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This paper describes a magnetic nozzle with a magnetic mirror configuration that transforms a
collisionless subsonic plasma flow into a supersonic jet expanding into the vacuum. The nozzle
converts electron thermal energy into the ion kinetic energy via an ambipolar electric field. The
ambipolar potential in the expanding plume involves a time-dependent rarefaction wave. Travelling
through the rarefaction wave, electrons lose some kinetic energy and can become trapped
downstream from the mirror throat. This work presents a rigorous adiabatic description of the
trapped electron population. It examines the impact of the adiabatic cooling of the trapped electrons
on the ambipolar potential and the ensuing ion acceleration. The problem is formulated for an
arbitrary incoming electron distribution and then a “water-bag” electron distribution is used to
obtain a closed-form analytical solution. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2907786$

I. INTRODUCTION

Supersonic plasma jets for space-propulsion ap-
plications1,2 can be produced in a magnetic nozzle with a
converging-diverging applied magnetic field !magnetic
mirror".3 The converging part of the nozzle accelerates an
incoming subsonic flow, supplied by a plasma source, to the
sonic speed. The flow becomes sonic at the nozzle throat,
after which the acceleration continues in the diverging part
of the nozzle. In this way, the magnetic plasma nozzle is
similar to the conventional gas dynamic de Laval nozzle.4

As the flow velocity increases downstream, the plasma
density drops and the electron mean free path with respect to
electron-electron collisions increases. If the mean free path is
much shorter than the nozzle, then the electrons are in a
highly collisional regime. In this case, the electron distribu-
tion function is nearly Maxwellian and a fluid description
fully applies.5,6 The opposite case of a long mean free path
requires a kinetic description.

In the case of cold incoming ions and hot electrons, the
magnetic nozzle converts the electron thermal energy into
kinetic energy of the ion motion along the magnetic field
lines. The process involves an ambipolar electric field that
balances an electron pressure gradient. The ambipolar field
impedes electron motion in the downstream direction main-
taining plasma quasineutrality. At the same time, it acceler-
ates plasma ions pulling them downstream.

An interesting feature of the kinetic regime is that the
magnetic mirror can limit direct access of electrons coming
from the plasma source to certain areas of phase space in the
downstream flow. Some electron trajectories that start up-
stream from the mirror return to the plasma source before
they reach the mirror throat. Likewise, there are electron tra-
jectories that always stay on the other side of the magnetic
mirror. These trajectories correspond to electrons trapped
downstream and, therefore, they are not directly accessible to
the electrons produced by the source. This indicates that the
corresponding areas of phase space may become depleted.

In plasma confinement systems, such as mirror ma-

chines, the directly inaccessible trajectories can be repopu-
lated due to Coulomb collisions even in the kinetic regime.7,8

The nearly steady-state plasma flow between the mirror and
the end wall has a much longer time scale than the time
between the collisions. This gives the collisions enough time
to generate a population of trapped electrons downstream
from the mirror.

In this paper, we address a different purely collisionless
mechanism of electron trapping that might play an important
role in plasma space applications such as plasma thrusters.1,2

The key difference between a space thruster and a laboratory
mirror machine is that a thruster produces a freely expanding
plasma flow. On the other hand, a mirror machine has an end
wall that creates a Debye sheath. The sheath reflects most of
the incident electrons to keep the electron and ion fluxes to
the wall equal. As a result, the wall enables the plasma elec-
trons to establish a steady-state ambipolar potential profile
inside the machine, with a steady-state sheath at the wall. In
contrast, the ambipolar potential in an expanding plume
ejected by a thruster is necessarily time-dependent. Its profile
usually consists of two parts in the case of a supersonic flow:
a steady-state part adjacent to the thruster and a rarefaction
wave at the periphery.

The rarefaction wave accommodates a part of the total
potential drop needed to keep electrons and ions together.
Bouncing back and forth along the magnetic field lines, some
electrons travel through both the steady-state area and the
rarefaction wave. These electrons lose a part of their kinetic
energy associated with the motion along the field lines while
moving in the time-dependent field of the wave. The energy
loss is entirely due to the fact that the whole wave structure
is moving away from the thruster. As a result of the energy
losses, electrons can become trapped downstream from the
magnetic mirror. Once trapped, they cool down via the same
mechanism, filling up the areas of phase space that would be
inaccessible otherwise. The cooling is essentially adiabatic
because the electron motion is much faster than the time
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evolution of the electrostatic potential !the latter is deter-
mined by the ion motion".

In this work, we present an accurate adiabatic descrip-
tion of the trapped electron population. We also examine the
impact of the adiabatic cooling on the profile of the ambipo-
lar potential and the ensuing ion acceleration. This problem
can be formulated for an arbitrary distribution function of
incoming electrons. However, in order to make the problem
fully tractable analytically, we consider an incoming “water-
bag” electron distribution.

The rest of the paper is organized as follows: Sec. II
presents the main assumptions and key qualitative features of
the model. Section III formulates the governing equations for
an arbitrary distribution function of incoming electrons. In
Sec. IV, we limit our consideration to a flow with a water-bag
distribution of the incoming electrons and construct a rigor-
ous analytical solution. Finally, Sec. V summarizes the re-
sults and gives concluding remarks.

II. QUALITATIVE PICTURE

We consider a collisionless plasma flow through an axi-
symmetric magnetic nozzle. The nozzle magnetic field is
shown schematically in Fig. 1. We assume that a plasma
source at the nozzle entrance creates a subsonic incoming
flow. Instead of modeling the source explicitly, we simulate
it by specifying time-independent distribution functions of
incoming ions and electrons.

The plasma flow is governed by the guiding magnetic
field and the ambipolar electric field. We simplify the flow
description by assuming that the plasma ions are cold and
that the flow is paraxial. The first assumption allows us to
neglect the ion gyromotion. The second assumption allows
us to treat the ambipolar electric field as being parallel to the
magnetic field, making the problem effectively one-
dimensional.

We seek a solution in which the ions accelerate progres-
sively along the magnetic field lines. This implies that the
ambipolar potential ! is a monotonically decreasing function
of the axial coordinate z. Time evolution of the ambipolar
potential is determined by the ion motion. Since the electron
motion along the magnetic field lines is much faster than the
ion motion, we regard the time evolution of ! as adiabatic in
the context of electron dynamics.

The energy of electrons moving in this time-dependent
potential is not conserved, because of a small energy loss
that occurs during their motion through the rarefaction wave.
The plasma source restores the energy of the returning elec-
trons, but the trapped electrons are decoupled from the
source and undergo the adiabatic cooling. The number of
trapped electrons grows in time as the plasma continues to
expand downstream and new incoming electrons become
trapped.

Based on this picture, we use two different approxima-
tions for passing and trapped electrons. For passing electrons
!those that return to the plasma source", we neglect the en-
ergy losses and treat them as if they were moving in a
steady-state potential. The energy of a passing electron is
then conserved in our model. For trapped electrons !those
that bounce between the mirror and the rarefaction wave",
the energy decreases with time, but the adiabatic invariant
associated with the longitudinal motion remains conserved.

In addition to the aforementioned conservation laws, the
magnetic moment of every electron is also conserved. It is
then convenient to present the energy " of an electron in the
form,

" = 1
2mev%

2 + Ueff, !1"

where

Ueff & #B!z" − 'e'!!z;t" , !2"

is an effective potential for one-dimensional motion along
the magnetic field and

# =
mev!

2

2B
!3"

is the magnetic moment. In Eqs. !1"–!3", me is the electron
mass, e is the electron charge, and v% and v! are the compo-
nents of the electron velocity parallel and perpendicular to
the magnetic field B. The magnetic field term in Eq. !2"
accounts for the conversion of electron gyromotion into lon-
gitudinal motion in a nonuniform magnetic field.

Upstream from the mirror, the effective potential in-
creases monotonically along the flow !#Ueff /#z$0" for all
values of #, because #B /#z$0. Downstream from the mir-
ror, the effective potential remains monotonically increasing
for sufficiently small values of #. However, it is nonmono-
tonic and has a local maximum !a peak" for large values of #
because of the decreasing magnetic term in Eq. !2". The lo-
cation of the maximum z* depends on # and it is determined
by the conditions Ueff! !z* ,#"=0 and Ueff" !z* ,#"%0. For a
given magnetic moment, only electrons with "$Ueff!z* ,#"
can travel over the peak. It then follows that downstream
from the peak the areas of phase space with Ueff!z* ,#"$"
&Ueff!z ,#" are inaccessible to passing electrons with mag-
netic moment #.

In order to illustrate how an incoming electron becomes
trapped downstream from the magnetic mirror, we consider
an electron with magnetic moment # moving in an effective
potential Ueff shown in Fig. 2. This structure of Ueff is typical
to a supersonic flow, as it has a steady-state part and a time
evolving part !a barrier" that is moving away downstream.
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FIG. 1. Magnetic field profile along the axis of the magnetic nozzle and the
plasma flow configuration.
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The moving barrier here represents the rarefaction wave. As
shown in Fig. 2, the incoming electron goes over the top of
the peak and reflects off the moving barrier. As a result, the
absolute value of the parallel electron velocity decreases by
2u, where u is the barrier velocity. The corresponding de-
crease in the electron energy is '"=2meu!v1−u", where v1 is
the electron velocity prior to the reflection. The magnetic
moment is nevertheless conserved by the reflection, so that
the steady-state part of Ueff remains unchanged. Therefore,
the electron is unable to return to the plasma source if
"in−'"%Ueff!z* ,#". It becomes trapped downstream from
the mirror, bouncing back and forth between the peak and the
barrier. The electron energy continues to decrease with every
reflection off the moving barrier. This process can be de-
scribed as adiabatic cooling as long as the characteristic elec-
tron velocity significantly exceeds u.

III. FORMULATION OF THE MODEL

The dynamics of a quasineutral paraxial plasma flow is
governed by the following equations:

#V

#t
+ V

#V

#z
= −

'e'
mi

#!

#z
, !4"

#n

#t
+ B

#

#z
(nV

B
) = 0, !5"

where V is the ion velocity that is directed along B, mi is the
ion mass, n is the plasma density, and ! is the electrostatic
potential. Equation !4" is the ion momentum balance equa-
tion and Eq. !5" is the ion continuity equation. We explicitly
used the paraxiality of the magnetic field in Eqs. !4" and !5"
by writing the derivative along the magnetic field lines as
# /#z. A closed system of equation for V, n, and ! requires
one more equation in addition to Eqs. !4" and !5". The re-
maining equation in our model is the quasineutrality condi-
tion n=ne, where ne is the electron density expressed in
terms of !.

In order to calculate the electron density, we need to
express the local electron distribution function fe in terms of
the electron distribution function in the incoming flow. The
incoming electrons are characterized by a given distribution
f0!" ,#" defined for positive axial velocities v%. The total
electron distribution at the nozzle entrance will also contain a
nearly equal number of electrons moving in the opposite

direction. The asymmetry in the total electron distribution
function is very small because the plasma flow velocity is
much smaller than the electron thermal velocity. We there-
fore neglect this asymmetry and set f0!−v%"= f0!v%", so that
the electron distribution in the incoming flow is fe= f0!" ,#"
for both positive and negative values of v%. The total energy
" and magnetic moment # of each passing electron are con-
served in our model. As a result, the expression fe= f0!" ,#"
remains valid downstream from the nozzle entrance in the
areas of phase space accessible to passing electrons. In the
case of a trapped electron, the integrals of motion are the
magnetic moment # and the adiabatic invariant I associated
with the longitudinal motion. Consequently, the distribution
function of trapped electrons is constant in both space and
time if it is written in terms of # and I !but not in terms of #
and "".

In order to determine the distribution function of trapped
electrons, we consider electrons that have the same magnetic
moment #. All such electrons are characterized by the
same profile of Ueff. If Ueff has a peak at z=z*, then the
electron distribution function for z$z* includes both passing
and trapped electrons, as shown in Fig. 3. Electrons with
"&"*!#" are passing electrons, whereas electrons with
"%"*!#" are trapped electrons, where "*!#"&Ueff!z* ,#".
For passing electrons #"&"*!#"$, the distribution is given by
fe= f0!" ,#". For trapped electrons #"%"*!#"$, the distribu-
tion turns out to be fe= f0#"*!#" ,#$. We assume that Ueff has
a steady state profile for z(z*. Then the distribution func-
tion of the incoming electrons that become trapped is
f0#"*!#" ,#$, because the trapping occurs always at the same
energy "="*!#". Even though "*!#" remains constant in
time, the value of the adiabatic invariant I that corresponds to
"*!#" gradually increases due to the flow expansion. Once
trapped, electrons cool down losing their energy, but con-
serving the adiabatic invariant. As a result, the distribution
function of all trapped electrons with the same value of # is
equal to the time-independent distribution function of the
passing electrons with energy "="*!#". The phase space oc-
cupied by the trapped electrons is defined by the condition
"*!#"$"&Ueff!z ,#"&#B− 'e'! for z$z*.

The electron density is then given by the following
expression:

( ),effU z µ

z0

Steady-state potential Moving barrier

inε

ε∆

Reflections
off the barrier

Reflections
off the peak

u

*z

FIG. 2. Trapping of an incoming electron and its subsequent cooling.
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FIG. 3. Electron distribution for a given magnetic moment # upstream and
downstream from a peak.
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n = )B( 2
me

)3/2*
0

*

d#+H#z*!#" − z$

+*
#B−'e'!

* f0!",#"d"

," − #B + 'e'!
+ H#z − z*!#"$

+-*
"
*

!#"

* f0!",#"d"

," − #B + 'e'!

+ *
#B−'e'!

"
*

!#" f0#"*!#",#$d"

," − #B + 'e'!./ , !6"

where H is the Heaviside step function. The first two terms
are the passing electron contributions and the last term is the
trapped electron contribution. Only the first term in Eq. !6"
should be used for those values of # that have a monotoni-
cally increasing profile of Ueff without a peak. Equation !6"
defines n as a nonlocal functional of ! and B.

Equations !4"–!6" need to be solved together to find self-
consistent profiles of the electrostatic potential and plasma
density. In general, this would require a numerical procedure,
but the development of such a procedure goes beyond the
scope of this work. In what follows, we limit our consider-
ation to a flow with a “water-bag” distribution of the incom-
ing electrons, which allows us to construct a rigorous ana-
lytic solution of Eqs. !4"–!6".

IV. PLASMA FLOW WITH A WATER-BAG ELECTRON
DISTRIBUTION

We choose a water-bag electron distribution at the nozzle
entrance, such that

f0!",#" =
3nin

4)
( me

2"in
)3/2

H!"in − "" , !7"

where "in is the cutoff electron kinetic energy and nin is the
plasma density in the incoming flow. We also choose the
electrostatic potential to be equal to zero at the nozzle en-
trance.

A. Steady-state flow in the converging part
of the nozzle

We look for a self-consistent steady-state flow configu-
ration upstream from the mirror. According to Eq. !6", the
plasma density upstream from the mirror where all electrons
are passing electrons, is given by

n =
3
4

ninB

"in
3/2 *

0

!"in+'e'!"/B
d#*

#B−'e'!

"in d"

," − #B + 'e'!
. !8"

The upper limit in the integral over # is determined by the
condition that v% =0 for "="in. A straightforward evaluation
of the integrals in Eq. !8" gives

n = nin(1 +
'e'!
"in

)3/2
. !9"

In a steady-state flow, Eqs. !4" and !5" reduce to
1
2miV

2 + 'e'! = 1
2miVin

2 , !10"

nV

B
=

ninVin

Bin
, !11"

where Vin and Bin are the ion velocity and magnetic field at
the nozzle entrance. We combine Eqs. !9"–!11" to find that

B2

Bin
2 = (1 +

'e'!
"in

)3(1 −
2'e'!
miVin

2 ) . !12"

It follows from Eq. !12" that

2B

Bin
2

"in

'e'
dB

d!
=

2

miVin
2 (1 +

'e'!
"in

)2(3
2

miVin
2 − 4'e'! − "in) .

!13"

The derivative d! /dB is negative at the nozzle entrance
!!=0" if the incoming ions are sufficiently slow, such that

1
2

miVin
2 %

"in

3
. !14"

In this case, the ions accelerate towards the nozzle throat. At

! =
3

4'e' (1
2

miVin
2 −

"in

3
) , !15"

the ion velocity becomes equal to the local speed of sound

Cs!!" =,2!"in + 'e'!"
3mi

!16"

and further flow acceleration is impossible in a converging
magnetic field, because d! /dB changes sign #see Eq. !13"$.
The expression for Cs can be derived by considering propa-
gation of short-scale perturbations in a steady-state flow. Ap-
parently, condition !14" is equivalent to the requirement that
the incoming flow is subsonic #Vin%Cs!0"$.

A smooth sub- to supersonic transition is possible only at
the magnetic mirror throat, and it imposes the following con-
straint on the flow parameters:

B0

Bin
=

3,3
16
, 2"in

miVin
2 (1 +

miVin
2

2"in
)2

, !17"

where B0 is the magnetic field at the mirror throat. Equation
!17" is obtained from Eq. !12" using the condition that the
electrostatic potential ! at the mirror throat is given by
Eq. !15".

For the purpose of the subsequent analysis, we introduce

!0 &
3

4'e' (1
2

miVin
2 −

"in

3
) , !18"

"0 & "in + 'e'!0, !19"

1
2miV0

2 & 1
2miVin

2 − 'e'!0, !20"

, & ! − !0. !21"

The subscript “0” refers to the location of the mirror throat.
The quantities !0, "0, and miV0

2 /2 are the corresponding
electrostatic potential, the maximum electron kinetic energy,
and the ion kinetic energy. It follows from Eqs. !15" and
!18"–!21" that
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1
2

miV0
2 =

"0

3
. !22"

We can now rewrite Eq. !12" in terms of the quantities asso-
ciated with the mirror throat,

B

B0
= (1 +

'e',
"0

)3/2(1 − 3
'e',
"0

)1/2
. !23"

B. Steady-state flow in the diverging part
of the nozzle

Equation !23" holds at the mirror throat and in the adja-
cent diverging part of the nozzle as long as the plasma flow
contains no trapped electrons. In the case of the water-bag
distribution, the trapping of electrons with magnetic moment
# requires a peak in Ueff!z ,#", with "*!#"("in. The trap-
ping cannot occur at "*!#"$"in, because there are no incom-
ing electrons with energies above the cutoff energy "in. The
spatial boundary of the trapped electron population is deter-
mined by the location of the peak whose height is equal to
"in. The conditions that define this peak are

#B − 'e', = "0, !24"

#
dB

d,
− 'e' = 0, !25"

where B and , are related by Eq. !23". In what follows, we
mark all quantities associated with the peak by subscript t.
We find from Eqs. !23"–!25" that

Bt &
4

3,3
B0, !26"

,t & −
"0

3'e'
, !27"

#t &
,3
2

"0

B0
. !28"

It is straightforward to check that Ueff peaks downstream
from the mirror throat for any # greater than #t. All these
peaks are located between B=B0 and B=Bt%B0 and their
height exceeds the electron cutoff energy. This confirms that
the region between B=B0 and B=Bt contains only passing
electrons.

We now return to Eq. !6" to calculate the trapped elec-
tron contribution to the electron density for B(Bt. In the
case of a water-bag distribution, the integrals in the square
brackets in Eq. !6" can be combined into a single integral,
eliminating the need to know the energy "*!#" for every #.
We conjecture that Ueff!z ,#t"("in for B(Bt, such that
#! #0,#t$ for B(Bt. The ensuing solution validates this
conjecture !see Fig. 3". The electron density for B(Bt is
then given by

n =
3
4

ninB

"in
3/2 *

0

#t

d#*
#B−'e'!

"in d"

," − #B + 'e'!
. !29"

We evaluate the integrals in Eq. !29" and use definitions !19"
and !21" to find that

n = n0-(1 +
'e',
"0

)3/2
− (1 +

'e',
"0

−
,3
2

B

B0
)3/2. , !30"

where

n0 & nin(1 +
'e'!0

"in
)3/2

!31"

is the plasma density at the magnetic throat. The second
bracket in Eq. !30" vanishes for B→Bt, indicating that n is
continuous at B=Bt.

Upstream from B=Bt, the electron density is given by
the first term in the square brackets in Eq. !30" #see Eq. !9"$.
Therefore, Eq. !30" can be extended from B(Bt to B0&B
&0 by including a multiplier H!Bt−B" in front of the last
term in the square brackets. We now combine Eqs. !10", !11",
and !30" and use definitions !19"–!21" and !31" to find the
following relation between , and B:

B

B0
= -(1 +

'e',
"0

)3/2
− H!Bt − B"(1 +

'e',
"0

−
,3
2

B

B0
)3/2.

+(1 − 3
'e',
"0

)1/2
. !32"

According to Eq. !32", the electrostatic potential decreases
monotonically with B. For B→0, the potential , converges
to

, f & −
3 + 2,5

9
"0

'e'
0 − 0.83

"0

'e'
. !33"

Indeed, expanding the right-hand side of Eq. !32" in B /B0
and keeping the lowest order term, we obtain

3,3
4

(1 +
'e',
"0

)1/2(1 − 3
'e',
"0

)1/2
= 1. !34"

Expression !33" represents the negative root of this equation.
Asymptotically, Eq. !32" describes a freely expanding

steady-state plasma flow. The ion kinetic energy in this flow
is

1
2

miVf
2 =

6 + 2,5
9

"0 0 1.2"0. !35"

This energy is greater than the maximum kinetic energy of
the electrons at the mirror throat.

Figure 4 shows steady-state profiles of Ueff=#B− 'e'!
downstream from the mirror for several different values of
the magnetic moment #. The solid curves correspond to the
self-consistent solution !32". The behavior of the solid curves
in Fig. 4 shows that a passing electron that goes over a peak
does not turn around in the steady-state part of the flow.
Trapped electrons travelling downstream also do not turn
around in the steady-state part of the flow, because Ueff de-
creases monotonically downstream from a peak. The reflec-
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tion of all these electrons must take place in the time-
dependent part of the flow that accommodates the potential
drop needed to keep electrons and ions together. If the time-
dependent part is entirely in the area with a very low mag-
netic field, then the corresponding potential drop is equal to
"0 / 'e'+, f.

C. Time-dependent flow in the diverging part
of the nozzle

Even prior to finding the exact solution, it is clear that
the boundary between the steady-state and the time-
dependent flows should be moving away from the mirror
throat, since the plasma flow is supersonic. Therefore, the
entire time-dependent part of the flow eventually shifts to the
area of very low magnetic field. In this case, the electrons in
the time-dependent area have a negligibly small gyroenergy
and their dynamics is primarily governed by the electric
field. In what follows, we employ this simplification to con-
struct an analytical solution of the flow equations.

The flow pattern under consideration is shown in Fig. 5.
The time-dependent flow borders the steady-state flow at a
moving boundary located at z=zb!t". We require that B /B0
-1+ 'e', f /"0 at z=zb!t", such that the steady-state flow at
z=zb is essentially force-free, with ,0, f and V0Vf.
Therefore, the function , varies inside the time-dependent
flow from ,=, f at z=zb!t" to ,=−"0 / 'e' at the plasma-
vacuum boundary, whose location we denote as zv!t".

For B /B0-1+ 'e', /"0, the electron density given by Eq.
!30" can be approximated as

n 0 n0
3,3

4
B

B0
(1 +

'e',
"0

)1/2
. !36"

We use this expression to eliminate n from Eqs. !4" and !5",
which gives

#V

#t
+ V

#V

#z
= −

"0

mi

#

#z
(1 +

'e',
"0

) , !37"

#

#t
(1 +

'e',
"0

)1/2
+

#

#z
-V(1 +

'e',
"0

)1/2. = 0. !38"

We now replace V and , by more convenient unknown func-
tions

u. & V .,2"0

mi
(1 +

'e',
"0

)1/2
, !39"

which transforms Eqs. !37" and !38" into two decoupled
equations,

- #

#t
+ u.

#

#z
.u. = 0. !40"

For a set of given profiles V!z , t̃" and ,!z , t̃" at a time
moment t̃, Eqs. !40" allow us to find the flow dynamics at
t$ t̃. The time t̃ must be sufficiently large for the profiles to
satisfy the condition B#zb!t̃"$ /B0-1+ 'e', f /"0. The profiles
V!z , t̃" and ,!z , t̃" are determined by the flow evolution at
t% t̃, involving the time-dependent flow through the mirror.
As shown below, the effect of the intermediate dynamics
diminishes with time and vanishes at t→* #see Eqs. !47"
and !48"$.

Equations !39" give the initial conditions u+!z , t̃" and
u−!z , t̃" corresponding to V!z , t̃" and ,!z , t̃". The resulting
solutions of Eqs. !40" at t$ t̃ are given implicitly by

u.!z,t" = G.#z − !t − t̃"u.!z,t"$ , !41"

where G.!z"&u.!z , t̃". For the force-free steady-state flow,
with ,=, f and V=Vf, we have

u. = uf. &
1
3
,2"0

mi
#!6 + 2,5"1/2 . !6 − 2,5"1/2$ . !42"

Both of these values are positive, and we require that G+!z"
and G−!z" satisfy the condition dG. /dz&0 to avoid steep-
ening of the solutions with time.
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FIG. 4. Profiles of Ueff=#B− 'e'! downstream from the mirror for three
different values of the magnetic moment !0.8#t ,0.9#t ,#t". The electrostatic
potential ! is related to the magnetic field B through Eq. !32".
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Initially, u+ and u− match the solution given by Eqs. !42"
at zb.!t̃"=zb!t̃". Later in time, the matching points move ac-
cording to Eqs. !41", such that

zb.!t" = zb!t̃" + uf.!t − t̃" . !43"

The matching points become separated at t$ t̃, with zb+!t"
$zb−!t", because uf+$uf−. The boundary between the
steady-state and the time-dependent flows is determined by
zb−!t", such that zb!t"=zb−!t", as shown in Fig. 5. Note that
the boundary is moving away from the mirror throat since
uf− is positive.

The leading edge of the plasma flow is initially located
at z=zv!t̃", where ,=−"0 / 'e'. It then follows from Eqs. !39"
that u+#zv!t̃"$=u−#zv!t̃"$=V. Therefore, the leading edge of u+
and the leading edge of u− move away from the mirror at the
same rate equal to the velocity of the fastest ions Vmax. The
electric field at the leading edge vanishes due to quasineu-
trality, so that the ions at the leading edge move without
acceleration and Vmax remains constant in time. We then find
that

zv!t" = zv!t̃" + Vmax!t − t̃" , !44"

where Vmax is an unknown quantity related to the initial con-
ditions. The condition dG. /dz&0 implies that Vmax&uf+.

The time-dependent areas in u+ and u− expand and shift
downstream with time. At t→*, Eqs. !43" and !44" reduce to
zb.!t"0uf.t and zv!t"0Vmaxt, and the time-dependent part
of the solution !41" then evolves into the following self-
similar solution:

u.!z,t" =
z

t
H!z − uf.t"H!Vmaxt − z" . !45"

We can now obtain the asymptotic expressions for the
flow velocity V and plasma density n. We use Eqs. !36" and
!39" to find that

n

n0
=

3,3
4

B

B0
, mi

2"0

u+ − u−

2
. !46"

It then follows from Eq. !45" that n vanishes at z=uf+t,
which means that the number of particles between z=uf+t
and z=Vmaxt vanishes with time. The reason is that the
boundary zb+ is moving faster than the ions at the same lo-
cation and, as a result, it gradually overtakes ions in the
downstream flow. The resulting asymptotic solution for the
plasma flow in the low magnetic field region is given by

n = n0
3,3

8
B

B0
, mi

2"0

+-uf+ − uf−H!uf−t − z" −
z

t
H!z − uf−t".H!uf+t − z" ,

!47"

V = Vf +
z − uf−t

2t
H!z − uf−t" . !48"

We observe that initial conditions do not affect the
asymptotic structure of the plasma flow.

The asymptotic solution exhibits a rarefaction wave,
whose inner and outer fronts propagate away from the mirror
throat. The velocity of the inner wave front, uf−, is smaller
than the local ion velocity. Therefore, there is a continuous
flux of new ions from the steady-state flow into the rarefac-
tion wave. The ions then undergo additional acceleration by
the electric field of the wave.

Using Eqs. !22", !36", and !48", and the conservation of
the particle and magnetic fluxes, we find that the ratio of the
ion flux /wave through the inner wave front to the ion flux
/0 through the mirror throat is given by

/wave

/0
=

6 − 2,5
4

. !49"

Asymptotically, the number of ions in the rarefaction wave
is Nwave=/wavet, whereas the number of ions in the steady-
state flow downstream from the mirror throat is Nsteady
= !/0−/wave"t. Therefore, the rarefaction wave contains a
notable fraction of all the ions located downstream from the
throat,

Nwave

Nsteady + Nwave
=

/wave

/0
0 0.4. !50"

To conclude this section, we give the asymptotic expres-
sions for the time derivatives of the total momentum P and
kinetic energy K downstream from the mirror throat,

dP

dt
= miV0/0(2 +

,5
3
)(2 −

2,5
3
)1/2

0 2miV0/0, !51"

dK

dt
=

4
3

"0/0. !52"

The total momentum P is the ion momentum, since the elec-
tron momentum is negligible in the adiabatic flow. The total
kinetic energy K includes both the ion !Ki" and electron !Ke"
contributions, but the ion contribution to this energy turns
out to be much greater than the electron part,

dKi/dt

dKe/dt
0 29. !53"

V. SUMMARY AND CONCLUDING REMARKS

We have developed a self-consistent model that de-
scribes a quasineutral plasma flow in a nozzle with a mag-
netic mirror configuration. The model addresses a purely col-
lisionless mechanism of electron trapping downstream from
the mirror throat. The nozzle produces a freely expanding
supersonic plasma jet with a force-free steady-state plasma
flow adjacent to the magnetic mirror and a rarefaction wave
at the leading edge of the jet. The rarefaction wave affects
the electron distribution function by causing electron trap-
ping and subsequent adiabatic cooling.

The electron trapping and cooling are robust features of
a supersonic collisionless flow. We have considered a case of
a water-bag incoming electron distribution in order to carry
out all the calculations analytically. Using the model formu-
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lated in Sec. III, it should be possible to solve the problem
numerically for an arbitrary incoming electron distribution,
including a Maxwellian distribution.

Even though the specific form of the solution depends on
the electron distribution function, the presence of the rarefac-
tion wave itself at the leading edge of the flow is a robust
feature of a freely expanding supersonic flow. Such flow nec-
essarily consists of two parts: a steady-state part adjacent to
the thruster and a time dependent part !rarefaction wave" at
the leading edge. The boundary between the steady-state and
the time-dependent flows moves away from the thruster,
since the flow is supersonic. However, relative to the flow,
the boundary is moving upstream with the local sound speed.
As a result, the number of ions in the rarefaction wave con-
tinuously increases, so that the wave contains a sizable frac-
tion of all the ions downstream from the nozzle throat.

In our analysis, we have assumed a given magnetic field,
thus neglecting the effect of the plasma flow on the magnetic
configuration. This assumption is valid for a strong guiding
magnetic field. However, the magnetic field significantly
weakens downstream in the plume and, eventually, distortion
of the magnetic field by the flow itself becomes important in
determining the overall magnetic configuration. This issue is
directly related to the problem of plasma detachment in
space thrusters.1,2,5,6,9–12

Finally, we should mention that there are a number of
papers that employ standard magnetohydrodynamics !MHD"
to simulate magnetic nozzles. This approach assumes that the
electron distribution remains Maxwellian downstream,
which is justified only in a highly collisional flow. In many
cases, particularly in the expanding plume, the electrons may
become collisionless and under such conditions the MHD
approximation is no longer valid. The use of the “standard”

fluid description of the plasma electrons, as done in Ref. 13,
ignores the effect of the trapped electron population. This
approach should generally be replaced by a proper kinetic
treatment of electrons.
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