical

data. Xu et al. [62] employ a generalized Chebyshev inequality to derive tractable reformulations

of problems with probabilistic envelope constraints, which enforce robust chance constraints at all

tolerance levels ϵ ∈ [0, 1). Instead of relying on statistical results, one can also employ duality of

moment problems [8] to derive tractable reformulations of robust individual chance constraints.

This approach was pioneered by El Ghaoui et al. [30] for Chebyshev ambiguity sets which contain

all distributions sharing a known mean value and covariance matrix.

Ambiguous chance constraints become considerably more challenging if m > 1, that is, if they

involve multiple safety conditions. Nemirovski and Shapiro [44], Bertsimas et al. [6] and others

employ Bonferroni’s inequality to conservatively approximate a robust joint chance constraint with

violation probability ϵ by m robust individual chance constraints whose violation probabilities sum

up to ϵ. Although this approach has a long tradition in chance constrained programming [49], Chen

et al. [16] demonstrate that the quality of this approximation can deteriorate substantially with m

if the safety conditions are positively correlated. Instead, they propose to approximate the robust

joint chance constraint by a robust conditional value-at-risk (CVaR) constraint. For Chebyshev

ambiguity sets, they subsequently approximate the robust CVaR constraint using a classical result

from order statistics. Zymler et al. [64] prove that the CVaR approximation in [16] becomes exact

if certain scaling parameters are chosen optimally. Unfortunately, optimizing simultaneously over

the decisions x and the scaling parameters seems to be difficult. The authors also propose an

exact reformulation of the emerging robust CVaR constraint using moment duality. Van Parys et

al. [47] use the results of [64] to solve chance constrained finite and infinite horizon control problems.

Erdoğan and Iyengar [26] study robust joint chance constraints where the ambiguity set contains all

distributions that are within a certain distance of a nominal distribution (in terms of the Prohorov

metric). They derive a conservative approximation by sampling from the nominal distribution

and enforcing the constraints for all values of ξ that are ‘close’ to any of the samples. Jiang

and Guan [38] and Yanıkoğlu and den Hertog [63] study data-driven robust chance constraints,

where the ambiguity sets have to be estimated from samples. Conservative approximations to

robust chance constraints involving linear matrix inequalities have been studied by Ben-Tal and

Nemirovski [5] and Cheung et al. [19]. For more detailed surveys of distributionally robust chance
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constrained programs, we refer to Ben-Tal et al. [3] and Nemirovski [43].

Despite intensive research efforts over the last two decades, only the papers of Hu and Hong [36]

and Hu et al. [37] appear to derive results that allow for convex reformulations of ambiguous

joint chance constrained problems. Both papers study pessimistic chance constraints of the form

infP∈P P[H(x, ξ̃) ≤ 0] for generic classes of loss function H : X × Ξ → R. The authors show that

for ambiguity sets containing all distributions within a certain distance of a nominal distribution,

where the distance is measured in terms of the Kullback-Leibler divergence or the likelihood ratio,

pessimistic chance constraints are equivalent to non-ambiguous chance constraints with an adjusted

confidence level. Applying this result to the loss function H(x, ξ̃) = maxi {[T (x)ξ̃ − u(x)]i}, we

see that the (weak version of the) pessimistic joint chance constraint presented earlier reduces

to a non-ambiguous joint chance constraint. Moreover, if the nominal probability distribution

is log-concave and T (x) = T , then we can apply Prékopa’s classical result for non-ambiguous

joint chance constraints [49] to conclude that pessimistic joint chance constraints over Kullback-

Leibler and likelihood ratio ambiguity sets are indeed convex. Note, however, that despite their

convexity, checking the feasibility of such pessimistic chance constraints remains ♯P-hard even

for individual chance constraints and log-concave nominal distributions; we elaborate on this in

Section 3.2. The computational burden is reduced substantially if in addition to the log-concavity

of the nominal distribution and the constant technology matrix T , we require the components of the

vector T ξ̃ to be independent. In that case, we can replace the non-ambiguous joint chance constraint

with products of non-ambiguous individual chance constraints, which amount to one-dimensional

integrations and can thus be evaluated more efficiently. We note, however, that requiring the

components of T ξ̃ to be independent essentially implies (by a change of variables) that T = I,

which is a rather restrictive assumption for most practical applications.

Ambiguous chance constrained programming is closely related to optimal uncertainty quantifi-

cation, which aims to ascertain whether ξ̃ satisfies a set of decision-independent safety conditions

with high probability for all/some distributions in an ambiguity set P . Thus, uncertainty quan-

tification is equivalent to checking whether a fixed decision x is feasible in an ambiguous chance

constraint. A comprehensive survey of the recent literature on uncertainty quantification has been

compiled by Owhadi et al. [46]. A powerful method for reducing optimal uncertainty quantification

problems to tractable convex programs has been proposed by Han et al. [34]. This method relies
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on the Richter-Rogosinski theorem [53, Theorem 7.37]. In contrast, we leverage the ‘primal worst

equals dual best’ duality scheme by Beck and Ben-Tal [2] to convert the uncertainty quantification

problems arising in our setting to problems over discrete distributions with m (worst-case) or 2

(best-case) scenarios. The resulting finite-dimensional reductions are nonconvex and may fail to be

solvable. By exploiting ideas by Gorissen et al. [32], however, they can be reformulated as conic

programs whose optima are always attained. We further elaborate on the relation between this

approach and the one by Han et al. in Section 3.1.

In this paper, we develop a new approach for solving ambiguous joint chance constrained pro-

grams. We highlight the following main contributions of this work.

• We demonstrate that pessimistic joint chance constraints have conic representations if (i) the

coefficient matrix T (x) is constant in x, (ii) the support set Ξ is a cone, and (iii) the dispersion

function d(ξ̃) is positively homogeneous. For suitably chosen cones, pessimistic joint chance

constraints are thus computationally tractable. This seems to be the first tractability result

for pessimistic joint chance constraints.

• We prove that this tractability result is sharp in the sense that pessimistic joint chance

constrained programs become strongly NP-hard as soon as either of the conditions (i), (ii) or

(iii) is relaxed in the mildest possible way. To our best knowledge this is the first complexity

analysis for pessimistic joint chance constraints.

• We show that optimistic joint chance constrained programs are conic representable if (i)

holds, and that they become intractable if (i) is violated.

• We showcase that our tractability result enables us to solve ambiguous joint chance con-

strained programs with more than 320,000 safety conditions using standard optimization

solvers. To our best knowledge this problem size is far beyond the capabilities of the existing

algorithms in classical chance constrained programming.

For ease of exposition, we focus on strict pessimistic and optimistic chance constraints. Through-

out the paper, we outline how our results extend to the closely related weak chance constraints.

In the remainder we first outline our modeling assumptions in Section 2. We then derive

conic reformulations and complexity results for pessimistic uncertainty quantification and chance

constrained programming problems (Section 3). Subsequently we develop the corresponding results
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for optimistic uncertainty quantification and chance constrained programming problems (Section 4).

Finally, we demonstrate the impact of our tractability results in large-scale project management

and image reconstruction applications (Section 5). All proofs are relegated to the appendix.

Notation: For a proper (i.e., convex, closed, solid and pointed) cone D ⊆ Rd and v,w ∈ Rd the

inequality v ⪯D w (v ≺D w) expresses that w− v ∈ D (w− v ∈ intD). A function d(ξ) mapping

Rk to Rd is called D-convex if d(θξ1 + (1 − θ)ξ2) ⪯D θd(ξ1) + (1 − θ)d(ξ2) for all ξ1, ξ2 ∈ Rk

and θ ∈ [0, 1]. The cone dual to D is denoted by D⋆. An extended real-valued function f(ξ) is

proper if f(ξ) < +∞ for some ξ and f(ξ) > −∞ for every ξ ∈ Rk. The conjugate of a proper

function f(ξ) is given by f⋆(ν) = supξ∈Rk ν⊤ξ − f(ξ). The indicator function of a set Ξ ⊆ Rk is

defined as δΞ(ξ) = 0 if ξ ∈ Ξ; =∞ otherwise, and its conjugate σΞ(ν) = supξ∈Ξ ν
⊤ξ is termed the

support function of Ξ. We define e as the vector of all ones, and we let ei be the i-th standard

basis vector of appropriate dimension. All random objects are designated by tilde signs (e.g., ξ̃),

while their realizations are denoted by the same symbols without tildes (e.g., ξ). The convex cone

of nonnegative Borel measures on Ξ is denoted by M+(Ξ), and δξ represents the Dirac measure

placing unit mass at ξ. For a logical expression E , we define I[E] = 1 if E is true; = 0 otherwise.

2 Model Formulation

We study pessimistic and optimistic ambiguous joint chance constrained problems of the form

minimize
x

c⊤x

subject to x ∈ X

inf
P∈P

/

sup
P∈P

P
[

T (x)ξ̃ < u(x)
]

≥ 1− ϵ,

(2)

where c ∈ Rn, X ⊆ Rn is a polytope, T (x) ∈ Rm×k and u(x) ∈ Rm constitute affine functions

of x, ϵ ∈ [0, 1) and the ambiguity set P satisfies

P =
{

P ∈ P0(Ξ) : EP

[

ξ̃
]

= µ, EP

[

d(ξ̃)
]

⪯D σ
}

, (3)

where P0(Ξ) is the set of all Borel probability distributions on Ξ ⊆ Rk, while µ ∈ Rk stands for the

mean value of ξ̃, and σ ∈ Rd represents an upper bound on the dispersion measure corresponding

to the expectation of the dispersion function d(ξ̃) ∈ Rd. Moreover, D ⊆ Rd is a proper cone.
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In order to derive conic reformulations for the pessimistic and optimistic uncertainty quantifi-

cation problems, which evaluate the left-hand side of the probabilistic constraint in (2), we make

the following assumptions:

(D) The dispersion function d is D-convex.

(S) The support set Ξ is convex, closed and solid.

(A) The ambiguity set P satisfies the Slater condition µ ∈ int Ξ and d(µ) ≺D σ.

Note that (D) and (S) constitute necessary conditions for tractability. If either of them is violated,

then it is already strongly NP-hard to check whether P is nonempty. Moreover, (A) essentially

requires that the ambiguity set P contains—but does not solely consist of—the Dirac measure that

places unit mass at µ. The conditions (D), (S) and (A) are assumed to hold throughout the paper.

Despite its apparent simplicity, the ambiguity set (3) allows us to recover a range of ambiguity

sets from the literature. For d = 0, we obtain ambiguity sets over distributions with known mean

and support, which have recently been used in the context of adaptive routing problems [27]. Setting

d(ξ) = (ξ−µ)(ξ−µ)⊤ and identifying D with the cone of positive semidefinite matrices, (3) models

Chebyshev ambiguity sets closely related to those proposed in [21, 56]. The dispersion measure

di(ξ) = f⊤
i (ξ − µ)mi/ni , fi ∈ Rk and mi, ni ∈ N with mi > ni, i = 1, . . . , d, allows us to impose

upper bounds on higher-order moments of ξ̃ similar to [61]. Information about the distributions’

asymmetry can be captured through the choice d(ξ) = f(max{ξ − µ,0},max{µ − ξ,0}) for f :

R2k
+ → Rd, where the maximum operators are applied component-wise. The choice di(ξ) = ξ2i /2 if

|ξi| ≤ δ; = δ(|ξi|−δ/2) for i = 1, . . . , k and δ > 0 imposes upper bounds on the expected Huber loss

function, which is a popular dispersion measure in robust statistics [13]. Finally, separate bounds

σi ∈ Rdi on different dispersion measures di : R
k → Rdi and over individual cones Di, i = 1, . . . , s,

can be combined by setting d = (d⊤1 , . . . ,d
⊤
s )

⊤, D = D1 × . . .×Ds and σ = (σ⊤
1 , . . . ,σ

⊤
s )

⊤.

In order to derive a conic reformulation for pessimistic chance constraints, we impose the fol-

lowing additional assumptions, which complement (D), (S) and (A):

(D’) The dispersion function d is D-convex and positively homogeneous of degree 1.

(S’) The support set Ξ is a convex, closed and solid cone.

(T) The technology matrix is constant, that is, T (x) = T for all x ∈ Rn.
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Although restrictive, these assumptions are satisfied in a number of practically relevant situations.

The positive homogeneity condition (D’) supersedes the convexity condition (D), and it re-

stricts us to first-order dispersion measures. First-order dispersion measures are commonly used in

robust statistics [13] as they are less affected by outliers and deviations from the classical statisti-

cal modeling assumptions (e.g., normality). In optimization, first-order dispersion measures have

recently been employed in inventory management problems [41], where they have been shown to

possess favorable properties over other statistical indicators especially when few historical samples

are available. Moreover, first-order and robust dispersion measures are used in portfolio optimiza-

tion [23, 39], where they enjoy computational advantages and help to immunize the portfolio weights

against outliers in the historical return samples. Condition (D’) is satisfied by ambiguity sets that

specify the mean and an upper bound on EP

[∥

∥ξ̃ − µ
∥

∥

]

, where ∥·∥ is any norm on Rk. Indeed,

the substitution ξ̃ ← ξ̃ − µ allows us to choose µ = 0 and d(ξ) = ∥ξ∥, and the condition (D’) is

implied by the absolute homogeneity of norms. Likewise, condition (D’) is satisfied by ambiguity

sets that specify the mean and an upper bound on the component-wise mean absolute deviation

|ξ̃ − µ| of the random vector ξ̃. Ambiguity sets with mean and mean absolute deviation infor-

mation have recently been studied in [48]. Condition (D’) is also satisfied by ambiguity sets that

specify the mean value µ and separate upper bounds on the lower and upper mean semi-deviations,

d(ξ) = (max{ξ − µ,0}⊤,max{µ− ξ,0}⊤)⊤, which have been proposed in [61].

The conic support condition (S’) supersedes the convexity condition (S). The two most natural

choices of support sets Ξ that satisfy condition (S’) are Ξ = Rk and Ξ = Rk
+. If ξ̃ is known to be

supported on a non-conic subset Ξ of Rk, then we can replace Ξ with its conic hull in order to satisfy

condition (S’). The resulting outer approximation of the ambiguity set allows us to derive a conic

reformulation that constitutes a conservative approximation to the pessimistic chance constraint.

Condition (T) requires that ξ̃ and x appear on different sides of the safety conditions. This con-

dition is also instrumental for Prékopa’s classical convexity result for non-ambiguous joint chance

constraints subject to log-concave probability distributions [49]. The condition is satisfied, among

others, in resource allocation problems on temporal networks (see [59] and Section 5.1), production

planning, scheduling and inventory management problems [29], as well as uncertain binary opti-

mization problems, where products of decision variables and parameters can be linearized exactly.

Our conic reformulation for optimistic chance constraints only requires the assumptions (D),
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(S), (A) and (T) to hold, that is, the stricter assumptions (D’) and (S’) on the dispersion measure

and the support of the random vector ξ̃ are not needed.

By itself, the existence of a conic reformulation for an optimization problem does not guarantee

computational tractability in the sense of polynomial time solvability. To this end, we require

(X) The support set Ξ and the epigraph of the dispersion function d can be represented through

polynomially many linear, conic quadratic and/or semidefinite constraints. Moreover, D is

either the nonnegative orthant, the second-order cone or the semidefinite cone.

Together with the other assumptions, (X) will turn out to be sufficient but not necessary for com-

putational tractability of the uncertainty quantification and chance constrained problems. While

it is possible to replace (X) with a necessary and sufficient condition, we prefer to use (X) as it

covers most of the practically relevant settings and avoids technicalities.

3 Pessimistic Chance Constraints

This section focuses on pessimistic chance constraints of the form

inf
P∈P

P
[

T (x)ξ̃ < u(x)
]

≥ 1− ϵ, (PCC)

where the ambiguity set P is defined as in (3). The conditions (D), (S) and (A) are tacitly

assumed to hold throughout this section. In order to keep the notation clean, we use the shorthand

I = {1, . . . ,m} to denote the index set of all safety conditions. Moreover, for any fixed x, we let

I(x) =
{

i ∈ I : ti(x)
⊤ξ ≥ ui(x) for some ξ ∈ Ξ

}

contain the indices of those safety conditions that can be violated. We also set I0 = I ∪ {0} and

I0(x) = I(x) ∪ {0}. Note that the worst-case probability problem on the left-hand side of (PCC)

constitutes a pessimistic uncertainty quantification problem. Below we discuss the solution of this

uncertainty quantification problem (Section 3.1), derive a conic reformulation for pessimistic chance

constraints (Section 3.2) and explore the limits of tractability (Section 3.3).

3.1 The Uncertainty Quantification Problem

We first prove that the pessimistic uncertainty quantification problem in (PCC) admits a finite-

dimensional reduction.
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Theorem 1 (Finite-Dimensional Reduction). The worst-case probability on the left hand side of

(PCC) coincides with the optimal value of the finite-dimensional optimization problem

minimize
λi, ξi

λ0

subject to λi ∈ R+, ξi ∈ Ξ, i ∈ I0(x)
∑

i∈I0(x)

λi = 1

∑

i∈I0(x)

λiξi = µ

∑

i∈I0(x)

λid(ξi) ⪯D σ

ti(x)
⊤ξi ≥ ui(x) ∀i ∈ I(x).

(4)

Remark 1. Observe that (4) can be viewed as a variant of the uncertainty quantification problem

on the left-hand side of (PCC) that minimizes only over discrete distributions from within the

ambiguity set P with atoms or scenarios ξi and associated probabilities λi, i ∈ I0(x). Clearly,

any discrete distribution corresponding to some feasible solution ({λi}i, {ξi}i) satisfies the moment

conditions of the ambiguity set P. The last constraint set in (4) implies that scenario ξi violates

the i-th safety condition for i ∈ I(x). Moreover, in Proposition 3 we will show that scenario ξ0

satisfies all safety conditions at optimality if the minimum of (4) is attained and strictly positive.

Using a continuity argument, one can show that problem (4) also quantifies the worst-case

probability of the weak variant of (PCC) if we replace the index set I(x) with I(x) = {i ∈ I :

ti(x)
⊤ξ > ui(x) for some ξ ∈ Ξ} and I0(x) with I0(x) = I(x) ∪ {0}.

Problem (4) is easily interpretable because all of its feasible solutions correspond to discrete

distributions from within the ambiguity set P . However, it is not suitable for numerical solution.

Indeed, as exemplified below, the infimum of (4) may not even be attained.

Example 1 (Non-Existence of Optimal Solutions). Let P be the ambiguity set of all univariate

distributions P with mean EP[ξ̃] = 0 and unrestricted support. Theorem 1 then implies that the

worst-case probability infP∈P P[ξ̃ < 1] coincides with the infimum of the following finite-dimensional
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optimization problem over two-point distributions.

inf
λi, ξi

λ0

s.t. λi ∈ R+, ξi ∈ R, i ∈ {0, 1}

λ0 + λ1 = 1

λ0ξ0 + λ1ξ1 = 0

ξ1 ≥ 1

(5)

The infimum of (5) is zero, which is attained asymptotically by the sequence λ0(t) =
1

1+t , λ1(t) =

t
1+t , ξ0(t) = −t and ξ1(t) = 1 as t grows. However, the infimum is not attained by any single

feasible solution as no distribution with mean zero can assign zero probability to {ξ ∈ R : ξ < 1}.

It follows from [52, Corollary 3.1] that the infimum of (4) is attained if the support set Ξ

is compact. Even then, however, computing a minimizer may be difficult or impossible as (4)

constitutes a nonconvex optimization problem. Indeed, the moment constraints involve bilinearities

which render the feasible set of (4) nonconvex. In Proposition 1 below we demonstrate that the

nonconvex program (4) can be reformulated as a convex program that is often amenable to efficient

numerical solution. Maybe surprisingly, the infimum of this convex program is always attained,

and any minimizer can be used systematically to construct asymptotically optimal distributions for

the original uncertainty quantification problem.

Definition 1 (Perspective Functions). The perspective function g(χ, λ) = λd(χ/λ) of d(ξ) is

defined for λ > 0. If d is D-convex, proper and lower semicontinuous, then we can extend g to λ = 0

[50, Corollary 8.5.2]. In this case, g(χ, 0) is interpreted as the recession function limλ↓0 λd(χ/λ).

Likewise, we interpret χ/0 ∈ Ξ as the requirement that χ belongs to the recession cone recc(Ξ) =

{χ ∈ Rk : ξ + λχ ∈ Ξ ∀ξ ∈ Ξ, λ ≥ 0}. Thus, 0/0 ∈ Ξ holds true whenever Ξ ̸= ∅.

Proposition 1 (Convex Reformulation). The reduced worst-case probability problem (4) has the

12



same optimal value as the following convex optimization problem.

minimize
λi,χi

λ0

subject to λi ∈ R+, χi ∈ Rk, i ∈ I0
∑

i∈I0

λi = 1

χi

λi
∈ Ξ ∀i ∈ I0

∑

i∈I0

χi = µ

∑

i∈I0

λid

(

χi

λi

)

⪯D σ

ti(x)
⊤χi ≥ λiui(x) ∀i ∈ I

(6)

Remark 2 (Convexity). Note that the perspective function g(χ, λ) = λd(χ/λ) is D-convex. Indeed,

for all λ1, λ2 > 0, χ1,χ2 ∈ Rk and θ ∈ [0, 1], we have

g(θχ1 + (1− θ)χ2, θλ1 + (1− θ)λ2)

= (θλ1 + (1− θ)λ2)d

(

θχ1 + (1− θ)χ2

θλ1 + (1− θ)λ2

)

= (θλ1 + (1− θ)λ2)d

(

θλ1

θλ1 + (1− θ)λ2
·
χ1

λ1
+

(1− θ)λ2

θλ1 + (1− θ)λ2
·
χ2

λ2

)

⪯D θλ1d

(

χ1

λ1

)

+ (1− θ)λ2d

(

χ2

λ2

)

= θg(χ1, λ1) + (1− θ)g(χ2, λ2),

where the inequality in the last line follows from the D-convexity of d(ξ). For λ1, λ2 ≥ 0 the above

inequality still holds by virtue of a limiting argument, which applies as the cone D is closed and as

the perspective function λd(χ/λ) is continuous, owing to the D-convexity of d(ξ) and due to our

definition of the perspective function for λ = 0. Similarly, one can show that the constraint χ/λ ∈ Ξ

has a convex feasible set whenever Ξ is convex. This implies that (6) is indeed a convex program.

Even though the infimum of problem (4) may not be attained (see Example 1), its convex

reformulation (6) is always solvable.

Proposition 2. The minimum of the convex program (6) is always attained.

Propositions 1 and 2 carry over to the weak variant of (PCC) if we replace I with I(x) and I0

with I0(x). Problem (6) thus remedies the two major shortcomings of problem (4): its minimum is

13



always attained, and a minimizer can be computed by leveraging convex optimization algorithms.

In particular, problem (6) can be solved in polynomial time whenever condition (X) is satisfied.

We now show that the minimizers of (6) can be used to construct (near-)optimal distributions

for the original uncertainty quantification problem (4). Indeed, Lemma 8 in the appendix shows

that (6) admits a Slater-type point ({λ′
i}i, {χ

′
i}i), that is, a feasible solution for (6) with λ′

i > 0 for

all i ∈ I0(x). Any such Slater-type point corresponds to a discrete distribution in P with a scenario

of weight λ′
i > 0 at χ′

i/λ
′
i for i ∈ I0(x). Moreover, scenario χ′

i/λ
′
i violates the i-th safety condition

for i ∈ I(x), and therefore the safety conditions are satisfied with a probability of at most λ′
0 under

this discrete distribution. As problem (6) has a convex feasible set, we can use convex combinations

of ({λ′
i}i, {χ

′
i}i) with a minimizer ({λ⋆

i }i, {χ
⋆
i }i) of (6) to construct a sequence of points converging

to ({λ⋆
i }i, {χ

⋆
i }i). These points correspond to a sequence of discrete distributions in P under

which the probability that all safety conditions are satisfied converges to λ⋆
0 (recall that the safety

conditions are satisfied with probability at least λ⋆
0 under any distribution in P because λ⋆

0 equals

the infimum of the original uncertainty quantification problem). Thus, the resulting sequence of

discrete distributions is asymptotically optimal in the uncertainty quantification problem.

Example 1 (cont’d). Proposition 1 provides the following convex reformulation for the worst-case

uncertainty quantification problem studied in Example 1:

inf
λi, χi

λ0

s.t. λi ∈ R+, χi ∈ R, i ∈ {0, 1}

λ0 + λ1 = 1, χ0 + χ1 = 0

χ1 ≥ λ1

(7)

One readily verifies that (λ⋆,χ⋆) = ([0, 1], [−1, 1]) minimizes problem (7), and that (λ′,χ′) =

([12 ,
1
2 ], [−

1
2 ,

1
2 ]) constitutes a Slater-type point. The asymptotically optimal sequence (λ(t), ξ(t)) =

([ 1
1+t ,

t
1+t ], [−t, 1]) to the nonconvex worst-case uncertainty quantification problem (5) then corre-

sponds to the convex combinations t−1
1+t(λ

⋆,χ⋆) + 2
1+t(λ

′,χ′) in the convex problem (7).

Proposition 3. If the minimum of the convex program (6) is strictly positive, then every optimal

solution ({λi}i, {χi}i) satisfies the extra constraints

ti(x)
⊤χ0 < λ0ui(x) ∀i ∈ I. (8)

14



The findings of this section are closely related to the results by Han et al. [34] for uncertainty

quantification problems. Indeed, Han et al. find a similar finite reduction for ambiguity sets in-

volving linear (instead of conic) moment conditions. However, their result relies on the critical

assumption that I(x) = I for all x ∈ X , that is, that none of the safety conditions are redundant.

While this assumption is natural in uncertainty quantification, it is not tenable in chance con-

strained programming, where safety conditions may be redundant for some—but not all—choices

of x ∈ X . Moreover, our proof of the finite reduction theorem leverages the ‘primal worst equals

dual best’ duality scheme by Beck and Ben-Tal [2] and the convexification technique by Gorissen

et al. [32], and it is thus fundamentally different from the derivations in [34], which rely on the

Richter-Rogosinski theorem [53, Theorem 7.37]. We believe that our proof reveals a possibly fruit-

ful connection between distributionally robust optimization and the duality scheme by Beck and

Ben-Tal, which may have further ramifications beyond chance constrained programming.

3.2 The Chance Constrained Program

In this section, we assume that the assumptions (D’), (S’), (A) and (T) are satisfied. Our conic

reformulation relies on the following preparatory lemma.

Lemma 1. For any fixed γ ∈ D⋆, the conjugate of the convex function γ⊤d(ξ) is given by

(γ⊤d)⋆(ν) = σepi(d)(ν,−γ),

where epi(d) = {(ξ,η) ∈ Rk × Rd : d(ξ) ⪯D η} denotes the D-epigraph of d(ξ).

Theorem 2 (Pessimistic Chance Constraints). The pessimistic chance constraint (PCC) is satisfied

if and only if there exist β ∈ Rk, γ ∈ D⋆, τi ∈ R+, i ∈ I, and νi ∈ Rk, i ∈ I0, such that

1 + µ⊤β − σ⊤γ ≥ 1− ϵ

ν0 − β ∈ Ξ⋆

νi − β − τiti ∈ Ξ⋆ ∀i ∈ I

(−νi,γ) ∈ epi(d)⋆ ∀i ∈ I0
∥

∥

∥

∥

∥

∥





2

τi − ui(x)





∥

∥

∥

∥

∥

∥

2

≤ τi + ui(x) ∀i ∈ I.

(9)
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Since u(x) is affine, (9) is a system of linear, conic quadratic and/or semidefinite constraints

whenever (X) is satisfied. In this case, linear programs involving pessimistic chance constraints are

computationally tractable and can be solved efficiently with modern interior point algorithms.

Under the assumption that the strict pessimistic chance constrained program (2) is feasible,

Theorem 2 applies in the same way to weak chance constraints. In particular, the strict and weak

pessimistic chance constrained programs thus share the same optimal value.

Due to its reliance on the condition (T), which requires the decisions and uncertain parame-

ters to appear on different sides of the safety conditions, Theorem 2 is reminiscent of Prékopa’s

celebrated convexity result for classical joint chance constraints subject to log-concave probability

distributions [49]. We emphasize, however, that checking the feasibility of a classical chance con-

straint is hard even if there is only a single safety condition satisfying (T) and even in the simplest

probabilistic setting. For example, assume that ξ̃ follows the uniform distribution on the standard

hypercube in Rk, which is evidently log-concave. Then, the probability that the safety condition is

satisfied coincides with the volume of the knapsack polytope that emerges from intersecting the hy-

percube containing all possible scenarios with the halfspace containing all safe scenarios. However,

computing the volume of a knapsack polytope is ♯P-hard [25]. Thus, checking the feasibility of a

classical individual (not even joint) chance constraint is ♯P-hard even when Prékopa’s conditions

are all satisfied and the chance constraint has a convex feasible set.

Remark 3 (Violations of Model Assumptions). In the following, we show that any violation of

the conditions (D’), (S’) and (T) renders the pessimistic chance constrained program NP-hard.

Nevertheless, one can readily adapt the results of this section to derive nonconvex reformulations

for general pessimistic chance constrained programs that only satisfy the weaker conditions (D),

(S) and (A). The resulting reformulations can be solved approximately with a sequential convex

optimization scheme, see [35, 40]. We will make use of such a scheme in Section 5.1.

3.3 Complexity Analysis

We now show that the tractability result from the previous section is tight, that is, any violation

of the conditions (D’), (S’) and (T) leads to an NP-hard optimization problem, even if all other

conditions are satisfied. In the following three sections, we investigate each condition in turn.
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3.3.1 Intractability of Nonhomogeneous Dispersion Measures

In this section, we consider instances of the problem (2) that satisfy the conditions (A), (S’), (T)

and (X) but violate the condition (D’). We show that such instances give rise to strongly NP-hard

problems even if they satisfy the weaker condition (D) from Section 1. To this end, we recall the

strongly NP-hard Integer Programming (IP) Feasibility problem [28]:

Integer Programming Feasibility.

Instance. Given are A ∈ Zm×n and b ∈ Zm.

Question. Is there a vector x ∈ {0, 1}n such that Ax ≤ b?

In fact, the IP Feasibility problem is solvable whenever there is a fractional solution whose

components are sufficiently close to 0 or 1. Similar results have been reported in [60, 61]; we

include the proof to keep the paper self-contained.

Lemma 2. Fix any κ < mini{(
∑

j |Aij |)
−1} that satisfies κ < 1

2 . The IP Feasibility problem has

an affirmative answer if and only if there is a vector y ∈ ([0, κ] ∪ [1− κ, 1])n such that Ay ≤ b.

For a fixed instance (A, b) of the IP Feasibility problem, consider the following instance of (2)

minimize
x

0

subject to x ∈ [−1, 1]n

A(x+ e)/2 ≤ b

inf
P∈P

P

(

−3e < x+ ξ̃ < 3e
)

≥ 1− ϵ,

(10)

where ϵ ∈ (0, 1) and the ambiguity set is defined as

P =

{

P ∈ P0(R
k) : EP[ξ̃] = 0, EP[|ξ̃|] ≤

4(ϵ− δ)

n
e, EP[d(ξ̃)] ≤

δ2

n
e

}

(11)

with d(ξ) = max{ξ − (4 − δ)e, 0, −ξ − (4 − δ)e} and δ ∈ (0, ϵ
8 ]. Here, the absolute value and

maximum operators apply component-wise. Problem (10) is a feasibility problem that evaluates

to zero if it is feasible and to +∞ otherwise. One readily verifies that the problem satisfies the

conditions (A), (D), (S’), (T) and (X), but it violates the condition (D’).

We now show that there is a one-to-one correspondence between solutions z ∈ {0, 1}n to the

IP Feasibility problem and solutions x = 2z − e to problem (10). To this end, note that the last

condition in (11) stipulates that most of the probability mass of distributions P ∈ P is placed on
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realizations ξ ∈ [−(4 − δ), 4 − δ]n. We can exploit this observation to show that a decision x is

‘nearly binary’ if and only if it satisfies the chance constraint in (10).

Lemma 3. For x ∈ {−1, 1}n, the worst-case probability on the left-hand side of the chance con-

straint in (10) amounts to at least 1− ϵ.

Lemma 4. For x ∈ [−1, 1]n \ ([−1,−1+ δ)∪ (1− δ, 1])n, the worst-case probability on the left-hand

side of the chance constraint in (10) is strictly less than 1− ϵ.

We are now in the position to prove the NP-hardness of the chance constrained program (10).

Theorem 3. The pessimistic joint chance constrained program (2) is strongly NP-hard whenever

the condition (D’) is replaced with (D), even if the conditions (A), (S’), (T) and (X) are satisfied.

3.3.2 Intractability of Nonconic Supports

We now consider instances of the problem (2) that satisfy the conditions (A), (D’), (T) and (X) but

violate the condition (S’). We show that such instances are strongly NP-hard even in the absence of

any information about the distributions’ dispersion and even if the support Ξ is a hyperrectangle.

To this end, we reduce the IP Feasibility problem from the previous section to the problem

minimize
x, y

y

subject to x ∈ [−1, 1]n, y ∈ R+

A(x+ e)/2 ≤ b

inf
P∈P

P

(

−ξ̃n+i − y < xi < ξ̃i + y ∀i = 1, . . . , n
)

≥ 1− ϵ,

(12)

where ϵ ∈ (0, 1), A ∈ Zm×n and b ∈ Zm correspond to the respective input parameters of the IP

Feasibility problem, and the ambiguity set P satisfies

P =

{

P ∈ P0([−1, 3]
2n) : EP[ξ̃] =

(

3−
2ϵ

n

)

e

}

. (13)

One readily verifies that (12) satisfies the conditions (A), (D’), (T) and (X), but it violates (S’).

We now establish a one-to-one correspondence between solutions z ∈ {0, 1}n to the IP Feasibility

problem and solutions x = 2z − e to problem (12) that achieve an optimal value of zero. To this

end, we first prove that a weak variant of the chance constraint in (12) enforces binarity of x.
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Lemma 5. For x ∈ [−1, 1]n, the following weak variant of the chance constraint in (12) satisfies:

inf
P∈P

P

(

−ξ̃n+i ≤ xi ≤ ξ̃i ∀i = 1, . . . , n
)

= max







0, 1− ϵ−
2ϵ

n





∑

i:xi∈(−1,1)

3 + x2i
18− 2x2i











(14)

Lemma 5 essentially shows that x ∈ [−1, 1]n achieves an objective value of zero in problem (12)

if and only if x ∈ {−1, 1}n. Equipped with the insight from Lemma 5, we can now prove the

postulated intractability result.

Theorem 4. The pessimistic joint chance constrained program (2) is strongly NP-hard whenever

the condition (S’) is replaced with (S), even if the conditions (A), (D’), (T) and (X) are satisfied.

3.3.3 Intractability of Left-Hand Side Uncertainty

We now study instances of the problem (2) that satisfy the conditions (A), (D’), (S’) and (X) but

violate the condition (T). We show that such instances are computationally intractable even in the

absence of support information and even if the mean absolute deviation—arguably one of the most

basic dispersion measures—is used to quantify the distributions’ spread. To this end, we reduce

the IP Feasibility problem from Section 3.3.1 to the following problem

minimize
x, y

y

subject to x ∈ [0, 1]n, y ≥ 0

Ax ≤ b

inf
P∈P

P

(

(ξ̃i + 1)xi + y > 0, (ξ̃n+i + 1)(1− xi) + y > 0 ∀i = 1, . . . , n
)

≥ 1− ϵ,

(15)

where ϵ ∈ (0, 1/2), A ∈ Zm×n and b ∈ Zm correspond to the respective input parameters of the

IP Feasibility problem, and the ambiguity set P is defined as

P =

{

P ∈ P0(R
2n) : EP[ξ̃] = 0, EP[|ξ̃|] ≤

2ϵ

n
e

}

. (16)

One verifies that the problem satisfies the conditions (A), (D’), (S’) and (X), but it violates (T).

We again derive an analytical expression for a weak variant of the chance constraint in (15).

Lemma 6. For x ∈ [0, 1]n, the following weak variant of the chance constraint in (15) satisfies:

inf
P∈P

P

(

(ξ̃i + 1)xi ≥ 0, (ξ̃n+i + 1)(1− xi) ≥ 0 ∀i = 1, . . . , n
)

= 1−ϵ−
ϵ

n
|{i ∈ {1, . . . , n} : xi ∈ (0, 1)}|

(17)
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Lemma 6 essentially implies that x ∈ [0, 1]n achieves an objective value of zero in problem (15)

if and only if x ∈ {0, 1}n. This implies the postulated intractability result.

Theorem 5. The pessimistic joint chance constrained program (2) is strongly NP-hard whenever

the condition (T) is violated, even if the conditions (A), (D’), (S’) and (X) are satisfied.

4 Optimistic Chance Constraints

Next, we investigate optimistic chance constraints of the form

sup
P∈P

P
[

T (x)ξ̃ < u(x)
]

≥ 1− ϵ. (OCC)

Note that the best-case probability problem on the left-hand side of (OCC) constitutes an op-

timistic uncertainty quantification problem. In analogy to Section 3, we discuss the solution of

this uncertainty quantification problem (Section 4.1), derive a conic reformulation for the opti-

mistic chance constraint (Section 4.2) and explore the limits of tractability (Section 4.3). The

conditions (D), (S) and (A) are tacitly assumed to hold throughout this section.

4.1 The Uncertainty Quantification Problem

We start by proving that the optimistic uncertainty quantification problem in (OCC) admits a

finite-dimensional reduction.

Theorem 6 (Finite-Dimensional Reduction). Assume that there exists ξ ∈ Ξ with T (x)ξ < u(x)

as otherwise (OCC) is not satisfiable. Then, the best-case probability on the left-hand side of (OCC)

is given by the optimal value of the finite-dimensional optimization problem

maximize
λi, ξi

λ0

subject to λi ∈ R+, ξi ∈ Ξ, i ∈ {0, 1}
∑

i∈{0,1}

λi = 1

∑

i∈{0,1}

λiξi = µ

∑

i∈{0,1}

λid(ξi) ⪯D σ

T (x)ξ0 ≤ u(x).

(18)
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Remark 4. Observe that (18) can be viewed as a variant of the uncertainty quantification problem

on the left-hand side of (OCC) that minimizes only over two-point distributions from within the

ambiguity set P with scenarios ξi and associated probabilities λi, i ∈ {0, 1}. Clearly, any two-point

distribution corresponding to some feasible solution ({λ}i, {ξ}i) satisfies the moment conditions

of the ambiguity set P. The last constraint in (18) implies that scenario ξ0 satisfies all safety

conditions. Moreover, in Proposition 6 we will show that scenario ξ1 violates at least one safety

condition at optimality if the maximum of (18) is attained and strictly smaller than 1.

Theorem 6 immediately extends to weak optimistic chance constraints if we assume that there

is a realization ξ ∈ Ξ that satisfies the safety condition weakly, that is, if ξ satisfies T (x)ξ ≤ u(x).

Problem (18) is easily interpretable because all of its feasible solutions correspond to two-point

distributions from within P. However, as in the case of the pessimistic uncertainty quantification

problem studied in Section 3.1, problem (18) is nonconvex and may not even be solvable.

Example 2 (Non-Existence of Optimal Solutions). Let P be the ambiguity set of all univariate

distributions P with mean EP[ξ̃] = 0, mean-absolute deviation EP[|ξ̃|] ≤ 2 and unrestricted support.

Theorem 6 then implies that the best-case probability supP∈P P[ξ̃ < −1] coincides with the supremum

of the following finite-dimensional optimization problem over two-point distributions.

sup
λi, ξi

λ0

s.t. λi ∈ R+, ξi ∈ R, i ∈ {0, 1}

λ0 + λ1 = 1

λ0ξ0 + λ1ξ1 = 0

λ0|ξ0|+ λ1|ξ1| ≤ 2

ξ0 ≤ −1

(19)

The supremum of (19) is 1, which is attained asymptotically by the sequence λ0(t) =
t

1+t , λ1(t) =

1
1+t , ξ0(t) = −1 and ξ1(t) = t as t grows. However, the supremum is not attained by any single

feasible solution as no distribution with mean zero can assign probability 1 to {ξ ∈ R : ξ < −1}.

As in the pessimistic case, it follows from [52, Corollary 3.1] that the supremum of (18) is at-

tained if the support set Ξ is compact. Even then, however, computing a maximizer may be difficult

as (18) constitutes a nonconvex optimization problem. In Proposition 4 below we demonstrate that

21



the nonconvex program (18) can be reformulated as a convex program whose maximum is attained

and that is amenable to numerical solution.

Proposition 4 (Convex Reformulation). If there exists ξ ∈ Ξ with T (x)ξ < u(x), then prob-

lem (18) has the same optimal value as the following convex optimization problem.

maximize
λi,χi

λ0

subject to λi ∈ R+, χi ∈ Rk, i ∈ {0, 1}
∑

i∈{0,1}

λi = 1

χi

λi
∈ Ξ ∀i ∈ {0, 1}

∑

i∈{0,1}

χi = µ

∑

i∈{0,1}

λid

(

χi

λi

)

⪯D σ

T (x)χ0 ≤ λ0u(x)

(20)

The reasoning in Remark 2 can be used to show that (20) is indeed a convex program and is

therefore a good candidate for numerical solution. Indeed, problem (20) can be solved in polynomial

time whenever condition (X) is satisfied. Moreover, even though the supremum of problem (18)

may not be attained (see Example 2), its convex reformulation (20) is always solvable.

Proposition 5. The maximum of the convex program (20) is always attained.

Propositions 4 and 5 carry over to weak optimistic chance constraints. In that case, we only

need to assume in Proposition 4 that there is a ξ ∈ Ξ that satisfies the safety condition weakly.

Next, we argue that the maximizers of (20) can be used to construct (near-)optimal distributions

for the original uncertainty quantification problem. Indeed, whenever there is ξ ∈ Ξ with T (x)ξ <

u(x), Lemma 10 in the appendix shows that (20) admits a Slater-type point ({λ′
i}i, {χ

′
i}i), that

is, a feasible solution to (20) with λ′
i > 0 for i ∈ {0, 1}. Any such Slater-type point corresponds to

a two-point distribution in P with a scenario of strictly positive weight λ′
i at χ

′
i/λ

′
i for i ∈ {0, 1}.

We can then use convex combinations of ({λ′
i}i, {χ

′
i}i) with a minimizer ({λ⋆

i }i, {χ
⋆
i }i) of (20) to

construct a sequence of points converging to ({λ⋆
i }i, {χ

⋆
i }i). These points correspond to two-point

distributions in P under which the probability that all safety conditions are satisfied converges

22



to λ⋆
0. Thus, the resulting sequence of two-point distributions is asymptotically optimal in the

uncertainty quantification problem.

Example 2 (cont’d). Proposition 4 provides the following convex reformulation for the best-case

uncertainty quantification problem studied in Example 2:

sup
λi, χi

λ0

s.t. λi ∈ R+, χi ∈ R, i ∈ {0, 1}

λ0 + λ1 = 1, χ0 + χ1 = 0, |χ0|+ |χ1| ≤ 2

χ0 ≤ −λ0

(21)

One readily verifies that (λ⋆,χ⋆) = ([1, 0], [−1, 1]) minimizes problem (21), and that (λ′,χ′) =

([12 ,
1
2 ], [−

1
2 ,

1
2 ]) constitutes a Slater-type point. The asymptotically optimal sequence (λ(t), ξ(t)) =

([ t
1+t ,

1
1+t ], [−1, t]) to the nonconvex best-case uncertainty quantification problem (19) then corre-

sponds to the convex combinations t−1
1+t(λ

⋆,χ⋆) + 2
1+t(λ

′,χ′) in the convex problem (21).

Proposition 6. If the supremum of the convex program (20) is strictly smaller than 1, then every

optimal solution satisfies the (nonconvex) extra constraint

T (x)χ1 ̸< λ1u(x). (22)

4.2 The Chance Constrained Program

In addition to the assumptions (D), (S) and (A), our conic reformulation for optimistic chance

constraints only requires satisfaction of the separability condition (T), which we assume to hold

throughout this section. The assumptions (D’) and (S’), which were crucial to derive the conic

reformulation of pessimistic chance constraints, are no longer necessary.

Theorem 7 (Optimistic Chance Constraints). The best-case chance constraint (OCC) for ϵ ∈ [0, 1)

is satisfied if and only if there exist λ ∈ R+ and ξi ∈ Rk, i ∈ {0, 1}, with

λ ≤
ϵ

1− ϵ
, Tξ0 ≤ u(x)

ξ0 ∈ Ξ,
ξ1

λ
∈ Ξ

∑

i∈{0,1}

ξi = (1 + λ)µ, d (ξ0) + λd

(

ξ1

λ

)

⪯D (1 + λ)σ.

(23)
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Remark 5. If the assumptions (D’), (S’), and (T) hold, which were needed in Theorem 2 to

ensure the tractability of the worst-case chance constraint, then we may set λ = ϵ/(1− ϵ), whereby

the convex reformulation (23) of the best-case chance constraint simplifies to

Tξ0 ≤ (1− ϵ)u(x), ξi ∈ Ξ, i ∈ {0, 1}

∑

i∈{0,1}

ξi = µ,
∑

i∈{0,1}

d (ξi) ⪯D σ .
(24)

Theorem 7 carries over to weak optimistic chance constraints without any modifications. Note

that (23) and (24) can be solved in polynomial time whenever condition (X) is satisfied.

Remark 6 (Violations of Model Assumptions). In analogy to Remark 3, one can readily adapt

the results of this section to derive a nonconvex reformulation for general optimistic chance con-

strained programs that violate the condition (T). The resulting reformulation can again be solved

approximately with a sequential convex optimization scheme [35, 40].

4.3 Complexity Analysis

We now show that instances of the problem (OCC) that violate the assumption (T) give rise to

intractable optimization problems even in the absence of any information about the distributions’

spread and even if the support Ξ is a hyperrectangle. To this end, we reduce the IP Feasibility

problem from Section 3.3.1 to the feasibility problem

minimize
x

0

subject to x ∈ [−1, 1]n

A(x+ e)/2 ≤ b

sup
P∈P

P

(

ξ̃⊤x > n− 2κ
)

≥ 1/2,

(25)

where A ∈ Zm×n and b ∈ Zm correspond to the respective input parameters of the IP Feasibility

problem, κ is chosen as prescribed by Lemma 2, and the ambiguity set P is defined as

P =
{

P ∈ P0([−1, 1]
n) : EP[ξ̃] = 0

}

.

One easily verifies that problem (25) satisfies the conditions (D), (S) and (A), but it violates (T).

Theorem 8. The optimistic joint chance constrained program (2) becomes strongly NP-hard when-

ever the condition (T) is violated, even if the conditions (D), (S) and (A) are satisfied.
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5 Numerical Experiments

We now compare our exact reformulations of the pessimistic and optimistic chance constraints with

popular approximations from the literature in the context of project management (Section 5.1) and

image reconstruction (Section 5.2). The experiments also provide insights into the efficacy of a

well-known sequential convex optimization scheme in problems where the ambiguity set violates

our regularity conditions. All optimization problems are solved using CPLEX 12.5 on an 8-core

3.4GHz computer with 16 GB RAM.1

5.1 Project Management

We identify a project with a directed, acyclic graph G = (V,E) whose nodes V = {1, . . . , n}

represent the tasks and whose arcs E ⊆ V × V denote temporal precedences between the tasks:

if (i, j) ∈ E, then task j can only start after task i has been completed. The duration of task

i ∈ V is a random quantity given by di(x; ξ̃) = (1 + ξ̃i)d
0
i − xi, where d0i denotes the nominal task

duration, ξ̃i represents exogenous fluctuations (e.g., due to weather conditions, machine downtimes

or staff shortage) and xi is the amount of a nonrenewable resource (e.g., capital or manpower) that

is used to expedite the task. We assume that the probability distribution governing the uncertain

fluctuations ξ̃ of all tasks belongs to the ambiguity set

P =
{

P ∈ P0(R
n) : EP

[

ξ̃
]

= 0, EP

[

max
{

−s−ξ̃, s+ξ̃
}]

≤ σ, P

(

ξ̃ ∈
[

ξ, ξ
]

)

= 1
}

, (26)

where s−, s+ ∈ R+, σ ∈ Rn
+ and ξ, ξ ∈ Rn. Our model of the task durations is reminiscent

of the classical PERT model, which fits optimistic, pessimistic and most likely estimates of the

non-expedited task durations (1 + ξ̃i)d
0
i to Beta distributions [22]. In our setting, we identify the

expected duration with d0i , while the support [ξi, ξi] and the semi-deviation parameters s−, s+ and

σi express our beliefs about the optimistic and pessimistic task durations. This resembles the use

of forward and backward deviations, which have been employed in [18] to describe durations of

project tasks that are governed by asymmetric distributions.

We seek for a resource allocation x that minimizes the worst-case value-at-risk of the project’s

makespan (i.e., the time required to complete all tasks). Following [7, 58], this problem can be

1IBM ILOG CPLEX Optimizer: http://www.ibm.com/software/commerce/optimization/cplex-optimizer/.
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formulated as the following instance of problem (2)

minimize
τ,x

τ

subject to τ ∈ R+, x ∈ X

inf
P∈P

P



τ >
∑

i∈Tl

di(x; ξ̃) ∀Tl ∈ T



 ≥ 1− ϵ,

(27)

where ϵ is the decision maker’s risk tolerance level, X denotes the set of feasible resource allocations

and T is the set of all inclusion-maximal paths in the project network. A path T = {i1, . . . , it} ⊆ V ,

(i1, i2), . . . , (it−1, it) ∈ E, is called inclusion-maximal if no other path T ′ = {i′1, . . . , i
′
t′} satisfies

T ′ ⊃ T and T ′ ̸= T . The chance constraint thus requires τ to exceed the duration of the longest task

path in the project network, which coincides with the project’s makespan, with high probability.

Note that the size of the set T and hence the number of safety conditions inside the chance constraint

in (27) typically grows exponentially in the description G of the project [59]. This is not surprising

as it has been shown in [59, Theorem 2.1] that problem (27) is strongly NP-hard even if ϵ = 0.

We compare our reformulation of problem (27) with two popular bounding schemes from the

literature. The first one (hereafter called ‘Bonferroni approximation’) uses Bonferroni’s inequality

to conservatively approximate the joint chance constraint in (27) by individual chance constraints

inf
P∈P

P



τ >
∑

i∈Tl

di(x; ξ̃)



 ≥ 1− ϵl ∀Tl ∈ T ,

where the individual risk tolerances ϵl become additional decision variables that have to satisfy
∑

Tl∈T
ϵl = ϵ, see [58]. This problem fails to be convex, and we solve it approximately using a

sequential convex optimization scheme, see [6, 16]. The second bounding scheme (‘LDR approx-

imation’) first conservatively approximates the task start times by linear decision rules and then

applies the Bonferroni approximation to the resulting constraints, see [18]. In this scheme, too, we

employ a sequential convex optimization scheme to optimize over the individual risk levels ϵl.

In our first experiment, we omit the support constraint in the ambiguity set (26) and choose

the risk tolerance ϵ = 0.1. The nominal task durations are fixed to d0 = e, the dispersion function

coefficients to (s−, s+) = (2, 1), and we select σ uniformly at random from [0, 5
100e]

N . We assume

that feasible resource allocations need to meet task-wise and cumulative resource budgets and set

X = {x ∈ Rn : x ∈ [0, 12e], e⊤x ≤ 3
8n}. Thus, at most 75% of the tasks can be assigned the

maximum resource allocation xi = 1
2 . The resulting instances of problem (27) satisfy all of our
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Solution times (secs) Bound gap Suboptimality

n OS # Paths Exact LDR Bonf. LDR Bonf. LDR Bonf.

30 0.25 65.7 0.55 11.02 0.16 344% 677% 8% 11%

30 0.5 155.1 6.14 4.60 0.40 637% 1,899% 11% 14%

30 0.75 411.4 34.11 2.51 1.70 531% 5,499% 13% 13%

40 0.25 125.9 2.30 48.06 0.41 551% 1,184% 7% 12%

40 0.5 390.2 71.90 21.74 2.03 972% 4,427% 9% 14%

40 0.75 2,089.5 552.37 6.55 23.47 852% 27,282% 15% 15%

50 0.25 209.5 49.46 200.61 1.08 1,141% 1,862% 6% 11%

50 0.5 904.3 355.67 159.12 6.60 1,206% 9,725% 9% 15%

50 0.75 7,520.3 5,306.18 43.86 204.40 1,122% 104,097% 14% 15%

Table 1. Numerical results for our exact reformulation (‘Exact’), the LDR approxi-

mation (‘LDR’) and the Bonferroni approximation (‘Bonf.’) in the project management

problem (27) without support. The ‘bound gap’ quantifies the increase in the estimated

worst-case makespan relative to the makespan of the exact problem, and the ‘subopti-

mality’ quantifies the increase in the makespan of the exact problem if we replace the

optimal solution with the determined resource allocation.

regularity conditions and can hence be solved exactly. Table 1 presents average results for 100

random project networks of size n ∈ {30, 40, 50} and order strength 0.25, 0.5 and 0.75. The order

strength (OS) denotes the fraction of all n(n− 1)/2 possible precedences between the project tasks

that are enforced (directly or via transitivity) through the arcs of the project graph.

The table shows that networks of 50 tasks give rise to problems with up to 7,500 safety con-

ditions inside the chance constraint. Nevertheless, using the convex reformulation (9), the chance

constrained problem (27) can be solved exactly within 1.5 hours. While the LDR and Bonfer-

roni bounds can be computed much faster, they lead to overly pessimistic estimates of the resulting

worst-case project makespan. Indeed, the naive Bonferroni bound overestimates the value-at-risk of

the project’s makespan by up to 100,000%, and the state-of-the-art LDR bound reports makespans

that are up to 10 times too high. Moreover, these inflated worst-case makespan estimates result in

resource allocations that also underperform when evaluated in the exact problem (27).

27



We now repeat the experiment with support constraints. To this end, we set (ξ, ξ) = (−1
2e,+

1
2e)

in (26) and choose the other parameters as in the previous experiment. Note that the support con-

straints violate the assumption (S’). Following the discussion in Remark 3, we use our results

from Section 3 to formulate a nonconvex optimization problem that we solve approximately us-

ing a sequential convex optimization scheme (‘SCO’). We compare this approach with our exact

reformulation applied to an outer approximation of the ambiguity set that disregards the support

constraint (‘No support’), as well as the LDR and Bonferroni bounds. As expected, all approaches

require more computation time due to the presence of the support constraints, with the SCO scheme

taking up to 2.5 hours for the largest instances. We observe that the SCO scheme provides the

tightest bounds and that the ‘No support’ bound typically outperforms both the LDR and the

Bonferroni approximations, despite the fact that the latter bounds account for the support of ξ̃.

We remark that the degree of conservatism is much smaller than in the previous experiment, which

is due to the fact that the support constraints remove many pathological distributions that place

small probabilities on very large task durations.

5.2 Image Reconstruction

A fundamental problem in image processing is the restoration of noisy images, where the noise

is caused by the image recording or transmission process. In this section, we consider a discrete

version of this problem where a noisy m×n-grayscale image is represented by a vector f ∈ [0, 1]mn

of pixel light intensities. The goal is to decompose this image into a restored image x ∈ [0, 1]mn

and an additive noise realization ξ ∈ [−1, 1]mn that explain the observed image.

A unique decomposition of a noisy image f into a restored image x and a noise realization ξ

requires further information. It has been observed that pristine images often contain large regions

of smooth color gradients which are separated by sharp edges. Thus, those images possess a low

total variation, which we define as a functional of the image’s intensity gradient:

TV (x) =
∑

1≤i<m
1≤j<n

√

(xi+1,j − xi,j)
2 + (xi,j+1 − xi,j)

2,

where xi,j corresponds to the pixel in row i and column j of the image x. Accounting for this

empirical observation, Goldfarb and Yin [31] propose to minimize the total variation of the recovered
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Solution times (secs) Bound gap Suboptimality

N OS SCO LDR Bonf. No support LDR Bonf. No support LDR Bonf.

30 0.25 3.60 3.00 0.36 28% 40% 40% 1% 4% 8%

30 0.5 9.72 4.42 1.14 15% 39% 42% 1% 4% 9%

30 0.75 39.41 3.27 6.66 5% 45% 48% 1% 2% 6%

40 0.25 13.63 8.36 1.20 40% 41% 40% 2% 4% 11%

40 0.5 60.73 8.35 6.18 23% 39% 41% 2% 3% 11%

40 0.75 474.21 8.82 67.23 9% 45% 48% 1% 2% 8%

50 0.25 46.50 23.45 3.17 53% 37% 37% 7% 8% 12%

50 0.5 291.64 25.50 24.59 30% 40% 40% 2% 3% 13%

50 0.75 8,795.87 16.83 539.93 13% 44% 46% 2% 3% 7%

Table 2. Numerical results for the SCO scheme (‘SCO’), our exact reformulation ap-

plied to an outer approximation of the ambiguity set that disregards the support con-

straints (‘No support’), the LDR approximation (‘LDR’) and the Bonferroni approxima-

tion (‘Bonf.’) in the project management problem (27) with support. The ‘bound gap’

quantifies the increase in the estimated worst-case makespan relative to the makespan of

the SCO problem, and the ‘suboptimality’ quantifies the increase in the makespan of the

SCO problem if we replace the optimal solution with the determined resource allocation.
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original image x, subject to an upper bound on the noise realization ξ:

minimize
x, ξ

TV (x)

subject to x ∈ [0, 1]mn, ξ ∈ Rmn

x+ ξ = f

∥ξ∥2 ≤ σ

(28)

Much of the literature on image reconstruction assumes, either explicitly or implicitly, that

the components of ξ are realizations of independent normal random variables with zero mean and

known fixed variance. This is reflected by the last constraint in (28), which can be interpreted

as a likelihood bound under normality assumption. As the pixel intensities are confined to [0, 1],

however, this is a strict approximation, the quality of which deteriorates with increasing noise

levels. Indeed, the noise distribution cannot be normal and must have a nonzero mean as well as a

reduced variance in the very dark and light areas of the image. Unless the pristine image is known,

the distribution of the random noise vector ξ̃ is therefore ambiguous even if we knew that it is a

normal distribution truncated to ensure that the observed noisy image remains within [0, 1]mn.

With the methods proposed in this paper, we can faithfully model the additive noise ξ̃ as

a random vector that follows an ambiguous distribution. It is then natural to impose that the

difference between the observed and the reconstructed image should be explained by a ‘sufficiently

likely’ noise realization ξ̃ under any of the potential noise distributions contained in the ambiguity

set. This gives rise to the following optimistic chance constrained program:

minimize
x

TV (x)

subject to x ∈ [0, 1]mn

sup
P∈P

P

(

x+ ξ̃ = f
)

≥ 1− ϵ,

(29)

where the ambiguity set P is defined as

P =
{

P ∈ P0(R
mn) : EP[ξ̃] = µ, EP[∥ξ̃∥2] ≤ σ

}

.

As we pointed out in Section 4, Theorem 7 carries over to weak chance constraints without

any modifications. We can therefore employ Theorem 7 to reformulate problem (29) as a second-

order cone program. One can show that this optimization problem constitutes a generalization

of (28), where the last constraint is replaced with ∥ξ − µ∥2 ≤
σ

2−2ϵ . While Goldfarb and Yin
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implicitly set µ = 0, we know from the previous discussion that µ must have nonzero components

at least in the very dark and light areas of the image. To account for this phenomenon, we set

µi,j = E[[si,j + ξ̃0i,j ][0,1] − si,j ], where s ∈ Rmn is a smoothed version of the noisy image obtained

from applying a circular moving average filter to f , ξ̃0 is a zero-mean, normally distributed random

variable designed to match the noise prior to truncation, and [·][0,1] denotes the projection onto [0, 1].

Contrary to the truncated noise ξ̃, the distribution of ξ̃0 can often be estimated reliably [45, 42].

Table 3 and Figure 1 compare our formulation with Goldfarb and Yin’s model (28) on a variety

of standard benchmark images. Note that both formulations rely on a single design parameter

(σ in Goldfarb and Yin’s model; σ/(2 − 2ϵ) in our approach). To facilitate a fair comparison,

we choose the best value of this parameter in both models for each image. Table 3 presents the

normalized distances ∥x− x0∥2/∥f − x
0∥2 of the reconstructed images x from the original images

x0 for our chance-constrained program (29) with true µ (‘CC’) and with estimated µ as outlined

above (‘CC-E’), as well as Goldfarb and Yin’s model (‘GY’). For comparison purposes, we also

include the normalized distances of the smoothed images resulting from the moving average filter

that we employ to estimate µ in CC-E (’MAF’). The table also presents the relative improvements

of CC, CC-E and MAF over GY in terms of these normalized distances. Figure 1 presents the

average normalized distances of the four approaches over all benchmark images as a function of the

standard deviation of ξ̃0, and a specific solution is shown in Figure 2. The results indicate that a

faithful modeling of the ambiguity about the truncated noise ξ̃ can lead to consistent improvements

over Goldfarb and Yin’s model, and that these improvements increase with the noise level.
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Figure 1. Normalized distances of the reconstructed images to their true counterparts

when the reconstructed images are obtained from Goldfarb and Yin’s model (28) (dotted

red line) and the chance constrained program (29) with true and estimated mean values

(dashed blue and solid green line, respectively).

Figure 2. Original, noisy and reconstructed versions of the image K-15 from Table 3.

The noisy image is obtained by adding Gaussian noise with mean zero and standard

deviation 0.15 to the original image and projecting the sum to [0, 1]mn. The reconstructed

image is the solution of the ambiguous chance constrained program CC-E.
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Appendix: Proofs

In the remainder we let Br(c) be the closed Euclidean ball of radius r ≥ 0 centered at c.

Lemma 7 (Strong Duality). Under the assumptions (A) and (D), strong duality holds between

the uncertainty quantification problem

inf
P∈P

P
[

T (x)ξ̃ < u(x)
]

and its dual semi-infinite program

maximize
α,β,γ

α+ µ⊤β − σ⊤γ

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆

α+ ξ⊤β − d(ξ)⊤γ ≤ I[T (x)ξ<u(x)] ∀ξ ∈ Ξ.

Proof. We need to show that the point (1,µ,σ) resides in the interior of the convex cone

V =



















(a, b, c) ∈ R× Rk × Rd : ∃µ ∈M+(Ξ) such that

∫

µ(dξ) = a,
∫

ξ µ(dξ) = b,
∫

d(ξ) µ(dξ) ⪯D c



















,

see [52, Proposition 3.4]. To this end, choose any point (s,m, s) ∈ Bκ(1)× Bκ(µ)× Bκ(σ), where

κ > 0 is chosen sufficiently small, and consider the scaled Dirac measure s · δm/s that places mass

s at m/s. By construction, this measure satisfies
∫

s · δm/s(dξ) = s and
∫

ξ s · δm/s(dξ) = m.

Moreover, for sufficiently small κ the measure is supported on Ξ (since µ ∈ int Ξ) and satisfies
∫

d(ξ) s · δm/s(dξ) ⪯D s (since d(µ) ≺D σ and the dispersion function d is continuous).

Proof of Theorem 1. The worst-case probability in (PCC) is given by the optimal value of the

moment problem

minimize
µ

∫

Ξ
I[T (x)ξ<u(x)] µ(dξ)

subject to µ ∈M+(Ξ)
∫

Ξ
µ(dξ) = 1

∫

Ξ
ξ µ(dξ) = µ

∫

Ξ
d(ξ)µ(dξ) ⪯D σ,
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where M+(Ξ) denotes the convex cone of nonnegative Borel measures on Ξ. Note that the first

moment constraint forces µ to be a probability measure. The above moment problem constitutes

in fact a conic program involving infinitely many decisions and finitely many constraints. Its

dual is therefore a semi-infinite conic program with finitely many decision variables (the Lagrange

multipliers α, β and γ corresponding to the normalization, location and dispersion conditions,

respectively) and infinitely many constraints parameterized by the uncertainty realizations ξ ∈ Ξ:

maximize
α,β,γ

α+ µ⊤β − σ⊤γ

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆

α+ ξ⊤β − d(ξ)⊤γ ≤ I[T (x)ξ<u(x)] ∀ξ ∈ Ξ

(30)

Strong duality holds due to the assumptions (A) and (D); see Lemma 7 in the appendix for more

details. Thus, the optimal value of (30) coincides with that of the primal moment problem.

By expanding the indicator function, the discontinuous semi-infinite constraint in (30) can be

decomposed into several continuous semi-infinite constraints:

α+ ξ⊤β − d(ξ)⊤γ ≤ 1 ∀ξ ∈ Ξ

α+ ξ⊤β − d(ξ)⊤γ ≤ 0 ∀i ∈ I, ∀ξ ∈ Ξ : ti(x)
⊤ξ ≥ ui(x)

(31)

This implies that the worst-case probability in (PCC) reduces to

maximize
α,β,γ

α+ µ⊤β − γ⊤σ

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆

α+ ξ⊤0 β − d(ξ0)
⊤γ ≤ 1 ∀ξ0 ∈ Ξ0(x)

α+ ξ⊤i β − d(ξi)
⊤γ ≤ 0 ∀ξi ∈ Ξi(x), i ∈ I(x),

(32)

where Ξ0(x) = Ξ and Ξi(x) = {ξ ∈ Ξ : ti(x)
⊤ξ ≥ ui(x)} for all i ∈ I(x). Note that (32)

can be interpreted as the robust counterpart of an uncertain convex program with constraint-wise

uncertainty. Thus, problem (32) is solved by a decision maker choosing α, β and γ under the worst

possible data ξi, i ∈ I0(x). It has been shown in [2, Theorem 4.1] that this problem is equivalent

to the dual of the uncertain convex program where the decision maker operates under the best
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possible data. Specifically, (32) is equivalent to2

minimize
λi, ξi

λ0

subject to λi ∈ R+, ξi ∈ Ξi(x), i ∈ I0(x)
∑

i∈I0(x)

λi = 1

∑

i∈I0(x)

λiξi = µ

∑

i∈I0(x)

λid(ξi) ⪯D σ,

(33)

which can easily be reformulated as (4).

Lemma 8. Problem (6) admits a Slater-type point ({λ′
i}i, {χ

′
i}i), that is, a feasible point that

satisfies the nonnegativity constraints strictly for all i ∈ I0(x).

Proof of Lemma 8. For i ∈ I(x) and κ ∈ (0, |I|−1), we set λ′
i = κ and χ′

i = λ′
iξi for any

ξi ∈ Ξ that satisfies ti(x)
⊤ξi ≥ ui(x). We also set λ′

i = 0 and χ′
i = 0 for i ∈ I \ I(x), as well as

λ′
0 = 1− |I(x)|κ and χ′

0 = µ−
∑

i∈I(x)χ
′
i. For κ sufficiently small, the assumptions (A) and (D)

imply that χ′
0/λ

′
0 ∈ Ξ (since µ ∈ int Ξ) and

∑

i∈I0
λ′
id(χ

′
i/λ

′
i) ⪯D σ (since d (µ) ≺D σ and d is

continuous). One readily verifies that ({λ′
i}i, {χ

′
i}i) also satisfies the other constraints.

Proof of Proposition 1. For any feasible solution ({λ′
i}i, {ξ

′
i}i) to problem (4), the solution

({λi}i, {χi}i) with (λi,χi) = (λ′
i, λ

′
iξ

′
i), i ∈ I0(x), and (λi,χi) = (0,0), i ∈ I0 \ I0(x), is feasible

in (6) and attains the same objective value; see also Definition 1. We thus conclude that the optimal

value of (6) provides a lower bound on the optimal value of (4).

Next, we show that the optimal value of (6) also provides an upper bound on the optimal value

of (4). To this end, we note that (6) is solvable by Proposition 2 below. We now proceed in two

steps. We first show that any feasible solution to problem (6) can be transformed into a feasible

2To be precise, in [2] it is shown that the equivalence of (32) and (33) holds if all uncertainty sets Ξi(x), i ∈ I0(x),

are compact. As (33) constitutes a reformulation of the worst-case probability problem in (PCC), whose optimal

value must lie in the interval [0, 1], one can show that the equivalence extends to unbounded uncertainty sets.
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solution to the related problem

minimize
λi,χi

λ0

subject to λi ∈ R+, χi ∈ Rk, i ∈ I0(x)
∑

i∈I0(x)

λi = 1

χi

λi
∈ Ξ ∀i ∈ I0(x)

∑

i∈I0(x)

χi = µ

∑

i∈I0(x)

λid

(

χi

λi

)

⪯D σ

ti(x)
⊤χi ≥ λiui(x) ∀i ∈ I(x),

(34)

which employs the same decision-dependent index sets I(x) and I0(x) as problem (4). Afterwards,

we prove that any solution to (34) can in turn be transformed into a feasible solution to problem (4).

In view of the first step, assume that ({λ′
i}i, {χ

′
i}i) is feasible in (6). We show that ({λi}i, {χi}i)

defined through

λ0 = λ′
0 +

∑

i∈I\I(x)

λ′
i, λi = λ′

i ∀i ∈ I(x), χ0 = χ
′
0 +

∑

i∈I\I(x)

χ′
i, χi = χ

′
i ∀i ∈ I(x)

is feasible in (34) and attains the same objective value. Clearly, λi ≥ 0, i ∈ I0(x), and we have

∑

i∈I0(x)

λi =
∑

i∈I0

λ′
i = 1 and

∑

i∈I0(x)

χi =
∑

i∈I0

χ′
i = µ.

Similarly, we find

∑

i∈I0(x)

λid

(

χi

λi

)

=



λ′
0 +

∑

i∈I\I(x)

λ′
i



d

(

χ′
0 +

∑

i∈I\I(x)χ
′
i

λ′
0 +

∑

i∈I\I(x) λ
′
i

)

+
∑

i∈I(x)

λ′
id

(

χ′
i

λ′
i

)

⪯D

∑

i∈I0

λ′
id

(

χ′
i

λ′
i

)

⪯D σ,

where the first inequality follows from the D-convexity of the dispersion function d(ξ). Next, we

have χi/λi = χ
′
i/λ

′
i ∈ Ξ for all i ∈ I(x), and the convexity of Ξ further implies that

χ0

λ0
=
χ′
0 +

∑

i∈I\I(x)χ
′
i

λ′
0 +

∑

i∈I\I(x) λ
′
i

=
λ′
0

λ′
0 +

∑

i∈I\I(x) λ
′
i

·
χ′
0

λ′
0

+
∑

i∈I\I(x)

λ′
i

λ′
0 +

∑

i∈I\I(x) λ
′
i

·
χ′
i

λ′
i

∈ Ξ.
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It is also easy to verify that

ti(x)
⊤χi = ti(x)

⊤χ′
i ≥ λ′

iui(x) = λiui(x) ∀i ∈ I(x).

Thus, ({λi}i, {χi}i) is feasible in (34). Moreover, the objective value of ({λi}i, {χi}i) in (34) equals

the objective value of ({λ′
i}i, {χ

′
i}i) in (6). Indeed, we have λ′

i = 0 for all i ∈ I\I(x) for otherwise

ξ′i = χ
′
i/λ

′
i ∈ Ξ satisfies ti(x)

⊤ξ′i ≥ ui(x), which is in conflict with the definition of I(x).

As for the second step, assume that ({λi}i, {χi}i) is feasible in (34). A straightforward adaption

of Lemma 8 shows that (34) admits a Slater-type point ({λ′
i}i, {χ

′
i}i) with λ′

i > 0 for all i ∈ I0(x).

Since (34) is convex, we can construct convex combinations of ({λ′
i}i, {χ

′
i}i) and ({λi}i, {χi}i) to

generate a sequence of feasible solutions ({λk
i }i, {χ

k
i }i)k that converge to ({λi}i, {χi}i) and that

satisfy λk
i > 0, i ∈ I0(x). The corresponding solutions ({λk

i }i, {ξ
k
i }i) with ξ

k
i = χk

i /λ
k
i are feasible

in (4) and attain the same objective values, which concludes the proof.

Proof of Proposition 2. Problem (6) can be reformulated as

minimize
λi,χi,νi

λ0

subject to λi ∈ R+, χi ∈ Rk, νi ∈ Rd, i ∈ I0

(λi,χi,νi) ∈ K ∀i ∈ I0
∑

i∈I0

(λi,χi,νi) = (1,µ,σ)

ti(x)
⊤χi ≥ λiui(x) ∀i ∈ I,

where νi, i ∈ I0, are epigraphical auxiliary variables and where the cone

K =
{

(λ,χ,ν) ∈ R+ × Rk × Rd :
χ

λ
∈ Ξ, λd

(χ

λ

)

⪯D ν
}

is convex due to assumption (D) and due to the convexity of Ξ. As K is also nonempty due to

assumption (A), it admits a decomposition of the form K = L + K⊥, where L = K ∩ −K is the

lineality space of K and K⊥ = K∩L⊥ is a pointed convex cone in the orthogonal complement of L

[55, Theorem 2.10.5]. Note that any (λ,χ,ν) ∈ K can thus be written as (λ,χ,ν) = (λ∥,χ∥,ν∥) +

(λ⊥,χ⊥,ν⊥), where (λ∥,χ∥,ν∥) ∈ L and (λ⊥,χ⊥,ν⊥) ∈ K⊥. Moreover, as λ must be nonnegative
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by the definition of K, it is clear that λ∥ = 0 and λ⊥ = λ. We can thus rewrite (6) equivalently as

minimize
λ⊥
i
,χ

∥
i
,χ⊥

i
,ν

∥
i
,ν⊥

i

λ⊥
0 (35a)

subject to λ⊥
i ∈ R+, χ

∥
i ,χ

⊥
i ∈ Rk, ν

∥
i ,ν

⊥
i ∈ Rd, i ∈ I0 (35b)

(0,χ
∥
i ,ν

∥
i ) ∈ L ∀i ∈ I0 (35c)

(λ⊥
i ,χ

⊥
i ,ν

⊥
i ) ∈ K⊥ ∀i ∈ I0 (35d)

∑

i∈I0

(λ
∥
i ,χ

∥
i ,ν

∥
i ) = (0,µ∥,σ∥) (35e)

∑

i∈I0

(λ⊥
i ,χ

⊥
i ,ν

⊥
i ) = (1,µ⊥,σ⊥) (35f)

ti(x)
⊤(χ

∥
i + χ

⊥
i ) ≥ λ⊥

i ui(x) ∀i ∈ I, (35g)

where (1,µ,σ) is decomposed into (0,µ∥,σ∥) ∈ L and (1,µ⊥,σ⊥) ∈ K⊥. For any i ∈ I0, the

triplet (λ⊥
i ,χ

⊥
i ,ν

⊥
i ) belongs to C = K⊥ ∩ ({(1,µ⊥,σ⊥)} − K⊥) as

(λ⊥
i ,χ

⊥
i ,ν

⊥
i ) = (1,µ⊥,σ⊥)−

∑

j∈I0,j ̸=i

(λ⊥
j ,χ

⊥
j ,ν

⊥
j ).

Note that C is both convex and compact. Indeed, C inherits convexity and closedness from K⊥.

Moreover, C is bounded for otherwise it would have a nonzero recession direction, which would

also be a recession direction for both K⊥ and −K⊥ [50, Corollary 8.3.2]. This, however, would

contradict the pointedness of K⊥.

Consider now a sequence of feasible decisions

({λ⊥
i (t)}i, {χ

∥
i (t)}i, {χ

⊥
i (t)}i, {ν

∥
i (t)}i, {ν

⊥
i (t)}i), t ∈ N,

that attain the infimum in (35) as t ∈ N tends to infinity. By passing to a subsequence if necessary,

we may assume without loss of generality that (λ⊥
i (t),χ

⊥
i (t),ν

⊥
i (t)) converges to (λ̂⊥

i , χ̂
⊥
i , ν̂

⊥
i ) ∈

C for every i ∈ I0 because C is compact. By construction, ({λ̂⊥
i }i, {χ̂

⊥
i }i, {ν̂

⊥
i }i) satisfies the

constraints (35d) and (35f), while λ̂⊥
0 is equal to the infimum of (35). To prove the solvability

of (35), thus, it remains to be shown that there exist ({χ̂
∥
i }i, {ν̂

∥
i }i) satisfying (35c), (35e) and

(35g) for ({λ⊥
i }i, {χ

⊥
i }i, {ν

⊥
i }i) = ({λ̂⊥

i }i, {χ̂
⊥
i }i, {ν̂

⊥
i }i). In other words, we need to show that the

projection of the polytope defined by (35c), (35e) and (35g) on the variables ({λ⊥
i }i, {χ

⊥
i }i, {ν

⊥
i }i)

contains the point ({λ̂⊥
i }i, {χ̂

⊥
i }i, {ν̂

⊥
i }i). This, however, follows immediately from the fact that
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the class of closed convex polytopes is closed under projections [50, Theorem 19.3] and because

({λ̂⊥
i }i, {χ̂

⊥
i }i, {ν̂

⊥
i }i) is the limit of ({λ⊥

i (t)}i, {χ
⊥
i (t)}i, {χ

⊥
i (t)}i), which can be extended to a

feasible solution of (35) for each t ∈ N. Thus, (35) and, a fortiori, (6) are solvable.

Proof of Proposition 3. Let ({λi}i, {χi}i) be any optimal solution of (6), whose existence is

guaranteed by Proposition 2, and assume that λ0 > 0. For the sake of argument, assume further

that (8) is violated, that is, tj(x)
⊤χ0 ≥ λ0uj(x) for some j ∈ I. Next, define ({λ⋆

i }i, {χ
⋆
i }i) as

λ⋆
0 = 0, λ⋆

j = λ0 + λj , λ⋆
i = λi, i ∈ I, i ̸= j,

χ⋆
0 = 0, χ⋆

j = χ0 + χj , χ⋆
i = χi, i ∈ I, i ̸= j.

We show that ({λ⋆
i }i, {χ

⋆
i }i) is feasible in (6). Since ({λ⋆

i }i, {χ
⋆
i }i) adopts a smaller objective value

(i.e., λ⋆
0 = 0) than ({λi}i, {χi}i), this will contradict the optimality of ({λi}i, {χi}i).

Clearly, λ⋆
i ≥ 0 for all i ∈ I0, and we have

∑

i∈I0

λ⋆
i =

∑

i∈I0

λi = 1 and
∑

i∈I0

χ⋆
i =

∑

i∈I0

χi = µ.

Similarly, we find

∑

i∈I0

λ⋆
id

(

χ⋆
i

λ⋆
i

)

= (λ0 + λj)d

(

χ0 + χj

λ0 + λj

)

+
∑

i∈I:i ̸=j

λid

(

χi

λi

)

⪯D

∑

i∈I0

λid

(

χi

λi

)

⪯D σ,

where the first inequality follows from the D-convexity of the dispersion function d(ξ). Next, we

have χ⋆
0/λ

⋆
0 = 0/0 ∈ Ξ, which holds because Ξ is nonempty, and we have χ⋆

i /λ
⋆
i = χi/λi ∈ Ξ for

all i ∈ I : i ̸= j. The convexity of Ξ further implies that

χ⋆
j

λ⋆
j

=
χ0 + χj

λ0 + λj
=

λ0

λ0 + λj
·
χ0

λ0
+

λj

λ0 + λj
·
χj

λj
∈ Ξ.

Finally, it is easy to verify that

ti(x)
⊤χ⋆

i = ti(x)
⊤χi ≥ λiui(x) = λ⋆

iui(x) ∀i ∈ I : i ̸= j

and

tj(x)
⊤χ⋆

j = tj(x)
⊤(χ0 + χj) ≥ (λ0 + λj)uj(x) = λ⋆

juj(x),

where the inequality in the last expression follows from our assumption that tj(x)
⊤χ0 ≥ λ0uj(x).

Thus, ({λ⋆
i }i, {χ

⋆
i }i) is feasible in (6), which contradicts the optimality of ({λi}i, {χi}i). Therefore,

every optimal solution of (6) must satisfy (8).
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Proof of Lemma 1. By the definition of conjugacy, we have

(γ⊤d)⋆(ν) = sup
ξ∈Rk

{

ν⊤ξ − γ⊤d(ξ)
}

= sup
ξ∈Rk,η∈Rd

{

ν⊤ξ − γ⊤η : d(ξ) ⪯D η
}

= σepi(d)(ν,−γ),

where the epigraph reformulation in the second equality holds because γ ∈ D⋆.

Proof of Theorem 2. By Proposition 1 the worst-case probability problem on the left-hand side

of (PCC) is equivalent to (6). The conditions (D’), (S’) and (T) then imply that (6) simplifies to

minimize
λi,χi

λ0

subject to λi ∈ R+, χi ∈ Ξ, i ∈ I0
∑

i∈I0

λi = 1

∑

i∈I0

χi = µ

∑

i∈I0

d(χi) ⪯D σ

t⊤i χi ≥ λiui(x) ∀i ∈ I.

(36)

Similar techniques as in Proposition 1 show that the strong Lagrangian dual of (36) is

maximize
α,β,γ, τi

g(α,β,γ, {τi}i∈I)

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆, τi ∈ R+, i ∈ I,
(37)

where the dual objective function is representable as

g(α,β,γ, {τi}i∈I) = inf
λi∈R+,χi∈Ξ, i∈I0

λ0 + α
[

1−
∑

i∈I0

λi

]

+ β⊤
[

µ−
∑

i∈I0

χi

]

− γ⊤
[

σ −
∑

i∈I0

d(χi)
]

+
∑

i∈I

τi

[

λiui(x)− t
⊤
i χi

]

= α+ µ⊤β − σ⊤γ + inf
λ0∈R+

{

λ0(1− α)
}

+
∑

i∈I

inf
λi∈R+

{

λi(τiui(x)− α)
}

+ inf
χ0∈Ξ

{

γ⊤d(χ0)− β
⊤χ0

}

+
∑

i∈I

inf
χi∈Ξ

{

γ⊤d(χi)− β
⊤χi − τit

⊤
i χi

}

.
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The last expression can be further simplified by noting that

inf
χ0∈Ξ

{

γ⊤d(χ0)− β
⊤χ0

}

= − sup
χ0∈Rk

{

β⊤χ0 − γ
⊤d(χ0)− δΞ(χ0)

}

= − inf
ν0∈Rk

{

(γ⊤d)⋆(ν0) + σΞ(β − ν0)
}

= sup
ν0∈Rk

{

− σepi(d)(ν0,−γ)− σΞ(β − ν0)
}

,

where the second equality holds due to [51, Theorem 11.23(a)], whereby the conjugate function of

γ⊤d(χ0) + δΞ(χ0) is given by the inf-convolution of the conjugates of γ⊤d(χ0) and δΞ(χ0). The

third equality follows from Lemma 1. Similarly, one can show that

inf
χi∈Ξ

{

γ⊤d(χi)− β
⊤χi − τit

⊤
i χi

}

= sup
νi∈Rk

{

− σepi(d)(νi,−γ)− σΞ(β + τiti − νi)
}

for every i ∈ I. In summary, the dual problem (37) can thus be reformulated as

maximize
α,β,γ, τi,νi

α+ µ⊤β − σ⊤γ −
∑

i∈I0

σepi(d)(νi,−γ)− σΞ(β − ν0)−
∑

i∈I

σΞ(β + τiti − νi)

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆, τi ∈ R+, i ∈ I, νi ∈ Rk, i ∈ I0

α ≤ 1

α ≤ τiui(x) ∀i ∈ I.

By [51, Example 11.4(b)], the support function of any closed convex cone K coincides with the

indicator function of the negative dual (i.e., polar) cone −K⋆. As Ξ and epi(d) are closed convex

cones by assumptions (S’) and (D’), respectively, we thus conclude that σΞ(ν) = δΞ⋆(−ν) and

σepi(d)(ν) = δepi(d)⋆(−ν). Therefore, problem (37) simplifies to

maximize
α,β,γ, τi,νi

α+ µ⊤β − σ⊤γ

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆, τi ∈ R+, i ∈ I, νi ∈ Rk, i ∈ I0

ν0 − β ∈ Ξ⋆

νi − β − τiti ∈ Ξ⋆ ∀i ∈ I

(−νi,γ) ∈ epi(d)⋆ ∀i ∈ I0

α ≤ 1

α ≤ τiui(x) ∀i ∈ I.

(38)

Note that the variable λ0 in the primal problem (36) is the Lagrange multiplier of the constraint

α ≤ 1 in the dual problem (38). By complementary slackness, which applies because both (36) and
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(38) are solvable,3 any pair of optimal primal and dual solutions must satisfy λ0(1−α) = 0. As λ0

also constitutes the objective function of (36), we have that α = 1 whenever the two optimization

problems have a strictly positive optimal value.

Consider now a restriction of problem (38) with the additional constraint α = 1. By the above

discussion, the restricted problem shares the common optimal value of (36) and (38) whenever

this value is strictly positive. However, as ϵ < 1 by assumption, the chance constraint (PCC) is

infeasible for any x associated with a zero worst-case probability. We may thus set α = 1 at no

loss. This gives rise to the hyperbolic constraints 1 ≤ τiui(x), i ∈ I, which can be reformulated as

explicit second-order cone constraints.4 The claim then follows from the observation that (PCC)

is satisfied whenever (38) has a feasible solution whose objective value exceeds 1− ϵ.

Proof of Lemma 2. The ‘only if’ direction is immediate. As for the ‘if’ direction, fix a fractional

vector y as described in the statement and let y′ be the closest binary vector, that is, y′j := 1 if

yj ≥ 1−κ; := 0 if yj ≤ κ. We then observe that
∑

j Aijy
′
j ≤

∑

j Aijyj+
∑

j |Aij |κ <
∑

j Aijyj+1 ≤

bi+1 for all i = 1, . . . ,m. Due to the integrality of A, y′ and b, we thus conclude that Ay′ ≤ b.

Proof of Lemma 3. We first argue that the worst-case probability on the left-hand side of the

chance constraint in (10) is identical for all x ∈ {−1, 1}n. To see this, choose any x,x′ ∈ {−1, 1}n.

Then for any P ∈ P, we have

P

(

−3e < x+ ξ̃ < 3e
)

= Q

(

−3e < x′ + ξ̃ < 3e
)

for the distribution Q ∈ P that satisfies Q(ξ̃ ∈ A) = P(f(ξ̃) ∈ A) for all Borel-measurable sets

A ⊆ Rn, where f : Rn → Rn is defined through fi(ξ) = ξi if xi = x′i; = −ξi otherwise. Thus, in

the remainder of the proof we assume without loss of generality that x = −e, in which case the

worst-case probability on the left-hand side of the chance constraint in (10) simplifies to

inf
P∈P

P

(

−2e < ξ̃ < 4e
)

.

From the proof of Theorem 1 we know that this expression equals the optimal value of the problem

3We stress that (36) is solvable by Proposition 1. One can show that its dual (38) is also solvable.
4Note that by the nonnegativity of τi, the constraint 1 ≤ τiui(x) is only satisfiable if τi > 0 as well as ui(x) > 0.
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maximize
α,β,γ, ζ

α−
4(ϵ− δ)

n
γ⊤e−

δ2

n
ζ⊤e

subject to α ∈ R, β ∈ Rn, γ, ζ ∈ Rn
+

α+ β⊤ξ − γ⊤|ξ| − ζ⊤d(ξ) ≤ 1 ∀ξ ∈ Rn

α+ β⊤ξ − γ⊤|ξ| − ζ⊤d(ξ) ≤ 0 ∀i ∈ I, ∀ξ ∈ Rn : ξi ≥ 4

α+ β⊤ξ − γ⊤|ξ| − ζ⊤d(ξ) ≤ 0 ∀i ∈ I, ∀ξ ∈ Rn : ξi ≤ −2

(39)

We now show that α = 1, β = γ = e/4 and ζ = e/δ is feasible in problem (39). The statement of

the lemma then follows since this solution attains the objective value 1− ϵ in (39).

For the postulated solution (α,β,γ, ζ), the function α + β⊤ξ − γ⊤|ξ| − ζ⊤d(ξ) appearing on

the left-hand sides of the constraints in (39) satisfies

α+ β⊤ξ − γ⊤|ξ| − ζ⊤d(ξ) = 1 +
1

4
e⊤(ξ − |ξ|)−

1

δ
e⊤max {ξ − (4− δ)e, 0, −ξ − (4− δ)e} .

Over Rn, this function attains its maximum value of 1 at any point ξ⋆ ∈ [0, 4 − δ]n. Hence,

(α,β,γ, ζ) satisfies the first semi-infinite constraint in (39).

In view of the second semi-infinite constraint in (39), we observe that for each i ∈ I, we have

max
ξ

{

1 + 1
4e

⊤(ξ − |ξ|)− 1
δe

⊤max {ξ − (4− δ)e, 0, −ξ − (4− δ)e} : ξ ∈ Rn, ξi ≥ 4
}

≤ min
τ, θ,η,φ,ψ



















1 + (4− δ)e⊤(φ+ψ)− 4τ :

τ ∈ R+, θ,η,φ,ψ ∈ Rn
+

e/4− φ+ψ + τei = θ − η

θ + η = e/4, φ+ψ ≤ e/δ



















due to weak LP duality. The minimum on the right-hand side of the second inequality is nonpositive

since τ = 1/δ, θ = e/4, η = 0, φ = ei/δ and ψ = 0 is feasible in the minimization problem and

attains an objective value of 0.

Applying the same argument to the third semi-infinite constraint in (39), we observe that the

i-th constraint, i ∈ I, is satisfied whenever

min
τ,θ,η,φ,ψ



















1 + (4− δ)e⊤(φ+ψ)− 2τ :

τ ∈ R+, θ,η,φ,ψ ∈ Rn
+

e/4− φ+ψ − τei = θ − η

θ + η = e/4, φ+ψ ≤ e/δ



















is nonpositive, which holds since τ = 1/2, θ = (e− ei)/4, η = ei/4, φ = 0 and ψ = 0 is feasible in

the minimization problem and attains an objective value of 0.
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Proof of Lemma 4. We denote by J (x) = {i ∈ {1, . . . , n} : xi ∈ [−1,−1 + δ) ∪ (1 − δ, 1]} the

components of x that are close to −1 or 1, and we consider the distribution P⋆ defined by

P⋆(ξ̃ = ξ) =



































































ϕ for ξ = ϕ

2(ϵ− δ)

n(3 + xi)
for ξ = (−3− xi)ei ∀i ∈ I

(xi + 1)ϵ+ 2δ

n(3 + xi)
for ξ = (3− xi)ei ∀i ∈ I

2(ϵ− δ)(3− xi)

9n
for ξ = (−3− xi)ei ∀i ∈ I \ J (x)

2(ϵ− δ)(3 + xi)

9n
for ξ = (3− xi)ei ∀i ∈ I \ J (x),

(40)

where ϕ = 1− |J (x)| ϵn − (n− |J (x)|)4(ϵ−δ)
3n and the components of ϕ satisfy

φi =
12(ϵ− δ) + ϵ(x2i − 9)

ϕn(3 + xi)

if i ∈ J (x); = 0 otherwise. By construction, we have P⋆ ∈ P and

P⋆
(

−3e < x+ ξ̃ < 3e
)

= ϕ

since the realizations ξ ∈ {(−3 − x1)e1, (3 − x1)e1, . . . , (−3 − xn)en, (3 − xn)en} all violate the

constraints inside the probability expression. The assumption that δ ≤ ϵ
8 , however, implies that

ϵ
n < 4(ϵ−δ)

3n and therefore ϕ < 1− ϵ, which concludes the proof.

Proof of Theorem 3. We set δ = min
{

ϵ
8 , 2κ

}

in the definition of the ambiguity set (11), where

κ is chosen as prescribed by Lemma 2. We show that problem (10) is feasible if and only if the IP

Feasibility problem has an affirmative answer.

Assume first that there is z ∈ {0, 1}n with Az ≤ b. Lemma 3 then implies that the chance

constraint in (10) is satisfied by x = 2z − e, that is, problem (10) is feasible.

Assume now that there is no binary solution to the IP feasibility problem. Lemma 2 then

implies that there is no z ∈ ([0, κ] ∪ [1 − κ, 1])n that satisfies Az ≤ b. For any other solution

z ∈ [0, 1]n \ ([0, κ] ∪ [1 − κ, 1])n, however, Lemma 4 implies that x = 2z − e violates the chance

constraint in (10). We thus conclude that problem (10) is infeasible.
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Proof of Lemma 5. The feasible region of the safety condition in (14) is monotonically increasing

in the realizations of ξ̃ with respect to set inclusion. Thus, the worst-case probability in (14) does

not change if we increase the ambiguity set P in (13) to

P ′ =

{

P ∈ P0([−1, 3]
2n) : EP[ξ̃] ≥

(

3−
2ϵ

n

)

e

}

,

where we have relaxed the expectation constraint to an inequality. For the new ambiguity set P ′,

similar arguments as in the proof of Theorem 1 show that the worst-case probability in (14) affords

the semi-infinite dual formulation

maximize
α,β

α+

(

3−
2ϵ

n

)

e⊤β

subject to α ∈ R, β ∈ R2n
+

α+ ξ⊤β ≤ 1 ∀ξ ∈ Ξ

α+ ξ⊤β ≤ 0 ∀i ∈ I, ∀ξ ∈ Ξ : ξi < xi

α+ ξ⊤β ≤ 0 ∀i ∈ I, ∀ξ ∈ Ξ : ξn+i < −xi,

where Ξ = [−1, 3]2n. Note that the second constraint vanishes whenever xi = −1, and a continuity

argument allows us to replace the strict inequality with a weak one whenever xi > −1. Likewise,

the third constraint vanishes whenever xi = 1, and we can replace the strict inequality with a weak

one whenever xi < 1. The worst-case probability in (14) is thus equivalent to

maximize
α,β

α+

(

3−
2ϵ

n

)

e⊤β

subject to α ∈ R, β ∈ R2n
+

α+ ξ⊤β ≤ 1 ∀ξ ∈ Ξ

α+ ξ⊤β ≤ 0 ∀i ∈ I(x), ∀ξ ∈ Ξ : ξi ≤ xi

α+ ξ⊤β ≤ 0 ∀i ∈ I(x), ∀ξ ∈ Ξ : ξn+i ≤ −xi,

where we have introduced the shorthand notations I(x) = {i ∈ {1, . . . , n} : xi > −1} and I(x) =

{i ∈ {1, . . . , n} : xi < 1} for x ∈ [−1, 1]n. Since β ≥ 0, we can replace each semi-infinite constraint
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with a single constraint where ξ attains its component-wise largest value:

maximize
α,β

α+

(

3−
2ϵ

n

)

e⊤β

subject to α ∈ R, β ∈ R2n
+

α+ 3e⊤β ≤ 1

α+ 3e⊤β − (3− xi)βi ≤ 0 ∀i ∈ I(x)

α+ 3e⊤β − (3 + xi)βn+i ≤ 0 ∀i ∈ I(x)

(41)

As in the proof of Theorem 2 we can employ a complementary slackness argument to conclude that

either the optimal value of (41) is 0 or the first constraint in (41) is binding. In the second case,

we can replace α with 1− 3e⊤β to obtain the equivalent reformulation

maximize
β

1−
2ϵ

n
· e⊤β

subject to β ∈ R2n
+

1/(3− xi) ≤ βi ∀i ∈ I(x)

1/(3 + xi) ≤ βn+i ∀i ∈ I(x).

Since the objective function is strictly monotonically decreasing in β, this problem has the optimal

solution β⋆
i = 1/(3 − xi) if i ∈ I(x); = 1/(3 + xi) if i ∈ I(x); = 0 otherwise. In summary, the

optimal value of (41) is given by the maximum of 0 and

1−
2ϵ

n





∑

i∈I(x)

1

3− xi
+
∑

i∈I(x)

1

3 + xi



 ,

which concludes the proof.

The proof of Theorem 4 relies on the following auxiliary result, which we prove first.

Lemma 9. For any instance of the pessimistic chance constrained program (2), x ∈ X satisfies

inf
P∈P

P
[

T (x)ξ̃ < u(x) + ye
]

≥ 1− ϵ ∀y > 0

⇐⇒ inf
P∈P

P
[

T (x)ξ̃ ≤ u(x) + ye
]

≥ 1− ϵ ∀y > 0 (42)

⇐⇒ inf
P∈P

P
[

T (x)ξ̃ ≤ u(x)
]

≥ 1− ϵ.

Proof. One readily verifies the first equivalence in (42). To prove the second equivalence, we

show that the mapping y 7→ infP∈P P
[

T (x)ξ̃ − u(x) ≤ ye
]

is right-continuous. Note that the
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related mapping y 7→ P
[

T (x)ξ̃−u(x) ≤ ye
]

, which can be interpreted as the distribution function

of the random variable maxi {ti(x)
⊤ξ̃ − ui(x)}, is both right-continuous and non-decreasing, and

is thus upper semicontinuous. Since the infimum over P ∈ P preserves monotonicity and upper

semicontinuity, the mapping y 7→ infP∈P P
[

T (x)ξ̃ − u(x) ≤ ye
]

is indeed right-continuous.

Proof of Theorem 4. We show that the optimal value of problem (12) is zero if and only if the

IP Feasibility problem has an affirmative answer. To this end, suppose that there is z ∈ {0, 1}n

with Az ≤ b. We have that x = 2z − e ∈ {−1, 1}n, A(x+ e)/2 ≤ b, and Lemma 5 implies that

inf
P∈P

P

(

−ξ̃n+i ≤ xi ≤ ξ̃i ∀i = 1, . . . , n
)

≥ 1− ϵ.

Lemma 9 then allows us to conclude that (x, y) is feasible in (12) for any y > 0, that is, the optimal

value of (12) is zero. Assume now that problem (12) has a feasible solution x that achieves an

objective value of zero, that is, for all y > 0, we have

inf
P∈P

P

(

−ξ̃n+i − y < xi < ξ̃i + y ∀i = 1, . . . , n
)

≥ 1− ϵ.

Lemma 9 then implies that

inf
P∈P

P

(

−ξ̃n+i ≤ xi ≤ ξ̃i ∀i = 1, . . . , n
)

≥ 1− ϵ,

and Lemma 5 allows us to conclude that x ∈ {−1, 1}n. Since A(x + e)/2 ≤ b by construction,

z = (x+ e)/2 is binary and satisfies Az ≤ b, that is, it solves the IP Feasibility problem.

Proof of Lemma 6. The proof of Theorem 1 implies that the worst-case probability on the

left-hand side of (17) equals the optimal value of the nonconvex optimization problem

minimize
λ0, λ

+

i
, λ0

i
, ξ0,ξ

+

i
, ξ−

i

λ0

subject to λ0 ∈ R+, λ+
i ∈ R+, i ∈ I

+(x), λ−
i ∈ R+, i ∈ I

−(x)

ξ0 ∈ R2n, ξ+i ∈ R2n, i ∈ I+(x), ξ−i ∈ R2n, i ∈ I−(x)

λ0 +
∑

i∈I+(x)

λ+
i +

∑

i∈I−(x)

λ−
i = 1

λ0ξ0 +
∑

i∈I+(x)

λ+
i ξ

+
i +

∑

i∈I−(x)

λ−
i ξ

−
i = 0

λ0 |ξ0|+
∑

i∈I+(x)

λ+
i

∣

∣ξ+i
∣

∣+
∑

i∈I−(x)

λ−
i

∣

∣ξ−i
∣

∣ ≤
2ϵ

n
e

ξ+i,i + 1 ≤ 0, i ∈ I+(x), ξ−i,n+i + 1 ≤ 0, i ∈ I−(x),

(43)
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where I+(x) = {i ∈ {1, . . . , n} : xi > 0} and I−(x) = {i ∈ {1, . . . , n} : xi < 1}. Performing the

substitutions ξ0 ← ξ0 − e, ξ+i ← ξ+i − e, and ξ−i ← ξ−i − e, we obtain the equivalent problem

minimize
λ0, λ

+

i
, λ0

i
, ξ0,ξ

+

i
, ξ−

i

λ0

subject to λ0 ∈ R+, λ+
i ∈ R+, i ∈ I

+(x), λ−
i ∈ R+, i ∈ I

−(x)

ξ0 ∈ R2n, ξ+i ∈ R2n, i ∈ I+(x), ξ−i ∈ R2n, i ∈ I−(x)

λ0 +
∑

i∈I+(x)

λ+
i +

∑

i∈I−(x)

λ−
i = 1

λ0ξ0 +
∑

i∈I+(x)

λ+
i ξ

+
i +

∑

i∈I−(x)

λ−
i ξ

−
i = e

λ0 |ξ0 − e|+
∑

i∈I+(x)

λ+
i

∣

∣ξ+i − e
∣

∣+
∑

i∈I−(x)

λ−
i

∣

∣ξ−i − e
∣

∣ ≤
2ϵ

n
e

ξ+i,i ≤ 0, i ∈ I+(x), ξ−i,n+i ≤ 0, i ∈ I−(x),

(44)

The third constraint line in (44) implies that the objective value of (44) decreases when any

of the components of λ+ or λ− increases. Moreover, we argue that every feasible solution to (44)

satisfies λ+
i ≤ ϵ/n, i ∈ I+(x), and λ−

i ≤ ϵ/n, i ∈ I−(x). Indeed, assume to the contrary that

λ+
i > ϵ/n for some i ∈ I+(x). As ξ+i,i ≤ 0, the fifth constraint line in (44) then implies that

λ0 |ξ0,i − 1|+
∑

j∈I+(x),
j ̸=i

λ+
j

∣

∣

∣
ξ+j,i − 1

∣

∣

∣
+

∑

j∈I−(x)

λ−
j

∣

∣

∣
ξ−j,i − 1

∣

∣

∣
≤

2ϵ

n
− λ+

i

=⇒ λ0 (ξ0,i − 1) +
∑

j∈I+(x),
j ̸=i

λ+
j

(

ξ+j,i − 1
)

+
∑

j∈I−(x)

λ−
j

(

ξ−j,i − 1
)

≤
2ϵ

n
− λ+

i

⇐⇒ λ0ξ0,i +
∑

j∈I+(x),
j ̸=i

λ+
j ξ

+
j,i +

∑

j∈I−(x)

λ−
j ξ

−
j,i ≤ 1 +

2ϵ

n
− 2λ+

i

If λ+
i > ϵ/n, however, this implies that the fourth constraint line in (44) is violated since λ+

i ξ
+
i,i ≤ 0.

Since a similar argument can be constructed for the case where λ−
i > ϵ/n, we conclude that every

feasible solution to problem (44) indeed satisfies λ+
i ≤ ϵ/n and λ−

i ≤ ϵ/n.

One readily verifies that the solution










































(λ+
i , ξ

+
i ) = (

ϵ

n
, e− ei) if xi = 1,

(λ−
i , ξ

−
i ) = (

ϵ

n
, e− en+i) if xi = 0,

(λ+
i , ξ

+
i ) = (

ϵ

n
, e− ei + en+i),

(λ−
i , ξ

−
i ) = (

ϵ

n
, e− en+i + ei)











if xi ∈ (0, 1),
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as well as λ0 = 1− ϵ
n(|I

+(x)|+ |I−(x)|) and

ξ0 = e+
ϵ

nλ0





∑

i∈I+(x)\I−(x)

ei +
∑

i∈I−(x)\I+(x)

en+i





is feasible in (44). Our previous discussion implies that this solution is indeed optimal, and the

value of λ0 coincides with the expression on the right-hand side of (17).

Proof of Theorem 5. As in the proof of Theorem 4, we show that the optimal value of

problem (15) is zero if and only if the IP Feasibility problem has an affirmative answer. To this

end, suppose that there is z ∈ {0, 1}n with Az ≤ b. In that case, Lemma 6 implies that

inf
P∈P

P

(

(ξ̃i + 1)xi ≥ 0, (ξ̃n+i + 1)(1− xi) ≥ 0 ∀i = 1, . . . , n
)

≥ 1− ϵ.

Lemma 9 then allows us to conclude that (x, y) is feasible in (15) for any y > 0, that is, the optimal

value of (15) is zero. Assume now that problem (15) has a feasible solution x that achieves an

objective value of zero, that is, we have

inf
P∈P

P

(

(ξ̃i + 1)xi + y > 0, (ξ̃n+i + 1)(1− xi) + y > 0 ∀i = 1, . . . , n
)

≥ 1− ϵ

for all y > 0. Lemma 9 then implies that

inf
P∈P

P

(

(ξ̃i + 1)xi ≥ 0, (ξ̃n+i + 1)(1− xi) ≥ 0 ∀i = 1, . . . , n
)

≥ 1− ϵ,

and Lemma 6 allows us to conclude that x ∈ {0, 1}n. Since Ax ≤ b by construction, x solves the

IP Feasibility problem.

Proof of Theorem 6. As in the proof of Theorem 1, the best-case probability in (OCC) can

be expressed as the optimal value of a moment problem, whose dual semi-infinite linear program

is representable as

minimize
α,β,γ

α+ µ⊤β + σ⊤γ

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆

α+ ξ⊤β + d(ξ)⊤γ ≥ I[T (x)ξ<u(x)] ∀ξ ∈ Ξ.

(45)

Strong duality holds due to the assumptions (A) and (D), and thus the optimal value of (45)

coincides with the best-case probability in (OCC). By decomposing the indicator function in the
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semi-infinite constraint, (45) can be reformulated as

minimize
α,β,γ

α+ µ⊤β + σ⊤γ

subject to α ∈ R, β ∈ Rk, γ ∈ D⋆

α+ ξ⊤0 β + d(ξ0)
⊤γ ≥ 1 ∀ξ0 ∈ Ξ0(x)

α+ ξ⊤1 β + d(ξ1)
⊤γ ≥ 0 ∀ξ1 ∈ Ξ1(x),

(46)

where Ξ0(x) = {ξ ∈ Ξ : T (x)ξ < u(x)} and Ξ1(x) = Ξ. Note that Ξ0(x) is nonempty by

assumption. As γ ∈ D⋆ and d(ξ) is D-convex by assumption (D), α + ξ⊤0 β − d(ξ0)
⊤γ is concave

in ξ [11, p. 110] and, a fortiori, continuous [50, Theorem 10.1]. We can therefore replace Ξ0(x) in

problem (46) with its closure cl Ξ0(x) = {ξ ∈ Ξ : T (x)ξ ≤ u(x)}. As in the proof of Theorem 1, we

may then interpret (46) as the robust counterpart of an uncertain convex program with constraint-

wise uncertainty, which is solved by a decision maker choosing α, β and γ under the worst possible

data ξi, i ∈ {0, 1}. By [2, Theorem 4.1], this problem is equivalent to the dual of the uncertain

convex program where the decision maker operates under the best possible data.5 Thus, (46)

reduces to

maximize
λi, ξi

λ0

subject to λi ∈ R+, i ∈ {0, 1}, ξ0 ∈ cl Ξ0(x), ξ1 ∈ Ξ1(x)
∑

i∈{0,1}

λi = 1

∑

i∈{0,1}

λiξi = µ

∑

i∈{0,1}

λid(ξi) ⪯D σ,

(47)

which is evidently equivalent to (18).

Lemma 10. If there is ξ ∈ Ξ with T (x)ξ < u(x), then (20) admits a Slater-type point ({λ′
i}i, {χ

′
i}i),

that is, a feasible point that satisfies all nonnegativity constraints strictly.

Proof of Lemma 10. We set λ′
0 = κ and λ′

1 = 1−κ for some κ ∈ (0, 1). Next, we set χ′
0 = λ′

0ξ0

for any ξ0 ∈ Ξ that satisfies T (x)ξ0 ≤ u(x), as well as χ
′
1 = µ− χ′

0. For κ sufficiently small, (A)

5As the best-case probability in (OCC) must lie in the interval [0, 1], one can show that the equivalence of (46)

and (47) holds even for unbounded uncertainty sets.
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and (D) imply that χ′
1/λ

′
1 ∈ Ξ (since µ ∈ int Ξ) and

∑

i∈{0,1} λ
′
id(χ

′
i/λ

′
i) ⪯D σ (since d (µ) ≺D σ

and d is continuous). Moreover, ({λ′
i}i, {χ

′
i}i) satisfies the other constraints by construction.

Proof of Proposition 4. For any feasible solution ({λi}i, {ξi}i) to problem (18), the solution

({λi}i, {χi}i) with χi = λiξi, i ∈ {0, 1}, is feasible in (20) and attains the same objective value. We

thus conclude that the optimal value of (20) gives an upper bound on the optimal value of (18).

We now show that the optimal value of (20) also provides a lower bound on the optimal value

of (18). Lemma 10 implies that (20) admits a Slater-type point ({λ′
i}i, {χ

′
i}i). Since (20) is convex,

we can construct convex combinations of ({λ′
i}i, {χ

′
i}i) and an optimal solution to (20) to generate a

sequence of feasible solutions ({λk
i }i, {χ

k
i }i)k that converge to the optimal solution and that satisfy

λk
i > 0, i ∈ {0, 1}. The corresponding solutions ({λk

i }i, {ξ
k
i }i) with ξ

k
i = χk

i /λ
k
i are feasible in (18)

and attain the same objective values, which concludes the proof.

Proof of Proposition 5. The proof widely parallels that of Proposition 2 and is therefore

omitted.

Proof of Proposition 6. Let ({λi}i, {χi}i) be any optimal solution of (20), whose existence is

guaranteed by Proposition 5. As the supremum of (20) is strictly smaller than 1, we have λ0 < 1.

For the sake of argument, assume that (22) is violated, that is, T (x)χ1 < λ1u(x). Next, define

λ⋆
0 = 1, λ⋆

1 = 0, χ⋆
0 = µ and χ⋆

1 = 0. We show that ({λ⋆
i }i, {χ

⋆
i }i) is feasible in (20). Since λ⋆

0 = 1,

this solution would achieve a strictly larger objective value than ({λi}i, {χi}i), which contradicts

the optimality of ({λi}i, {χi}i). Clearly, λ⋆
0 and λ⋆

1 are nonnegative and sum to 1. Moreover, we

have χ⋆
0 + χ

⋆
1 = µ, and assumption (A) implies that

∑

i∈{0,1} λ
⋆
id
(

χ⋆

i

λ⋆

i

)

= d(µ) ⪯D σ. Next, we

have χ⋆
0/λ

⋆
0 = µ ∈ Ξ, which holds again by assumption (A), and we have χ⋆

1/λ
⋆
1 = 0/0 ∈ Ξ, which

holds because Ξ is nonempty. Finally, we have

T (x)χ⋆
0 = T (x)(χ0 + χ1) < (λ0 + λ1)u(x) = λ⋆

0u(x)

where the first equality holds as χ0 + χ1 = µ, while the inequality follows from the feasibility of

({λi}i, {χi}i) in (20) and our assumption that T (x)χ1 < λ1u(x).

Proof of Theorem 7. We may assume that there exists ξ ∈ Ξ with Tξ < u(x). Otherwise, both

(23) and the best-case chance constraint (OCC) are infeasible and therefore trivially equivalent.
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By Proposition 4, the best-case probability on the left-hand side of (OCC) is given by the

optimal value of the maximization problem (20). The chance constraint (OCC) thus holds if and

only if there exist λi ∈ R+ and χi ∈ Rk, i ∈ {0, 1}, with

λ0 ≥ 1− ϵ,
∑

i∈{0,1}

λi = 1

Tχ0 ≤ λ0u(x),
χi

λi
∈ Ξ, i ∈ {0, 1}

∑

i∈{0,1}

χi = µ, λ0d

(

χ0

λ0

)

+ λ1d

(

χ1

λ1

)

⪯D σ.

As any feasible λ0 is strictly positive, the above constraint system is equivalent to

1 ≤
1

λ0
≤

1

1− ϵ
, T

χ0

λ0
≤ u(x)

χ0

λ0
∈ Ξ,

χ1

1− λ0
∈ Ξ

∑

i∈{0,1}

χi

λ0
=
µ

λ0
, d

(

χ0

λ0

)

+
1− λ0

λ0
d

(

χ1

1− λ0

)

⪯D
σ

λ0
.

The claim then follows from the variable substitution λ← 1−λ0

λ0
, ξ0 ←

χ0

λ0
and ξ1 ←

χ1

λ0
.

Proof of Theorem 8. We show that (25) is feasible if and only if the IP Feasibility problem

has an affirmative answer. To this end, assume first that there is y ∈ {0, 1}n such that Ay ≤ b. In

this case, x = 2y− e and P ∈ P defined through P(ξ̃ = x) = P(ξ̃ = −x) = 1/2 are feasible in (25).

Assume now that there is no binary solution to the IP Feasibility problem. This implies that

any x ∈ [−1, 1]n satisfying A(x + e)/2 ≤ b must satisfy xi ∈ (−1 + 2κ, 1 − 2κ) for at least one

i ∈ {1, . . . , n}. Any such choice of x violates the chance constraint in (25), however, since every

realization ξ ∈ [−1, 1]n of the random vector ξ̃ satisfies ξ⊤x < (n− 1) + (1− 2κ) = n− 2κ.
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