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ABSTRACT

Angular momentum transport and the formation of rotationally supported structures are major issues in our understanding of protostel-
lar core formation. Whereas purely hydrodynamical simulations lead to large Keplerian disks, ideal magnetohydrodynamics (MHD)
models yield the opposite result, with essentially no disk formation. This stems from the flux-freezing condition in ideal MHD, which
leads to strong magnetic braking. In this paper, we provide a more accurate description of the evolution of the magnetic flux redis-
tribution by including resistive terms in the MHD equations. We focus more particularly on the effect of ambipolar diffusion on the
properties of the first Larson core and its surrounding structure, exploring various initial magnetisations and magnetic field versus
rotation axis orientations of a 1 M⊙ collapsing prestellar dense core. We used the non-ideal magnetohydrodynamics version of the
adaptive mesh refinement code RAMSES to carry out these calculations. The resistivities required to calculate the ambipolar diffusion
terms were computed using a reduced chemical network of charged, neutral, and grain species. Including ambipolar diffusion leads
to the formation of a magnetic diffusion barrier (also known as the decoupling stage) in the vicinity of the core, which prevents accu-
mulation of magnetic flux in and around the core and amplification of the field above 0.1 G. The mass and radius of the first Larson
core, however, remain similar between ideal and non-ideal MHD models. This diffusion plateau, preventing further amplification of
the field and reorganising the field topology, has crucial consequences for magnetic braking processes, allowing the formation of disk
structures. Magnetically supported outflows launched in ideal MHD models are weakened or even disappear when using non-ideal
MHD. In contrast to ideal MHD calculations, misalignment between the initial rotation axis and the magnetic field direction does
not significantly affect the results for a given magnetisation, showing that the physical dissipation processes truly dominate numeri-
cal diffusion. We demonstrate severe limits of the ideal MHD formalism; it yields unphysical behaviours in the long-term evolution
of the system. This includes counter-rotation inside the outflow or magnetic tower, interchange instabilities, and flux redistribution
triggered by numerical diffusion. These effects are not observed in non-ideal MHD. Disks with Keplerian velocity profiles are found
to form around the protostar in all our non-ideal MHD simulations, with a final mass and size that strongly depend on the initial
magnetisation. This ranges from a few 10−2 M⊙ and ∼20−30 au for the most magnetised case (µ = 2) to ∼2× 10−1 M⊙ and ∼40−80 au
for a lower magnetisation (µ = 5). In all cases, these disks remain significantly smaller than disks found in pure hydrodynamical
simulations. Ambipolar diffusion thus bears a crucial impact on the regulation of magnetic flux and angular momentum transport
during the collapse of a prestellar core and the formation of the resulting protostellar core-disk system, enabling the formation and
growth of rotationally supported structures.
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1. Introduction

In the past few decades, star formation studies have been strug-
gling to properly describe the mechanism of angular momen-
tum transport, regulated by angular momentum conservation
and magnetic braking. The formation of rotationally supported
structures, that is, the protoplanetary disks that are expected to
give birth to planets and/or binaries, is directly related to the
amount of angular momentum in protostellar systems. While
there is plenty of observational evidence for large Keplerian
disks1 around Class-II and Class-I objects, their presence around
younger Class-0 objects is still subject to debate (as discussed in
Maury et al. 2010 or Tobin et al. 2012, 2013; see the review by
Li et al. 2014a).

1 See Appendix C for details on our definition of a Keplerian disk.

The simplified framework of the ideal magnetohydrodynam-
ics (MHD) used in the first studies led to the disappearance of
the large Keplerian disks that are easily formed in hydrodynami-
cal simulations as a result of the very effective magnetic braking
created by a strong pile-up of magnetic flux towards the centre
of the collapsing system (Galli et al. 2006; Allen et al. 2003,
Price & Bate 2007; Hennebelle & Teyssier 2008; Matsumoto
& Tomisaka 2004; Hennebelle & Fromang 2008; Commerçon
et al. 2010). In these simulations, disks were found to form
only for unrealistically weak magnetic field intensities (corre-
sponding to a mass-to-flux ratio more than 10 times the critical
value derived by Mouschovias & Spitzer 1976). Other conse-
quences of the magnetic flux freezing assumption inherent to the
ideal MHD approximation include the strong resulting magneti-
sation of protostars compared to the low observed values in stars
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(Crutcher 2012), the generation of violent interchange instabil-
ities at the protostar-disk interface (Li et al. 2014b), the growth
of the pseudo-disk (Hennebelle & Fromang 2008), and the dis-
tortion of the upper layer of the pseudo-disk due to reconnection
and the split monopole (Galli & Shu 1993; Li et al. 2014b).

In the framework of ideal MHD, there is no possibility to
regulate the magnetic flux pile-up and its consequences, except
for the intrinsic numerical resistivity due to both the numerical
method used to solve the induction equation and the numerical
grid resolution. To circumvent this problem, the magnetic field
redistribution needs to be correctly addressed in the framework
of complete non-ideal MHD. Following the pioneering work of
Mestel & Spitzer (1956), the study of non-ideal MHD effects
has been the focus of intense research in the recent years, as il-
lustrated by the studies of Duffin & Pudritz (2008) and Mellon &
Li (2009) for ambipolar diffusion, or Machida et al. (2006) and
Machida & Matsumoto (2011) for a generic resistivity. While
it is still unclear if non-ideal MHD can, by itself, solve the
problems regarding the formation of disks (Krasnopolsky et al.
2010), a physical dissipative scale for the magnetic flux defi-
nitely improves the regulation of magnetic flux pile-up in star
formation studies.

In this work, we study the effects of ambipolar diffusion in
the context of star formation, more specifically, of low-mass star
formation, and highlight the differences compared to ideal MHD
simulations. The influence of turbulent initial conditions will be
studied in a forthcoming paper (Paper II). The article is organ-
ised as follows. In Sect. 2 we discuss the framework and nu-
merical setup of the study. In Sect. 3 we focus on the general
description and properties of the collapsing core until formation
and early evolution of the first Larson core, for various cases.
In Sect. 5 we discuss the long-term evolution of the structures
and highlight the limits of the ideal MHD framework that are
due to numerical issues. In Sect. 4, we examine the formation
of rotationally supported structures in non-ideal MHD. Last, we
summarise our findings in Sect. 7.

2. General context

2.1. Physical framework

In star formation, the ionisation fraction is low, and quasi-
equilibrium holds between the Lorentz force and the plasma-
neutrals friction force as a result of collisions. Therefore, we can
drop the pressure and gravitational forces for charged particles
when writing the equations of motion for each fluid particle.
In the case of positively charged species of number density ni,
velocity ui, atomic number Zi , and collision rate νi j with the
species j, and using the subscript e for the negatively charged
species, the equations of motion read:
{

Zieni(E + ui × B) − ρi

∑

j= {e,n} νi j(ui − u j) = 0
−ene(E + ue × B) − ρe

∑

j= {i,n} νe j(ue − u j) = 0, (1)

while the generalized Ohm’s law is written (see e.g. Balbus &
Terquem 2001)

∂t B = ∇ ×
[

un × B − J × B

ene

+

[

(∇ × B) × B
]

× B

γADρρi

− J

σ‖

]

(2)

with

γAD =
〈σinvi〉

(mi + mn)
the drag coefficient and (3)

σ‖ =
nee2

nnme〈σenve〉
the electrical conductivity. (4)

The symbols un, ρ, and ρi denote the velocity of neutral parti-
cles, the total density, and the ion density, respectively. In this
framework, the drag force per unit volume exerted by the neu-
trals on the ions compensates for the Lorentz force and reads
Fdrag = γADρiρ(ui − un). When considering multiple species (see
Kunz & Mouschovias 2009; Nakano et al. 2002), Ohm’s law can
be written as

∂B

∂t
= ∇ ×

[

un × B − ηΩ(∇ × B) − ηH

{

(∇ × B) × B

||B||

}

− ηAD
B

||B||
×

{

(∇ × B) × B

||B||

} ]

, (5)

with || || standing for the L2 norm, and the Ohmic, Hall, and
ambipolar diffusivities are defined as

ηΩ =
1
σ‖
, (6)

ηH =
σH

σ2
⊥ + σ

2
H

, (7)

ηAD =
σ⊥

σ2
⊥ + σ

2
H

− 1
σ‖
· (8)

The parallel, perpendicular, and Hall conductivity components
(σ‖, σ⊥, and σH, respectively) compose the conductivity tensor

σ =

















σ⊥ −σH 0
σH σ⊥ 0
0 0 σ‖

















(9)

from Faraday’s law j = σ (E + u × B). These resistivities re-
duce to the values displayed in Eq. (2) in a three-fluid descrip-
tion. In this case,

ηΩ =
1
σ‖
, (10)

ηH =
||B||
ene

, (11)

ηAD =
||B||2

γADρρi

· (12)

The present work is essentially devoted to the first collapse and
the formation of the first core. At this stage and on this scale,
only ambipolar diffusion plays a role. In the following, we there-
fore only focus on this term. Rewriting the above equations with
ηΩ = ηH = 0 and

ū = un +
ηAD

||B||2
[

(∇ × B) × B
]

, (13)

Eq. (5) reduces to

∂t B = ∇ ×
[

ū × B
]

. (14)

In contrast to a Laplace operator, as in Ohmic dissipation,
Eq. (14) does not allow magnetic reconnection, since it corre-
sponds to another flux-freezing condition at a different speed ū.
We stress that this is true only under the one-fluid approxima-
tion, as pointed out by Tsap et al. (2012).
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2.2. Magnetic braking

The main effect of magnetic braking in the context of prestel-
lar core collapse is to slow down the rotationally supported
structures that develop during the gravitational collapse of mat-
ter with non-zero net angular momentum; this occurs because
of the conservation of angular momentum. One of the conse-
quences is that the formation of large and rapidly rotating disks
is hampered, as found in purely hydrodynamical simulations.
The braking arises essentially from the magnetic tension that
prevents the distortion of the field lines, which are coupled to
the flow through the ionised species. The angular momentum is
transported along the field lines at a speed close to the Alfvén
speed, depending on the topology of the magnetic field. The
braking efficiency can be characterised by deriving an Alembert
equation of propagation for the angular momentum (e.g. Gillis
et al. 1974, 1979; Mouschovias 1978, 1979; Mouschovias &
Paleologou 1980), but can be estimated by order-of-magnitude
calculations (Joos et al. 2012). In cylindrical coordinates, with
the z-axis aligned with the mean angular momentum direction
vector, the angular momentum flux due to the magnetic field
reads (Joos et al. 2012)

Fl = −
Bθr

4π
B. (15)

It is proportional to the radial and poloidal components of the
field Br and Bz, while scaling with the square of the toroidal
component Bθ, making this latter the main focus of magnetic
braking studies.

2.3. Numerical setup

2.3.1. Methods

To carry out our study of collapsing magnetised molecular
cloud cores, we used the adaptive mesh refinement (AMR) code
RAMSES (Teyssier 2002; Fromang et al. 2006) in its non-ideal
MHD extension (Masson et al. 2012). RAMSES solves the com-
plete set of MHD equations (self-gravity, Euler’s fluid flow equa-
tions, and the induction equation with non-ideal terms) using the
constrained transport method, which preserves the divergence-
free condition for the magnetic field to machine precision. The
adaptive mesh is extremely well suited to protostellar collapse
calculations, where many levels of refinement are needed to effi-
ciently describe spatial scales spanning 104−105 orders of mag-
nitude in a single simulation. AMR is also a powerful tool for
fragmentation studies and disk formation in a turbulent medium
where nested grids are difficult to use.

The grid refinement criterion is based on the Jeans mass, en-
suring the Jeans length is always sampled by at least eight cells.
The coarse grid has a resolution of 323, and 11 levels of AMR
were used, resulting in a maximum resolution of 0.15 au at the
finest level. Our general set of equations includes the conserva-
tion of mass, the mean neutral gas dynamics (Euler equation),
the induction equation with the ambipolar diffusion electromo-
tive force, self-gravity through the Poisson equation, and the
divergence-free constraint:

∂ρ

∂t
+ ∇.

[

ρu
]

= 0, (16)

∂ρu

∂t
+ ∇ ·

[

ρu ⊗ u + PI − B ⊗ B
]

= 0, (17)

∂B

∂t
− ∇ × (u × B) − ∇ × EAD = 0, (18)

∇ · B = 0. (19)

Here ρ is the mean fluid density, u the mean fluid velocity,
P the thermal pressure of the gas, and EAD = −ηAD

B
||B|| ×

{

(∇ × B) × B
||B||

}

is the electromagnetic force due to the ambipo-
lar diffusion, as derived in Eq. (5). The energy equation is ap-
proximated by a barotropic equation of state (see below).

Magnetic resistivities are calculated using a reduced chem-
ical network including neutral and charged species, as well as
dust grains. We followed Kunz & Mouschovias (2009) to com-
pute the relevant charged species abundances including grains
sizes in a classical MRN distribution (Mathis et al. 1977), which
were sampled using 50 bins. For an exhaustive description of
the chemical model used and its application in the context of
star formation, we refer to Marchand et al. (2015). We computed
a three-dimensional table of density, temperature, and magnetic
field dependent resistivities covering the ranges 10−24 < ρ <
10−10 g cm−3, 5 < T < 2000 K, and 10−6 < B < 102 G, respec-
tively. During the simulations, the resistivities in each grid cell
are interpolated on-the-fly according to the local state variables,
which greatly reduces computational cost but implies thermody-
namical equilibrium.

2.3.2. Initial conditions

We adopted initial conditions similar to those in Commerçon
et al. (2010), who followed Boss & Bodenheimer (1979). A mag-
netised uniform-density sphere of molecular gas, rotating about
the z-axis with solid body rotation, is placed in a surrounding
medium a hundred times less dense with equal pressure. The
prestellar core mass has a mass of 1 M⊙, a radius R0 = 2500 au2

and a ratio of rotational over gravitational energy of βrot = 0.02.
The magnetic field is initially parallel to, and invariant along,
the rotation z-axis. The field strength is stronger in a cylinder of
radius R0 (with the dense core at its centre) than in the surround-
ing medium, with Bz(r > R0) = Bz(R0) ∗1002/3, where the factor
of 100 comes from the difference in density between the core
and the surroundings3. We define a mass-to-flux ratio parameter
similar to the one defined by Mouschovias & Spitzer (1976) to
measure the importance of the magnetisation in the core:

µ(r) =

∫ r

0
dM

∫ r

0
dφB

(

M
φ

)

crit

, (20)

with the critical value
(

M
φ

)

crit
= 0.53

3π

(

5
G

)0.5
(Mouschovias &

Spitzer 1976). We note that µ(r = R0) is strictly equal to the
theoretical value for a homogeneous cloud permeated by verti-
cal field lines.

Even though a Bonnor-Ebert (BE) density profile may better
fit observations of dense cores (see Andre et al. 2000; Belloche
et al. 2002) and has an analytical foundation (Li & Shu 1996;
Hunter 1977), we assumed a magnetised medium permeated by
straight parallel field lines, and it is hardly possible to end up
with a BE density profile without bending the field lines dur-
ing the formation of the density enhancement (the dense core).
Some authors (e.g., van Loo et al. 2008) found non-linear density
enhancements in simulated turbulent molecular sheets via slow-
mode magnetic waves, which left the magnetic field unchanged

2 The initial condition corresponds to a ratio of the thermal over grav-
itational energies α = 0.25 and a density of 9.4 × 10−18 g cm−3.
3 This is chosen to try to reproduce the dragging-in of field lines that
would occur in the formation of the dense core (see Gillis et al. 1974, for
example), while also retaining in the simplest manner the divergence-
free condition for the MHD.
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Table 1. Summary of the initial conditions for the different simulations.

Alignment and MHD type niMHD Aligned iMHD Aligned niMHD Misaligned iMHD Misaligned

Magnetisation (µ) 2 5 2 5 2 5 2 5
Ambipolar diffusion yes yes no no yes yes no no

Angle 0 0 0 0 40 40 40 40
Rotational support (βrot) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Mass of the core (in M⊙) 1 1 1 1 1 1 1 1

Table 2. Summary of the main properties of the first core for fiducial cases with solid-body rotation.

Alignment and MHD type niMHD Aligned iMHD Aligned niMHD Misaligned iMHD Misaligned
Magnetisation µ = 2 µ = 5 µ = 2 µ = 5 µ = 2 µ = 5 µ = 2 µ = 5

Formation time (×103 years) 49.2 24.3 50.5 24.3 52.2 24.6 54.6 24.6
Radius (au) 8−9 8−9 9−10 7−9 8−9 8−9 9−10 8−9
Mass (M⊙) 0.016 0.036 0.025 0.03 0.016 0.058 0.024 0.058
µ(r = 10 au) 14.1 21.2 3.5 3.9 14.1 24.8 3.4 3.9
µ(r = 100 au) 2.8 4.2 1.8 4.6 2.8 3.5 1.6 2.8

Magnetic field strength B (G) 0.09 0.1 0.8 0.98 0.09 0.21 0.77 4.4

in the cores, but it remains unclear whether this process does
occur in molecular clouds. Our own tests tend to show that the
initial density profile is not a critical matter because the infalling
material adopts a BE-like density profile very shortly after the
beginning of the dense core collapse.

As the aim of the present paper is to focus on the ef-
fect of non-ideal MHD effects, notably ambipolar diffusion, on
prestellar core collapse and disk formation, we used a barotropic
equation of state (EOS) to mimic the effect of radiative transfer
instead of solving the full set of radiation magnetohydrodynam-
ics equations. This was done for the sake of simplicity and to
save computational cost. The gas pressure is thus related to the
density as

P

ρ
= c2

s

√

1 +

(

nH

10−13 g cm−3

)
4
3

, (21)

where cs is the gas sound speed and nH the number density of
atoms. After an initial phase of isothermal collapse up to a den-
sity nH ≃ 10−13 g cm−3, the first hydrostatic Larson core (Larson
1969) forms when the gas becomes optically thick enough to
stop radiative cooling, which was until then counter-balancing
the compressional heating. This adiabatic phase is reproduced
with the barotropic EOS by using a polytropic index n for a gas
(which is equal to the ratio of specific heats γ) n = 5

3 , higher
than the critical value for stability against gravitational collapse
ncritic =

4
3 . The temperature and density of the gas begin to

rise inside the core as it accretes material from the surround-
ing envelope. The energy sink provided by the dissociation of
H2 molecules, which occurs around T ∼ 2000 K, triggers a sec-
ond phase of collapse (Larson 1969). We here focus on the prop-
erties of the first Larson core. Our general approach allows us to
accurately describe the first Larson core and its surroundings and
the magnetic flux transport without needing to introduce a sink
particle that would limit the resolution. It is beyond the scope of
the present paper to include long-term evolution, which leads to
the formation of the second core. This would imply the accurate
treatment of jets, high-energy radiation, and remaining non-ideal
MHD terms and will be addressed in a forthcoming study.

We have performed eight simulations for which we var-
ied the mass-to-flux ratio µ = 2 and 5, the angle between
the rotation axis and the magnetic field initial direction (0
and 40 degree) and used ideal (iMHD) or non-ideal (niMHD)

magnetohydrodynamics (accounting only for ambipolar diffu-
sion). We also performed additional simulations with increased
and decreased resolutions to study the convergence of our re-
sults for our fiducial case (µ = 5, aligned case). The various run
parameters are given in Table 1.

3. Early evolution

3.1. Aligned case

In this section, we study the general properties of the collapsing
system by comparing the iMHD case and a case with ambipo-
lar diffusion in the fiducial aligned case. We first focus on the
µ = 5 case, which we describe in detail. We then report the dif-
ferences or similarities with the µ = 2 case.

3.1.1. First Larson core

We determined the onset of the first core formation as the
point when the density in the computational domain reaches
10−12 g cm−3. We subsequently defined the first core itself by
the cells fulfilling the criterion ρ > 10−12 g cm−3. The core
radius, mass, mass-to-flux ratio, and peak magnetic field value
were measured 200 years after its formation. The properties of
the first core are summarised in Table 2.

The first core is oblate with a radius ranging from 8 to 9 au,
independently of the initial magnetisation (µ = 2 or µ = 5).
While pure hydrodynamical simulations (e.g. Bate 2011; Tomida
et al. 2010a) and some radiation iMHD (RMHD) calculations
(Tomida et al. 2010b) found a similar result with a flattened first
core, other RMHD studies (Commerçon et al. 2010) did not find
flattened cores in the case µ = 5. As a result of the additional
magnetic support, the free-fall (thus core formation) timescale
is twice longer for µ = 2 than for µ = 5 . The additional sup-
port also hinders accretion, and the first core is significantly less
massive for µ = 2 than for µ = 5 . Similarly, for the stronger
magnetisation (µ = 2), the core mass is lower for niMHD than
for iMHD. Indeed, the strongest magnetic field inside the core
remains of the order of 10−1 G in niMHD, while it is ten times
stronger in iMHD. This effect of ambipolar diffusion on the mag-
netisation during the core formation is illustrated by the differ-
ences in the mass-to-flux ratio µ at 10 and 100 au between the
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Fig. 1. Magnetic field distribution as a function of gas density for
µ = 5 aligned, using the iMHD (red) and the niMHD (blue) formalisms,
200 years after first core formation. The solid black line shows the scal-
ing of the magnetic field B ∝ ρ2/3 and the dashed black line the scaling
B ∝ ρ1/2.

ideal and non-ideal MHD cases. While µ is higher than 10 at
10 au and at <∼4 at 100 au in niMHD, it is at most <∼5 in iMHD.

3.1.2. Magnetic field repartition

Ambipolar diffusion enables neutral particles to overcome mag-
netic field lines and redistribute the magnetic field. We first fo-
cus on the magnetic field intensity and topology to understand its
consequences for the dynamics of the collapsing core. Figure 1
shows the magnetic field repartition as a function of gas density
for the iMHD and niMHD runs. The flux-freezing behaviour,
B ∝ ρ1/ξ with ξ ∼ 3/2, is obvious for iMHD (red) with a
highest magnetic field value of ∼1 G. The niMHD simulation
(blue) shows an identical initial evolution for densities below
∼10−14 g cm−3. After this point, ambipolar diffusion starts to
dominate the later evolution of the core, and a very well defined
diffusion plateau forms that is usually referred to as the decou-
pling stage in star formation (Desch & Mouschovias 2001). In
both the iMHD and niMHD calculations, the generation of out-
flows can be identified by the high values of the magnetic field
at high density, compared with the expected perfect flux-freezing
result.

As seen in Fig. 1, a scaling relation B ∝ ρ2/3 seems to repre-
sent the evolution of the magnetic field during the collapse better
than the traditional B ∝ √ρ relation (see the differences in the
scaling for the different components of the field in Hennebelle
& Fromang 2008). Further details about this scaling relation and
the analytical derivation of an estimate of the field saturation
value are given in Appendix A.

Figure 2 illustrates the comparison between µ = 2 and
µ = 5 niMHD. Both simulations show similar initial evolutions
(Fig. 2a) when flux-freezing is still dominant (µ = 2 naturally
shows a higher magnetic field intensity at a given density), but
have slightly different saturation values. At later stages (Fig. 2b)
a plateau forms in both low magnetisation and high magnetisa-
tion runs with Bplateau ≃ 0.1 G.

This plateau arises when ambipolar diffusion becomes ef-
ficient enough to overcome the dynamical effects. The non-
linearity of the effective diffusion coefficient, ηAD ∝ B2

γρiρ
, ex-

plains the self-regulation and the formation of the diffusion
plateau. Indeed, for any non-potential (∇ × B , 0) field

lo
g
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) 
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)
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Fig. 2. a) Early time, when flux freezing is still relevant. b) After the
decoupling stage. B(ρ) for µ = 5 (red) and µ = 2 (blue).

configuration, an increase in the magnetic field leads to a rise
of the local diffusion coefficient and thus in turn to a decrease
in field intensity. The plateau first forms when the dynamical
evolution of the magnetic field, u × B, no longer dominates the
diffusion term, ηAD∇ × B × B

||B|| ×
B
||B|| (with || || standing for the

L2 norm in this paper). Assuming flux-freezing holds during the
first isothermal phase of the collapse (i.e. B ∝ ρ1/ξ), we can esti-
mate the saturation value for the magnetic field

Bsat =















c2
sCγAD

√

3
2πG















1
2−ξ















B0

ρ
1/ξ
0















−ξ
2−ξ

, (22)

where γAD is the drag coefficient (Eq. (3)), C the ionisation
fraction such that ρi = C

√
ρn, G the gravitational constant, B0

and ρ0 the typical initial conditions for the magnetic field and
gas density, and ξ the power index for the proportionality law
B(ρ) ∝ ρ1/ξ. The initial thermal support and mass-to-flux ra-
tio are linked to the values of B0 and ρ0. Further details on the
derivation of Bsat can be found in Appendix A. The values we ob-
tain for Bsat with ξ = 3

2 for various values of thermal support α,
that is, the ratio of thermal over gravitational energy, are shown
Fig. 3 (thick black solid line). For ξ = 3

2 , which corresponds to a
homogeneous sphere permeated by a uniform magnetic field, we
find that the saturation value does not depend on α. In this case,
the saturation value estimate for µ = 5 is Bsat = 0.13 G, very
close to the numerical value B . 0.1 G (see Fig. 1). According to
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this simple order-of-magnitude calculation, the saturation value
should even be lower in more magnetised cores, with µ < 5. For
example, the µ = 2 case yields Bsat = 8 × 10−3 G. In our numer-
ical simulation, we do not observe such a strong diminution, but
the saturation value is lower for µ = 2 than for µ = 5 (see Fig. 2).
The discrepancy between the analytical prediction and the nu-
merical value for Bsat in the strongly magnetised case originates
from the fact that in the latter case the magnetic field distribu-
tion departs appreciably from a simple power-law parametrisa-
tion B ∝ ρ2/3 (see Fig. 2). Using a slightly different power index
that better fits the effective B(ρ) repartition in the µ = 2 case,
for instance ξ = 1.73, as shown on the inset in Fig. 3, we obtain
Bsat = 0.06 (coloured lines in Fig. 3), which is closer to the value
obtained in the simulation.

Figure 4 shows snapshots of the mass-to-flux ratio µ, as de-
fined Eq. (20), as a function of radius at different times in the
simulations. At large radii (r & 1000 au), the magnetisation
is similar for iMHD (red) and niMHD (black), confirming the
fact that at these scales the AD timescale is orders of magni-
tude longer than the dynamical timescale. There is a kink in the
AD case at a few tens of au (highlighted by the green square in
the figure) that slowly propagates outwards (compare the blue
dashed and solid curves); this corresponds to the efficient diffu-
sion of the field at these densities.

3.1.3. Outflows

The piling-up of the toroidal component of the magnetic field
during the collapse of the dense core ultimately leads to the for-
mation of a growing vertical structure, called magnetic tower.
We note that we use the generic term magnetic tower to describe
any outflowing structure. In reality, there are several ways to
launch outflows in a magnetised environment, as studied initially
by Lynden-Bell & Boily (1994) and in contemporary studies
by Hennebelle & Fromang (2008), Ciardi & Hennebelle (2010).
This outflow is launched shortly (<∼1 kyr) after the formation of
the first core. Figure 5 (top row) displays the azimuthally av-
eraged density and velocity fields (panels a and c) and Alfvén
speed with the magnetic field direction (panels b and d) for
the iMHD and niMHD µ = 5 runs. The simulations are com-
pared 500 years after the formation of the first Larson core, but
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Fig. 4. µ = 5, aligned case. Mass-to-flux ratio (µ) after first core forma-
tion (at ∼24 kyr) for the niMHD (black) and IMHD (red) cases (solid
lines). We also display the initial condition (dotted blue line) and two
later outputs for the niMHD case (dashed and dotted solid black lines).
The decoupling stage region due to magnetic field pile-up is emphasised
with a green square.

the same conclusions hold during all the time evolution. In all
panels, the z-axis is aligned with the direction of the average
angular momentum vector computed in a sphere of radius 100
au, centred around the densest cell in the simulation. The veloc-
ity vectors are overlaid on the density maps, while the direction
of the magnetic field in the (r, z) plane is superimposed on the
Alfvén speed colour maps. The colour coding for the magnetic
field illustrates the intensity of the toroidal component Bφ.

The magnetically driven outflow is reinforced in the iMHD
case by the more important magnetic field pile-up. This accu-
mulation stems both from the radial bending of the field lines, as
clearly seen in Fig. 5b, and from the increasing toroidal field (of
prime importance for magnetic braking, as shown by Eq. (15))
that is generated by the rotation, as clearly seen in Fig. 5b
and d, especially close to the first Larson core where the toroidal
support is significantly stronger in (b). While the gas inside the
magnetic tower is slightly less dense in the AD case, the lower
magnetic field intensity (compared to the iMHD case) yields an
overall Alfvén velocity that is lower by one order of magnitude.
This in turn explains the weaker magnetic braking, since the an-
gular momentum is carried away by slower Alfvén waves4.

In the iMHD simulation, the velocity field in the tower (in the
r−z plane) is vertical and the gas mainly flows out, the launching
mechanism taking root in the strong toroidal field and differen-
tial rotation close to the Larson core. The field is dominantly
vertical, and neutral matter follows the field lines. When AD is
included, the growth of the magnetic tower is still magnetically
regulated, but the growth is slower and the velocity field in the
tower is almost null, or slightly directed towards the protostar. A
detailed analysis shows that there is no real outflowing gas mo-
tion of gas per se, but that the magnetic tower structure or growth
is supported by magnetic pressure. We also note that close to the
core (r < 50 au), while the field lines are pinched in the iMHD

4 In a simple representation of bent field lines, it is possible to derive
the angular momentum transport equation. Angular momentum propa-
gates along the field lines and follows a wave equation with a velocity
defined by the local Alfvén speed and the topology of the field. For
more details see Masson (2013) or the original article by Gillis et al.
(1979).
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Fig. 5. Top row: µ = 5, aligned case, snapshots at a time t = 1.02 tfree-fall (500 years after first core formation). Panel a) shows a map of the density
in the ideal MHD simulation. The black solid lines are logarithmically spaced density contours. The arrows represent the velocity field where
blue to green corresponds to the increasing magnitude of the velocity in the (r, z) plane. Panel b) is a map of the Alfvén speed (blue), with the
magnetic field direction in the (r, z) plane indicated by the segments. Yellow to red in these segments corresponds to increasing relative magnitude
of the toroidal component of the field compared to the total field. Panels c) and d) are the same as a) and b), respectively, but for the niMHD
case. Bottom row: same as the top row for µ = 2, and at the same time t = 1.01 tfree-fall (500 years after first core formation). Every quantity is
azimuthally averaged.

case (split monopole topology), field re-distribution has operated
in the niMHD run because of the ambipolar diffusion (the mag-
netic field vectors are much more vertical).

µ = 2 : in a more magnetised case, the picture is very different.
The bottom row of Fig. 5 shows the structure of the outflow for
µ = 2. Magnetic braking is much more effective (the magnetic
field is overall stronger, yielding a stronger magnetic braking, as
seen Sect. 2.2), causing the field topology to come closer to a
split monopole configuration at large scale, with strong pinching
of the lines in the equatorial plane. The enhanced braking weak-
ens the outflow-launching mechanism because the pile-up of the
toroidal field is less effective. For iMHD, there is still an outflow-
ing feature, but its velocity field is either null in the r − z plane
or even falls back onto the core. The boundary of the outflow
region is less well defined, but is characterised by a discontinu-
ity in the velocity field. In the AD case, the braking is stronger
for µ = 2 than for µ = 5 at the early stages of the collapse (see

Sect. 3.1.4), which results in a weaker magnetic field (the dif-
fusion plateau is lower) and reduces the pile-up of toroidal field
close to the core. This weakens the launching process to the point
that no outflow is produced in this case. The Alfvén speed close
to the core is very similar to the weak field µ = 5 run (Fig. 5d),
as expected from the field magnitude distribution as a function
of density (Fig. 2), where B(ρ > 10−12 g cm−3) distributions are
almost identical for the strongly and weakly magnetised cases.

3.1.4. Regions of active ambipolar action

Figure 5 also shows that for R > 100 au the iMHD and AD runs
look similar. This resemblance arises from the strong depen-
dence of ambipolar diffusion efficiency upon density and the
sharp transition between the flux-freezing and AD dominated
regimes. The initial isothermal phase of the collapse thus re-
mains very similar in both cases. To examine the effect of flux
dissipation in detail, we now focus on the regions where ambipo-
lar diffusion dominates.
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(b) µ = 5, misaligned
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Fig. 6. Four main panels show the µ = 5 aligned (top left, a), µ = 5 misaligned (top right, b), µ = 2 aligned (bottom left, c), and µ = 2 misaligned
(bottom right, d) cases 500 years after first core formation. In each main panel, subpanel a) shows a colour map of the azimuthal average of
Am = VL

ηAD
. Green to blue means that dynamical processes (collapse, Keplerian disk) dominate, while red to yellow means that ambipolar diffusion

dominates. The grey segments show the direction of the magnetic field, and black solid lines are isodensity contours. Panels b) and c) display the
magnetic field magnitude B and the value of Am as a function of density. Red cells in the Am scatter plot are cells where B(ρ) > 0.08 G, while
grey cells have B(ρ) < 0.08 G.

These regions are highlighted in Fig. 6a, which shows maps
of Am, an adimensional number that characterises the effi-
ciency of the diffusion process compared to the dynamical ones,
defined as

Am =
VL

ηAD
· (23)

The typical length-scale L is taken as the distance to the proto-
star and the velocity V as the local velocity along the field lines,
V = (u · B)/||B||. Ambipolar diffusion essentially plays no role
in regions where Am > 1, which is the case for r > 100 au,

where niMHD and iMHD calculations produce identical struc-
tures. The region of the outflow, in contrast, is a region of very
active ambipolar diffusion (Am < 1) because of a lower den-
sity that corresponds to a higher resistivity ηAD (see Eq. (2)).
Dissipative effects are also very strong around the mid-plane
for r < 50 au. This reduces magnetic braking by relaxing the
split monopole configuration close to the dense core. The right
panels in Fig. 6 show the magnetic field distribution as a func-
tion of density, along with the Am number (right axis). All cells
with B > 0.08 G (horizontal dot-dashed line) have Am values
coloured in red (compared to non-flagged cells, which are grey).
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We note that almost every cell belonging to the magnetic field
plateau is indeed dominated by ambipolar diffusion effects rather
than dynamical effects (Am . 1).

µ = 2: the same diagram for the more magnetised case is shown
in Fig. 6b. Dynamical motions are less dominant because of the
additional magnetic support. As a consequence, the active am-
bipolar diffusion region is stretched into an hourglass shape with
a pinched equatorial waist in the mid-plane for r < 50 au, of
about the same size as for µ = 5 . The pinching of the field lines
is also weaker in this central region than for iMHD. However,
compared to µ = 5, the split monopole configuration remains,
with a more radial field in the midplane, especially in the do-
main 50 < r < 150 au. This eventually leads to increased mag-
netic braking, which significantly hampers the formation of large
Keplerian disks. Cells belonging to the diffusion plateau are, as
previously, dominated by ambipolar diffusion effects and char-
acterised by Am <∼ 1.

3.2. Misaligned case

The effects of tilting the rotation axis of the molecular cloud
dense core with respect to the orientation of the magnetic field
has consequences on the properties of the first Larson core and
the accretion disks that can form around it (see Joos et al. 2012).
We have repeated this analysis in MHD calculations including
ambipolar diffusion.

3.2.1. First Larson core

The properties of the first Larson core in the misaligned case
are summarised in Table 2. As in Sect. 3.1.1, the listed quan-
tities were measured 200 years after peak density reached
10−12 g cm−3.

In the misaligned case, the regulation of the magnetic flux
occurs as in the aligned case, yielding similar properties for the
mass-to-flux ratio repartition and the value of the strongest mag-
netic field. For the collapse phase, the additional magnetic ten-
sion leads to a slightly longer free-fall time. For the weakly mag-
netised µ = 5 , the mass of the core is increased in the misaligned
case. Indeed, the mass-to-flux ratio reaches the same value, but
the magnetic field is twice stronger than in the aligned case,
yielding a core mass almost twice higher.

Therefore, misalignment of the magnetic field and rotation
axis does not change the properties of the first core significantly.
It affects the formation and properties of rotationally supported
structures, however, because of the weaker magnetic breaking,
as we examine in Sect. 4.2.

3.2.2. Magnetic field repartition

Magnetic field repartition as a function of density is qualita-
tively unchanged compared to the aligned case, as seen in Fig. 7.
The same non-linear self regulation process yields a diffusion
plateau. The region above and below the core is strongly de-
pleted, leading to a highly magnetised and low-density region
(ρ < 10−16 g cm−3, B > 10−2 G) that corresponds to the polar
cavity mentioned in Tomida et al. (2015). It is more extended
in the more magnetised case (see Fig. 7a compared to Fig. 7b),
as in the aligned configuration (see Figs. 6c and d). In iMHD,
flux freezing still yields high peak magnetic field values, but the
mixing due to the misalignment increases the numerical recon-
nection. As a result, a plateau somewhat similar to the niMHD
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Fig. 7. Same as Fig. 1 for the misaligned case.

case starts to develop (especially in the µ = 2 case). We will
discuss this in further detail in a forthcoming paper (Paper II),
which will include the effect of turbulence.

3.2.3. Outflows

We consider only niMHD in this paragraph. Because of the mis-
alignment angle, outflows, when present, exhibit a wider open-
ing angle in the misaligned case than in the aligned one, and
their growth is hindered. Misalignment yields less pile-up of the
toroidal field, which weakens the outflow-launching mechanism.
As for the aligned case, we do not see any outflowing motions in
the µ = 2 calculations.

We conclude that the presence or absence of outflowing gas
is closely linked to conservation of angular momentum and to
the regulation of magnetic field accumulation (and thus magnetic
braking). Low magnetisation (µ = 5) allows for enough toroidal
field accumulation to grow a magnetically and density-enhanced
tower, while higher magnetisation (µ = 2) produces too effective
braking, preventing the formation of magnetically launched and
supported outflows.

3.2.4. Region of active ambipolar action

Figure 6c shows the efficiency of the ambipolar diffusion along
with density contours and magnetic field orientation for µ = 5.
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The results are similar to the aligned case (cf. Fig. 6a), with a
larger pseudo-disk5. At these mid- to large scales (>50 au), am-
bipolar diffusion has little influence (Am ≫ 1). The polar cavi-
ties above and below the core are still present and well defined,
and the region of ambipolar action in the mid-plane leads to the
formation of a rotationally supported structure. Again, the mag-
netic plateau that forms at B <∼ 0.1 G corresponds to regions
where Am <∼ 1, dominated by ambipolar diffusion.

The µ = 2 misaligned case is almost indistinguishable from
the aligned one, as can be seen when comparing Figs. 6b and d.
This suggests that in more magnetised cases the final configura-
tion of the protostellar system results essentially from a satura-
tion process (self-regulation from the ambipolar diffusion) and is
independent of the alignment or misalignment. Another way to
formulate this result is that all the relevant regions, including the
diffusion plateau and most of the simulated box, are dominated
by ambipolar diffusion (Am . 1).

4. Long-term evolution in non-ideal MHD: disk

formation

In this section, we examine the rotationally supported structures
that can form around the first Larson core. We focus on niMHD
calculations; iMHD calculations are discussed in Sect 5.

4.1. Aligned case

Conservation of angular momentum during the collapse yields
a very high specific angular momentum close to the protostar,
which eventually leads to the formation of rotationally domi-
nated structures with a strong toroidal velocity component and
in some cases to genuine disks with Keplerian velocity profiles.
To define a “disk” in the simulations, we used the criteria defined
in Joos et al. (2013). Structures in which the magnetic pressure
either dominates or is at least not negligible, however, may sat-
isfy these criteria while being very different from the flat rota-
tionally supported structures characteristic of Keplerian disks. It
is important to clearly identify and distinguish these two types
of structures, since the existence of flat disks around Class-0 ob-
jects remains a subject of heated debate, and this issue is ad-
dressed below. Following Joos et al. (2013), a piece of fluid be-
longs to the disk if it fulfils all the following constraints (using
f = 2):

– it is close to hydrostatic equilibrium: vθ > f vz;
– it has strong rotational support: vθ > f vr;
– its rotational support is stronger than the thermal support:
ρv2
θ

2 > f P;
– it has a high density: ρ > 3.8 × 10−15 g cm−3.

In our fiducial aligned case with µ = 5, we do observe the for-
mation of a disk according to the above criteria that strongly re-
sembles a Keplerian disk. Its characteristic properties are given
in Table 3 and the results of the simulations are shown in Fig. 8
(top row). The disk is well defined in density, beginning just at
the edge of the core and exhibiting sharp edges at its periphery.
The breaking of symmetry observed in the top view (Fig. 8b)
is due to the evolution over several orbital periods at the core
radius, with small numerical errors leading to a bar-like instabil-
ity that evolves into two spiral arms. The disk then grows to a

5 The pseudo-disk is the overdensity region resulting from the loading
of pinched field lines in a collapsing core that resembles a disk. See
Galli & Shu (1993) for the first study of the pseudo-disk.

Table 3. Properties of the disks that are formed in the non-ideal MHD
simulations.

Alignment Aligned Misaligned
magnetisation µ = 2 µ = 5 µ = 2 µ = 5

Disk age (kys) 5.1 2.1 7.6 2.5
Disk (aspect ratio) core (2) spiral (8) spiral (5) warped (5)

Outer radius (au) 15 80 30 45
Mfirst core (M⊙) 0.17 0.23 0.17 0.27

Mdisk (M⊙) 0.029 0.14 0.027 0.19
β(inner radius) >103 >103 >103 >102

β(outer radius) <∼1 ∼1 ∼1 <∼1

radius of r ∼ 80 au and is flat. The velocity profile in the disk
is displayed Fig. 9 and is very close to a Keplerian one, with
an estimated mass for the central object of 0.17 M⊙ compared
to 0.23 M⊙ (Table 3) (see Appendix C for an important remark
about assuming a Keplerian profile to estimate the mass of the
central object).

The evolution of the disk for our two values of magnetisation
is displayed in Fig. 10 (solid lines for µ = 5, dashed lines for
µ = 2). In niMHD, the pinching of the field lines the midplane is
greatly reduced and the radial component of the field is almost
null. In this case, there is almost no magnetic flux accreted onto
the central object in the radial direction.

Figures 8c and d show the plasma β, defined as the ratio of
thermal over magnetic pressure, β = P/Pmag, in the disk and
its surroundings. We note that everywhere inside the disk and
the core, β ≫ 1, meaning that the thermal pressure dominates
magnetic pressure in these regions.

These results are of prime importance both from a physical
and numerical point of view. Physically, they bear major conse-
quences on our understanding of fragmentation and angular mo-
mentum transport in disks. In ideal MHD calculations, magnetic
fields have been shown to inhibit fragmentation (Hennebelle &
Teyssier 2008 and Commerçon et al. 2010). The fact that in more
realistic non-ideal MHD calculations β ≫ 1 suggests that mag-
netic fields have less impact than expected according to iMHD
results and that fragmentation may be facilitated. A second im-
portant consequence of the present calculations, of the charac-
terisation of plasma β, and of the detailed topology of the field is
the major role of these quantities in determining viscous trans-
port in disks, in particular for the magneto-rotational instability
(Balbus & Terquem 2001). A better knowledge of these quanti-
ties will enable us to define more accurate initial conditions in
such studies (see e.g. Lesur et al. 2014).

Form the numerical point of view, the present studies are
very important for the use of sink particles in simulations.
Current sink particle models do not treat magnetic flux trans-
port at the sink-gas interface in a consistent way. The flux is
not accreted, which creates an effective barrier of infinite dif-
fusion and spurious numerically driven interchange instabilities.
As mentioned above, in the AD case, the radial component of the
magnetic field is almost non-existent, yielding a configuration of
zero net radial flux, allowing the accurate characterisation of the
accreted (or in this case not accreted) magnetic flux onto the sink
particle.

µ = 2: in the more magnetised case, a disk-like structure around
the first core is still observed, according to the above criteria, but
the disk mass is an order of magnitude lower than in the less
magnetised µ = 5 case. Figures 8e and f represent the disk cells
in an edge-on and in a top view. As for the less magnetised case,
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Fig. 8. Visualisation of the disk structures. Top row: panels a) and b) show side and top views, respectively, of the disk density (orange), with the
velocity vectors superimposed for µ = 5. Panels c) and d) are the same side and top views, but showing the plasma β parameter (colour map), over
which we plot the magnetic field direction for the side view c) and the velocity vectors for the top view d). Bottom row: same as for the top row,
but for the µ = 2 simulation. Each row has a different spatial scale.
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the disk inner radius coincides with the outer layers of the core,
and the disk slowly grows as matter is accreted. The final radius
is about 20 au with a mass of 0.03 M⊙. The aspect ratio remains
close to unity, and the structure exhibits the same characteristic
properties as in the previous case: it has a close-to-Keplerian
velocity field with a high plasma β in the rotationally domi-
nated structure, while in contrast, the regions outside the disk
are magnetically dominated. No spiral arms have developed in
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Black: aligned case. Red: misaligned case. t = 0 corresponds to the first
core formation to allow direct comparison between cases.

this case, even at the end of the simulation, but steady state has
not been reached yet as the disk is still slowly accreting.

As an important global remark, we note that since values of
β ≫ 1 in the disk are found in all our simulations in niMHD for
any initial condition, a β-based criterion could thus be used as a
robust disk criterion in niMHD simulations6.

6 This criterion encompasses the core itself, which needs to be re-
moved from the disk by considering the thermal to kinetic energy ratio,
as done in Joos et al. (2013).
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Fig. 11. Same as Fig. 8, but for the misaligned configuration. Each row has a different spatial scale.

4.2. Misaligned case

In the misaligned case, a disk can form more easily and is more
massive, as already noted in previous studies (Joos et al. 2012;
Li et al. 2013). Indeed, misalignment yields a thicker pseudo-
disk, which reduces the magnetic braking. Figure 11 (top row)
shows the disk structure at the end of the simulation. It exhibits
a flat inner morphology, with a Keplerian velocity profile and
high plasma β values. In this case we note large accretion spiral
arms (with significant infalling motions) above and below the
disk plane, with β ≪ 1. These spiral arms, however, do not rep-
resent a significant part of the disk mass. We note that using a
β-based disk selection criterion would exclude these arms from
the disk (see Fig. 11d compared to 11b).

For µ = 2 (Figs. 11e−h), the early evolution is similar to the
aligned case, the disk is at first hardly distinguishable from the
core (outer radius is about 10 to 15 au) and then grows by accre-
tion. Significant differences compared to the aligned case, how-
ever, occur at later stages, as seen in the figures. In this case, the
disk is massive enough to trigger the formation of spiral arms,
with a mean radius of 20 to 50 au. As for the previous cases, the
disk is very well defined by the region of high β plasma.

4.3. Emerging consistent picture

Figure 12 shows a direct visual comparison of disks in each sim-
ulation. The disk formation and evolution during the collapse in
the aligned and misaligned cases is presented in Fig. 10. In the
misaligned cases, the disk forms at the same time as or even be-
fore the first core forms. This confirms, as discussed above, that
the disk emerges from the outer layers of a distorted first core
embryo. After about a hundred years, the disk is well defined,

with a mass >∼10−3 M⊙ in all cases. At this stage, the disk growth
histories for the aligned and misaligned cases are essentially in-
distinguishable.

Figure 13 displays the angular momentum evolution in spa-
tially restricted regions, separating the disk and outflow compo-
nents in the system. The disk plane includes every cell fulfilling
the disk criteria inside a sphere of radius 100 au. Conversely, the
outflow component corresponds to every other cell in a sphere
of radius 100 au. The µ = 5 and µ = 2 cases exhibit the same
pattern. The mass-averaged angular momentum is slightly larger
in the outflow region in the aligned case (dashed blue line) than
in the misaligned one (dashed red line) during the first thousand
years after the core formation. In the disk plane, the definition of
the disk and the presence of spiral arms introduce variability, but
the trend remains similar for the aligned and misaligned con-
figurations. The misaligned case in iMHD releases the strong
gradients in the pseudo-disk (strongly pinched magnetic field
lines) found in the aligned case and thus enables larger disks
to form. Non-ideal MHD produces the same smoothing of gra-
dients, yielding eventually similar structures in the aligned and
misaligned cases.

This similarity between aligned and misaligned simulations
in niMHD shows that the formation and evolution of a disk is
independent of the initial misalignment. Ambipolar diffusion,
when it is efficient, regulates the angular momentum transport
and the magnetisation during the collapse. A stronger magnetic
braking will operate in the aligned case, leading to more angu-
lar momentum being evacuated in the vertical direction and ulti-
mately yielding the same disk mass and final angular momentum
once a physical equilibrium has been reached. The larger the am-
bipolar diffusion, the more efficient the regulation mechanism,
leading eventually to similar structures. This is well illustrated
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Fig. 12. Representation of disk sizes and shapes for every niMHD sim-
ulation. The density colour map and contours are the same as in Figs. 8
and 11.

by the even more pronounced similarity between the aligned and
misaligned cases for µ = 2.

5. Limits of ideal MHD

In this section, we highlight several limits of the ideal MHD ap-
proximation in the context of prestellar magnetised collapse and
disk formation, justifying in passing the fact that we did not dis-
cuss iMHD simulations in Sect. 4.

5.1. Counter-rotation

In ideal MHD, the increase in the toroidal field component is
due to the rotation of the gas around the forming protostar
and is only hindered by numerical reconnection. The resulting
magnetic braking can be efficient enough to completely stall
the rotation of the core. During the time the information prop-
agates outwards, the core can start to counter-rotate, creating a
new braking, until eventually co-rotation with its surrounding is
reached again. This is illustrated in Fig. 14, where we slightly in-
creased the initial rotation in our fiducial case to better illustrate
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the formation of the first core.

our purpose: µ = 5, α = 0.25, βrot. = 0.03. Time is evolving from
top to bottom. To trace the rotation, we calculated the angular
momentum for each cell with respect to the mean direction of ro-
tation in a sphere of radius 200 au. The first and second columns
show the negative and positive toroidal velocity (vθ) maps, re-
spectively, in a iMHD simulation. The third column displays the
positive toroidal velocity for niMHD7. Strong counter-rotation
occurs in the iMHD simulation, starting near the core (second
row), and propagates into the outflow (third row). There is no
sign of counter-rotation in the niMHD run. The mechanism con-
tinues and generates zones that extend to very large radii with
alternate positive and negative toroidal velocities, producing a
butterfly-shaped outflow (bottom row). This has important con-
sequences on the expansion of the outflow, which is narrower for
iMHD (this is most visible in the third row) because the counter-
rotation hampers the pile-up of the toroidal component of the
magnetic field.

We carried out similar studies in the misaligned case and
found out that counter-rotation still develops after formation of
the first core, although with a more limited spatial extent than
in the aligned case. We also examined lower initial magneti-
sations and found out that counter-rotation is greatly reduced
when µ > 5.

5.2. Flux redistribution

Figure 15 illustrates the evolution of the disk mass and central
magnetic field for iMHD. At t >∼ 26.5 kyr, the field intensity
decreases by almost an order of magnitude, producing a dras-
tic increase of the disk mass. This stems from the flux accumu-
lation at the centre of the collapsing system because the mag-
netic flux is frozen with the flow, which produces a major in-
terchange instability. After this event, the core environment is
weakly magnetised and quite disorganised (looking similar to
turbulent runs), enabling the formation of a massive rotation-
ally supported disk. The evolutionary sequence is portrayed in
Fig. 16 (top), where the times corresponding to snapshots 1 to 4
in Fig. 15 are indicated in Fig. 15. The thin disk-like structure
in 1 and 2, with a mass Mdisk . 5 × 10−2 M⊙, evolves into a

7 We do not display the counter-rotating vθ < 0 for AD since there are
almost no counter-rotating cells except very close to the rotation axis at
the very end of the simulation.
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thick structure (3 and 4) with strong magnetic support, although
it does not fulfil the disk criteria we defined above. The violent
release of magnetic flux produced by the interchange instabil-
ity between epochs 2 and 3 breaks the top-down symmetry of
the system and displaces the core by several tens of au (this is
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Fig. 16. a) Evolution of the density/velocity map for the four times la-
belled 1−4 in Fig. 15. b) The three first columns represent the relative
importance of each component of the magnetic field. The colour scale
shows the value of each component as follows: black for high values
(>∼1), white for low values (<∼10−1.5); blue and red (in-between >∼10−1).
The rightmost column displays the plasma parameter β = P/Pmag.
Snapshots for different times of interest in the iMHD µ = 5 aligned
case, as labelled Fig. 15.

not visible in Fig. 15 since we have integrated the maps by al-
ways using the densest cells as the origin). Detailed maps of the
different magnetic components and the plasma β are displayed
in Fig. 16 (second and third rows) for snapshots 1 and 4. The
symmetry breaking, as well as the toroidal support, are appar-
ent in the figure. Throughout most of the structure, β is lower
than unity, showing again that magnetic support is ubiquitous
in the system. As examined in the previous section, for AD the
pile-up of the field occurs outside the core and is much less ex-
tended (see Fig. 4, at r ∼ 30 au), and is controlled by the phys-
ical, rather than numerical, resistivity. Furthermore, it does not
lead to the growth of the pseudo-disk8. Fig. 17 compares the

8 Growth of the pseudo-disk due to pile-up of the field has been studied
in Hennebelle & Fromang (2008) in the appendix with a model based on
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Fig. 17. a) iMHD. b) niMHD. µ = 5, aligned case. View of the disk
plane in a cylindrical volume of height h = 20 au. Left and right: den-
sity/velocity field and plasma β, respectively, with the velocity field.
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Fig. 18. iMHD, µ = 5, aligned case. View of the disk plane in a cylin-
drical control volume of height h = 20 au. First row: t ∼ 25.6 kyr.
Second row: t ∼ 27 k years. From left to right, the same simulation with
increased resolution: 6, 8, and 16 cells per Jeans length.

density/velocity and plasma β maps, viewed from above, in the
iMHD (top) and AD (bottom) cases. We clearly see the contrast
between the highly magnetised (β ≪ 1) disk-like structure that
arises in iMHD and the rotationally supported disk that develops
spiral arms with β ≫ 1 when ambipolar diffusion is taken into
account.

quasi-equilibrium growth of a magnetised self-gravitating rotationally
dominated structure in iMHD.

5.3. Numerical convergence

Numerical convergence is always a problem in numerical sim-
ulations. We carried out a resolution study in the aligned case
and, while good agreement was found between the various AD
runs, convergence in iMHD was not satisfactory. Numerical dif-
fusion effects, as well as the choice of Riemann solver to com-
pute fluxes at the cell interfaces, prevent a clear identification
of the source of this problem. This issue has been highlighted
in Commerçon et al. (2010), Hennebelle & Fromang (2008)
for the influence of different solvers, and explored in detail by
Li et al. (2014b), to which we refer to for further information
and discussions. As part of our resolution study, we performed
new runs of our benchmark aligned µ = 5 case (hereafter denom-
inated case-0), with a mesh resolution increased by a factor 2
(16 cells per Jeans length) and a resolution decreased to six cells
per Jeans length (this latter is only applied for densities above
10−12 g cm−3, while keeping the original Jeans length sampling
elsewhere).

By comparing the high-resolution iMHD calculation to
case-0, we found a good agreement until t ∼ 25 kyr (the disk
mass is slightly lower by a factor 1.5 at this stage, but this proba-
bly stems from the uncertainties of the criteria used to define the
disk when no clearly identifiable rotationally supported struc-
tures are present; see Sect. 4), at which point magnetic field os-
cillations at the centre of the core start to appear due to the flux
freezing condition (earlier in the high-resolution run). This is re-
assuring in the sense that it implies that the resolution we have
used in case-0 is high enough for numerical resistivity effects
to be negligible, which agrees with the absence of a strong field
accumulation at the boundary of the core. The higher resolution,
however, further diminishes the numerical resistivity, and thus
flux freezing and flux accumulation are increased, facilitating
the development of instabilities, which now appear earlier in the
simulation.

In the low-resolution run, the numerical resistivity is in-
creased, and we observe the appearance of a diffusion plateau,
similar to the one in AD runs, but developing at a slightly higher
value (B ≃ 1 G). In this case, the disk mass is overestimated
but the symmetry is preserved longer than in the high-resolution
runs. We observe transient ejections similar to those produced
by the interchange instability, however, that are due to a strong
pile-up of the magnetic field close to the core. These ejections
ultimately lead to a similar quasi-steady final state.

A visual comparison of the different resolutions (6, 8, and
16 cells per Jeans length) at two different times is shown in
Fig. 18. As seen, the resolution strongly affects the simulation
output when numerical resistivity is not negligible. This is of
prime importance in turbulent simulations, where it is never clear
that the turbulent reconnection accurately describes the sub-grid
unresolved physics. Another parameter that leads to numerical
diffusivity is the numerical method chosen to solve the induction
equation. More details on this issue are given in Appendix B.

The numerical convergence is much better for niMHD.
Figure 19 shows the disk mass evolution using different mesh
resolutions and Riemann solvers. The long-term evolutions are
similar, with both the same global variations and final disk mass.
The differences also remain small when changing the solver
from HLLD to HLL, as long as the resolution is >∼8 cells per
Jeans length. We used the HLLD solver for all our simulations
to ensure that ambipolar diffusion dominates the numerical one.

The conclusion of our convergence study is as follows.
While in ideal MHD the isothermal first phase of the collapse
is accurately described, with the formation of the first core and
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the early growth of the magnetic bubble/tower, the later evolu-
tion strongly depends on the numerical resolution. The key is-
sue is the sudden release of the magnetic energy accumulated
in the core that leads to oscillations in the peak magnetic field
value (see Fig. 15 dashed blue line). The release of this energy,
depending on the numerical tools, ultimately leads to either a
quasi-steady state in which a massive disk-like rotationally and
magnetically supported structure forms (see Fig. 17 in the top
panels) or, for HLLD, to the appearance of a high-velocity jet
and high Alfvén speeds that are due to depleted cavities above
and below the core (see Appendix B for a discussion of the
Riemann solver). The long-term evolution of these structures,
which directly inherit their properties from the angular momen-
tum and magnetic flux repartition close to the core, is thus of
highly questionable validity. In misaligned configurations, the
pseudo-disk is thicker and the spurious effects due to very high
gradients are less acute (see e.g. Joos et al. 2012). The inter-
change instability is less visible than in Fig. 18, but the flux re-
lease and the growth of a rotationally supported structure (as in
Fig. 15) is still present in the simulation.

In niMHD, in contrast, neither the resolution (as long as it is
good enough) nor the choice of the solver have significant effects
on the final outputs. This brings confidence to our global study
and reinforces our general conclusion that ambipolar diffusion
in the protostellar first collapse plays a major role in regulating
angular momentum transport and magnetic flux diffusion, not to
mention preventing spurious instabilities found in ideal MHD.

6. Comparison with previous work

In this section, we compare our results with those of four pre-
vious studies that are representative of the exploration of star
formation in non-ideal magnetohydrodynamics.

Krasnopolsky et al. (2010) first explored the impact of en-
hanced resistivities on disk formation. Their study was moti-
vated by the fact that in ideal MHD, magnetic fields prevent
the formation of large Keplerian disks, which were ubiquitous
in hydrodynamical simulations. Resistive MHD was identified
as a physical process able to limit this effect. Their setup uses an
isothermal equation of state, does not account for self-gravity,
and assumes axisymmetry. Their main results, compared to ours,
are the following:

– in their Figs. 5−8, the pinching of the field lines in the equa-
tor and therefore the split monopole configuration is released
as the resistivity is increased.

– they found that a resistivity >∼1019 cm2 s−1 is needed to form
a substantial disk.

While they did not directly link the release of the split-monopole
configuration to the formation of rotationally supported disks,
they concluded that increasing the resistivity helps both to form
disks and to reduce numerical artefacts through physical rather
than numerical dissipation, and it also changes the topology of
the field that is prone to reconnect close to the star where the
pinching was strong. We agree with these conclusions and note
that the resistivity above which they formed disks corresponds
to or is slightly stronger than the typical values of ambipolar
resistivity we used (see Marchand et al. 2015) that lead to the
formation of disks. However, these authors assumed a constant
enhanced resistivity in the induction equation in the Laplace op-
erator. Consequently, they could not grasp any non-linear effect,
which, as we showed, can lead to a saturation of the magnetic
field and further facilitate the formation of rotationally supported
structures.

Li et al. (2014b) continued the work started by Krasnopolsky
et al. (2010) and studied the mechanisms of disk formation.
While they focused on iMHD, they raised many of the questions
we developed in Sect. 5. In particular, they insisted on the role of
the warping and the reduced reconnection close to the protostar,
and they emphasized that a correct treatment of magnetic flux
accretion on the protostar (especially if a sink particle is used)
and reconnection at the boundary of the disk/pseudo-disk are
mandatory and are lacking in many previous studies. The prob-
lem of turbulent reconnection in iMHD was also discussed and
placed in perspective. We agree with their findings and insist on
the fact that numerical questions regarding flux conservation and
reconnection are crucial for a proper study of disk formation.

Tsukamoto et al. (2015) presented the first second core cal-
culations with both Ohmic dissipation and ambipolar diffusion.
They performed three-dimensional simulations using an SPH
code with a Godunov module and divergence cleaning meth-
ods for the induction equation. Their main conclusions are the
following:

1) a value βplasma ≫ 104 in a flattened first core;
2) formation of a circumstellar disk (with a radius of 1 au) at

the formation of the protostar;
3) occurrence of a saturation plateau at B ∼ a few10−3 G in

the evolution of the magnetic field at densities 10−15 < ρ <
10−14 g cm−3 followed by a sheet-like collapsing phase (in
which B ∝ ρ1/2) until the formation of the first core;

4) they did not observe disks around the first Larson core.

Their values for βplasma (point 1) are similar to ours (see Table 2).
So far, we cannot comment on point 2 since we did not ad-
dress the second core formation in this paper. When studying
the evolution of the central magnetic field as a function of den-
sity, they only plotted the data at the centre of the system (while
we showed every cell in the simulation), and they thus failed to
report a saturation of the magnetic field that is seen in our Fig. 1.
Through private communication, we have obtained the confirma-
tion that they indeed observed a diffusion plateau that was due
to ambipolar diffusion, but its origin or consequences are not
discussed in their work. We note that they assumed a sheet-like
accretion through the disk, whereas in our simulations accretion
onto the first core mostly occurs in channels driven by the hour-
glass configuration. There is, however, no real evidence for their
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assumption. Finally, the lifetime of the first core in their simula-
tions is comparable to the time of integration after the first core
formation in our runs (of the order of a thousand years for µ = 4).
However, they did not form any mid-scale (a dozen to a few
dozen au) rotationally supported structure around the first core.
Instead, in their Ohmic and ambipolar+Ohmic calculations, the
flattened first core itself evolves into a rotationally dominated
structure that they called a disk. These differences in the dynam-
ics of the collapse highlight the difficulty of conducting reliable
numerical calculations during prestellar core collapse, which in-
volves a wide range of temporal and spatial scales, and the ne-
cessity of including all relevant physical processes and of using
reliable numerical schemes. These studies, and the present ones,
open the route to such explorations.

Tomida et al. (2015) performed a study similar to ours, fo-
cusing on the first core formation and the surrounding structures,
with the addition of radiation transfer instead of a barotropic
equation of state. They used only one value of magnetisation
that is close to our low-magnetisation case. Their model with
ambipolar diffusion also included Ohmic dissipation, and they
did not study the effects of ambipolar diffusion alone. We agree
with the following of their results:

– a flattening of the first core, especially in their OA
(Ohmic+ambipolar diffusion) run.

– depleted polar cavities where the ambipolar action is
dominant.

– in the simulation labelled I (ideal MHD), they found counter-
rotation of the core (as visible in their Fig. 4), as in the
present Fig. 14, but explained it by the interchange insta-
bility mixing the physical quantities. While we also found
counter-rotation in iMHD, it occurs before the interchange
instability develops. Following Galli et al. (2006), we explain
this counter-rotation by a strong pile-up of the magnetic field
yielding enough magnetic braking (or torque) to completely
stop the rotation of the core and spin it backwards. The gen-
eral conclusion, however, remains similar: iMHD models are
unable to accurately describe angular momentum transport
after the instability has developed.

– an increase of the mass-to-flux ratio up to or above a fac-
tor 10 due to Ohmic and Ohmic+ambipolar diffusion action,
especially at the first core scales.

– no splitting of the field lines in the midplane.
– the use of a genuine physical dissipation scale helps nu-

merical convergence and thus assesses the reliability of the
results.

Some of their results are more difficult to discuss. For instance,
their explanation for a higher first core mass in the resistive
cases where the magnetic pressure and the thermal and ro-
tational supports are higher. In our experience, the interplay
between magnetic braking (yielding stronger or weaker rota-
tional support) and removal of magnetic flux (yielding stronger
or weaker magnetic support) strongly affects the mass of the
core. Although it is possible that in their set of simulation, the
iMHD models lead to less massive first cores, in our runs we
found that the first core mass is higher in the iMHD framework
for µ = 2, but somewhat similar to or lower than the niMHD
value for µ = 5 (see Table 2). The physical explanation re-
mains the same: less support in total, but it is not straightforward
to predict the results over a broad range of initial conditions.
Although their discussion of the disk is not expanded enough
to allow detailed comparison with our results, the main result
is similar: non-ideal MHD enables disk formation with no need

to artificially relax the flux-freezing constraint or to invoke en-
hanced resistivities.

7. Conclusions

We have thoroughly explored the role of ambipolar diffusion in
magneto-hydrodynamic collapse calculations of a dense molec-
ular cloud core in the context of star formation. Our setup in-
volved a magnetised core of uniform density in solid-body ro-
tation, which collapsed under its own gravity. The gas had a
barotropic equation of state to mimic radiative transfer, and the
magnetic resistivities entering the calculations of the non-ideal
MHD terms were calculated using a reduced chemical network.
We performed eight simulations, with two different magnetisa-
tions (µ = 5 and 2) and two tilting values of the rotation axis
(0◦ and 40◦) with respect to the magnetic field direction, both in
ideal MHD and in non-ideal MHD with ambipolar diffusion. We
paid particular attention to the problems of magnetic flux con-
servation, magnetic braking, and flux release due to diffusion
processes. Our main findings are summarised as follows.

– Ambipolar diffusion creates a magnetic diffusion barrier at
about the time the first Larson core forms, preventing the
magnetic field from being amplified above 0.1 G. Flux freez-
ing, however, still holds during the initial stages of the col-
lapse, when resistivities are low. The mass and radius of the
first Larson core remain rather similar between iMHD and
niMHD models.

– The magnitude of B at the diffusion plateau can be esti-
mated by simple order-of-magnitude arguments. This satu-
ration value appears to depend very weakly on the initial
cloud magnetisation, suggesting a convergence of the final
state once the initial conditions have been “forgotten” by the
system.

– The occurrence of a diffusion plateau has crucial conse-
quences on magnetic braking processes. Not only does it
prevent a catastrophic amplification of the field B, which
controls the braking efficiency, but it also reorganises the
field topology, reducing the pinching of field lines close
to the protostellar object, which also hinders the braking
mechanism.

– Magnetic flux freezing and magnetic braking play a central
role in the formation and development of the structures dur-
ing the collapse. While in iMHD strongly amplified fields
launch powerful magnetically supported outflows, these lat-
ter are much weaker or even disappear in niMHD.

– Misalignment between the initial rotation axis and the
magnetic field direction does not appear to affect the
niMHD results, showing that the physical flux dissipation
due to ambipolar diffusion dominates the effects of initial
configuration or numerical diffusion. For iMHD models, the
additional mixing due to a tilted configuration also produces
a diffusion plateau, similar to the ambipolar calculations.

– The disks that form in iMHD, characterised by strong mag-
netic support and an inflated shape (due to toroidal field
lines loaded by infalling matter) strongly differ from the flat
disks that form in niMHD. Formation and long-term evolu-
tion of disks in ideal MHD, however, are of dubious validity.
Furthermore, the excessive magnetic braking generates un-
physical counter-rotation inside the outflow or the magnetic
tower. Interchange instabilities develop at the interface be-
tween the core and the disk, producing a redistribution of
the flux and displacement of the core and disrupting the top-
bottom symmetry in the system. Mesh resolution is found to

A32, page 17 of 20



A&A 587, A32 (2016)

strongly affect the simulation results in iMHD. None of these
effects is observed in the niMHD simulations if the resolu-
tion is high enough.

– Disks with Keplerian velocity profiles around the protostar
form in all our niMHD simulations for all different magneti-
sations and inclination angles. Their size and mass, however,
is significantly reduced (by a factor ∼10) in the more mag-
netised case (µ = 2) because of the increased braking. Such
a magnetisation value seems to be typical of most molecular
clouds. Aligned and misaligned initial configurations have
no consequence on the disk properties in niMHD and yield
disks with very similar properties.

Magnetic flux diffusivity due to ambipolar diffusion thus appears
to play a dominant role during the first protostellar collapse
and the formation of the first Larson core and its surround-
ing disk, and it appears to dominate processes such as mag-
netic field and rotation axis orientations. Flux diffusion during
the collapse allows the formation of quasi-Keplerian disks, solv-
ing the “disk formation crisis” found in ideal MHD. The mass,
size, and magnetic properties (plasma β) of these disks, how-
ever, strongly depend on the initial magnetisation (µ parameter)
of the cloud, and in all cases the disks are significantly smaller
and less massive than those found in pure hydrodynamics calcu-
lations. Characterisation of this plasma β is of major importance
to characterise viscous transport in disks, notably in the MRI.
To complete our study, we will explore the effect of turbulence
on the first collapse of a magnetised cloud core in a forthcoming
paper.
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Fig. B.1. Density maps of the region around the first core using four different Riemann solvers: a) Lax-Friedrich; b) HLL; c) HLLD+Switch;
d) HLLD. The velocity vectors are overlaid on density maps with green and blue arrows.

Appendix A: Calculation of the saturation value

In this section, we provide an analytical estimate of the value
of B at which the magnetic diffusion starts to overcome the dy-
namical MHD effects. We rewrite the initial values for B0 and
ρ0 in terms of the ratio of thermal to gravitational energy α and
mass-to-flux ratio µ, according to

B0 =
1

M⊙

(

2G

5c2
s

)2
µcrit

(

M

M⊙

)−1 (

α

α = 1

)−2
(

µ

µ = 1

)−1

, (A.1)

ρ0 =
1

4
3π

(

2G

5c2
s

)3
M2
⊙

(

M

M⊙

)−2 (

α

α = 1

)−3
· (A.2)

The relationship between the magnetic field and density is as-
sumed to follow ρ ∝ Bξ. We also assume that in the early phases
of collapse, the typical length scale is L ≃ cstfree-fall and the ve-
locity is V ≃ cs. We then seek the value of the magnetic field Bsat
for which

V × B ≃ ηAD
B

||B||
×

[

(∇ × B) × B

||B||

]

, (A.3)

with ηAD ≃ B2

γADρiρ
. Using the fact that ρi = C

√
ρ (from Shu

1992), we can then write

B2 = c2
s tfree-fallγADρ

3/2C, (A.4)

which yields the saturation value for the magnetic field

Bsat =
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0
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Appendix B: Influence of the solver

The choice of the Riemann solver to compute the conservative
fluxes at the interfaces between domain cells can greatly affect
the results of a simulation, especially when studying diffusion

processes. We compare here four test simulations that use dif-
ferent strategies to compute the fluxes. The resolution for each
run is 8 cells per Jeans length. In Fig. B.1 from left to right, the
solver is increasingly less diffusive.

In the HLLD+switch simulation, we used the HLLD solver
over most of the computational domain, but switched to a Lax-
Friedrich solver whenever large discontinuities9 are present in
the flow variables between neighbouring cells. This allowed us
to evolve the simulations for long periods of time, up to ∼1.5
free-fall time. However, it raises crucial problems on both the
numerical reconnection in the vicinity of the core and the conse-
quent interchange instability, as well as a violent core displace-
ment that accompanies an unphysical release of magnetic en-
ergy at the centre. The formation of large inflated disks is also
questionable.

In a second calculation, we removed the switch to a more dif-
fusive solver, keeping HLLD in the entire domain. In this case,
the discontinuities (mostly magnetic and density related) con-
tinue to sharpen, until the time integration in the simulation is
frozen due to very high Alfvén speeds in the outflows or jets (it
can reach speeds of the order of >∼104 km s−1). Whether this is a
correct behaviour is open to debate (see also Li et al. 2014b). We
reach convergence of results quicker than in the HLLD+switch
case, since we basically prevent numerical diffusion, provided
we have enough resolution at a given scale and density. On the
other hand, there are physical diffusive processes at play in star
formation, either from microphysics (e.g. ambipolar diffusion)
or from turbulent reconnection. Therefore, a description that
avoids any diffusion lacks physical mechanisms. Finally, we per-
formed simulations using only HLL that takes into account only
three waves instead of five with HLLD. This case fits in between
the two previous ones; convergence is reached with 16 cells per
Jeans length, but we do witness diffusion in the outflow and the
vicinity or interior of the Larson core. In this case, Alfvén speeds
remain below 103 km s−1. For simulations of the second collapse
and formation of the second core, for which time integration

9 Discontinuities either in density, or when the wave speed for the
intermediate states for HLLD are ill defined due to a very small
denominator.
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Fig. B.2. First core mass evolution for various solvers. Standard resolu-
tion of 8 cells per Jeans length.

is critical, our former tests suggest that using HLL with high
enough resolution, at least in ideal MHD, is better than using
HLLD (with or without the switch) because it enables both nu-
merical convergence and the probing of longer timescales. For
the sake of comparison, we performed one test case using the
Lax-Friedrich solver alone. The results are similar to the HLL
case.

Additionally, Fig. B.2 shows the first core mass evolution
for each simulation, highlighting significant differences in an
outcome as well defined as the first core mass. Until the time
when the least diffusive solver (HLLD) does not allow continu-
ing the simulation anymore because the time step is too small,
the results are similar. However, after this point, depending on
the choice of solver, results can significantly differ both in the
qualitative picture (as seen in Fig. B.1) or for a precise out-
come (Fig. B.2). Therefore, depending on the timescale of in-
terest and the precise point of study, a careful choice of the nu-
merical method has to be made.

Appendix C: Disk velocity profile using ideal MHD

In this appendix, we caution about the definition of a Keplerian
disk and the estimate of the central core mass obtained when fit-
ting a priori the disk radial velocity distribution with a Keplerian
profile (∝r−1/2), in particular in structures whose growth is
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Fig. C.1. Same as Fig. 9 for iMHD.

magnetically driven, as is the case for pseudo-disks in ideal
MHD. The disk criteria we used, based on Joos et al. (2012),
define a rotationally dominated structure. We then proceeded by
studying the radial dependence of the toroidal velocity, and com-
pared it to the classical Keplerian velocity profiles. The velocity
profile, the plasma β, and the aspect ratio allowed us to esti-
mate how similar the disks we found are to a Keplerian disk. As
emphasised below, we find that these disks can depart signifi-
cantly from the classical Keplerian picture. The relatively high
mass of the surroundings of the first core and the magnetic fields
cause the usual Keplerian model to fail. This issue is of prime
importance when trying to characterise the properties of the disk
structures observed around Class-0 objects (see e.g. Tobin et al.
2013, 2015).

An example is shown in Fig. C.1. Whereas a Keplerian
profile (grey dashed line) can be roughly fitted to the toroidal
velocity field (blue dots), the best-fitting estimate (dashed red
line) gives a significantly different value, ∝r−0.32, yielding a cen-
tral mass different from the one inferred from the model of a
Keplerian velocity profile around a central point mass. This re-
sult stresses the fact that fitting a scattered velocity profile, which
can depart significantly from a Keplerian one, by such a value
can be very uncertain, casting doubts on estimates of central
masses obtained with Keplerian formulae.
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