
AmbiStream: A Middleware for Multimedia

Streaming on Heterogeneous Mobile Devices

Emil Andriescu1, Roberto Speicys Cardoso2, and Valérie Issarny1

1 ARLES Project-Team, INRIA Paris-Rocquencourt,
Domaine de Voluceau, Rocquencourt, Le Chesnay 78153, France

{emil.andriescu,valerie.issarny}@inria.fr
2 Ambientic

Domaine de Voluceau, Rocquencourt, Le Chesnay 78153, France
roberto.speicys_cardoso@ambientic.com

Abstract. Multimedia streaming when smartphones act as both clients
and servers is difficult. Indeed, multimedia streaming protocols and asso-
ciated data formats supported by today’s smartphones are highly hetero-
geneous. At the same time, multimedia processing is resource consuming
while smartphones are resource-constrained devices. To overcome this
complexity, we present AmbiStream, a lightweight middleware layer so-
lution, which enables applications that run on smartphones to easily
handle multimedia streams. Contrarily to existing multimedia-oriented
middleware that propose a complete stack for multimedia streaming,
our solution leverages the available highly-optimized multimedia soft-
ware stack of the smartphones’ platforms and complements them with
additional, yet resource-efficient, layers to enable interoperability. We
introduce the challenges, present our approach and discuss the experi-
mental results obtained when executing AmbiStream on both Android
and iOS smartphones. Our results show that it is possible to perform
adaptation at run time and still obtain streams with satisfactory quality.

Keywords: multimedia streaming, mobile, smartphone, middleware.

1 Introduction

The present generation of smartphones enables a number of applications that
were not supported by previous generation cellular phones. Particularly, the
greater processing power, better network connectivity and superior display qual-
ity of these devices allow users to consume rich content such as audio and video
streams while moving. Not surprisingly, radios1 and television channels2 today
provide mobile applications that allow access to their live media streams. Even
video rental services3 provide mobile applications that support movie streaming
to smartphones.

1 www.npr.org/services/mobile
2 www.nasa.gov/connect/apps.html
3 itunes.apple.com/us/app/netflix/id363590051

F. Kon and A.-M. Kermarrec (Eds.): Middleware 2011, LNCS 7049, pp. 249–268, 2011.
c© IFIP International Federation for Information Processing 2011

www.npr.org/services/mobile
www.nasa.gov/connect/apps.html
itunes.apple.com/us/app/netflix/id363590051

250 E. Andriescu, R. Speicys Cardoso, and V. Issarny

All those applications, however, assume a centralized architecture where a
powerful server (or a farm of servers) provide streams to lightweight mobile
devices. Node heterogeneity also remains an issue: most of those applications are
available for a single smartphone platform. Indeed, to support multiple phone
platforms, developers must (i) modify the mobile application to support different
sets of decoders, streaming protocols and data formats and (ii) generate multiple
data streams on the server side to be consumed by each mobile platform. Hence,
when a resourceful server is not available, as in the case of a smartphone to
smartphone streaming scenario, this approach is impractical.

In this paper, we introduce AmbiStream, a middleware-layer solution to enable
multimedia streaming among heterogeneous smartphones. Such a solution can be
beneficial to a large number of applications. Examples of such applications include:

– Streaming a live event directly to other devices reachable on the network;
– Sharing media on the fly between different devices (phone to tablet/TV);
– Voice call applications;
– Distributed processing of a video stream;
– Mixing augmented reality with live remote user interaction for, e.g., a net-

worked game;
– Multimedia-rich collaboration among mobile users;
– Audio/video sharing in crisis situations when infrastructure is unavailable;
– Private communication of multimedia data between peers (without involving

a third party server);

Today, to create such applications, developers must overcome a number of con-
straints. First, smartphones run different mobile operating systems, each sup-
porting a different set of media encoders, decoders and streaming protocols.
Second, communication is performed over wireless networks that are unstable
and that do not support resource reservation, and thus streaming quality is
managed by the protocol without cooperation from the network layer. Finally,
the multimedia streaming software stack of each platform is highly optimized to
deliver high quality audio and video while reducing resource usage.

Existing system support for multimedia streaming is unsuitable to face the
smartphone challenges described above. Indeed, architectures for multimedia
streaming on the Internet such as [10,23] suppose the existence of powerful
servers that can adapt content on behalf of clients, which is infeasible when
the streaming server is a resource-constrained smartphone. Solutions for mul-
timedia streaming on ad hoc networks either do not consider the problem of
content adaptation [2,12,24] or are cross-layered, such as those surveyed in [14].
Cross-layered solutions require cooperation between application layers and net-
working layers, e.g., integration between the video codec and the routing protocol
to optimize streaming quality.

To enable multimedia streaming among heterogeneous devices, two main chal-
lenges must be solved. First, multiple incompatible protocols for multimedia
streaming exist today, and each platform supports one or a small subset of
them. As a result, smartphones must overcome the streaming protocol hetero-
geneity problem to be able to exchange multimedia streams with heterogeneous

AmbiStream: A Middleware for Multimedia Streaming 251

devices. Second, each smartphone platform generates and stores multimedia data
using some specific container format, usually depending on the streaming proto-
cols it supports. These data cannot be directly transmitted through a different
streaming protocol because the media container format is specific to the proto-
col. Smartphones, then, must also adapt the media container format to enable
translation from the native streaming protocol to non-native protocols supported
by other peers.

To address the above challenges, we propose a lightweight middleware layer
that complements existing software stack for multimedia streaming on smart-
phones with components that enable interoperability. The proposed layer defines
an intermediate protocol and the associated container format for multimedia
streaming among heterogeneous nodes. This layer also mediates the native media
container formats and protocols to/from the intermediate streaming protocol.

The remainder of the paper is organized as follows. In the next section we
review existing work on multimedia streaming in mobile environments, as well
as research related to automated protocol adaptation. In Section 3 we detail the
challenges involved in creating a layer to adapt multimedia streams in mobile
heterogeneous environments. Section 4 presents the architecture of AmbiStream
layer and explains how the main components operate: the format adapter, the
protocol translator and the local media server. Section 5 discusses our initial
experimental results on Android and iOS devices, which show that it is possible
to adapt data and protocols at run time and also obtain streams with satisfactory
quality. Finally, in Section 6, we draw our conclusions and discuss future work.

2 Related Work

Many multimedia-oriented middleware have been proposed in the literature. One
of the earliest efforts in this direction was proposed in [9], which provided ap-
plications with mechanisms for late binding based on QoS constraints. The pro-
posed platform was later extended in [8] to leverage CORBA’s mechanisms for
inspection and adaptation and enable applications to adapt the stream quality
based on information obtained by inspecting middleware components. However,
as predicted in [4], the lack of mature multimedia support at the middleware
level led the industry to develop platform-specific solutions to handle multi-
media streaming quality. As a result, today, most existing streaming protocols
integrate mechanisms to adapt video quality to network conditions. Other mid-
dleware solutions have been proposed to provide multimedia streaming services.
Chameleon [11] is a middleware for multimedia streaming in mobile heteroge-
neous environments. It is implemented using pure Java Core APIs in order to be
portable to all Java and JavaME handsets. In Chameleon, servers send streams
with different levels of quality to different multicast groups, so that clients can
select the best quality according to their available resources and also adapt
to changes on resource availability by selecting a multicast group providing a
stream with lower quality. This approach imposes a heavy burden on the server
side, which has to keep multiple streams in parallel regardless of the number of

252 E. Andriescu, R. Speicys Cardoso, and V. Issarny

clients. Furthermore, Chameleon implements the whole software stack required
for streaming, which has a negative impact on performance.

Fewer works take into account the capabilities of current smartphones and
their impact on mobile multimedia streaming. The evaluation of streaming mech-
anisms in [18] for Android 1.6 and iOS 3.0 tries to identify which design is better
suited for mobile devices. Traditional metrics such as bandwidth overhead, start-
up delay and packet-loss are used to evaluate the quality of multimedia streaming
in various test situations. They observe that high network delays can result in
non-continuous playback when using the HTTP Live protocol from iOS, while
RTP streaming remains unaffected on Android.

Our approach to solve heterogeneity issues and enable multimedia stream-
ing between heterogeneous mobile devices specifically stems from research on
protocol translation and mediation. The work in [21] proposes a framework to
formalize the process of synthesizing connectors that mediate two incompati-
ble protocols, and suggests that data mediation can be solved through ontology
integration. However, it falls short from addressing the specifics of multimedia
streaming protocols, where messages are dependent on time and where message
data must also be adapted during mediation.

Nakazawa et. al. [15] propose a taxonomy of bridging solutions among com-
munications middleware platforms and present uMiddle, a system for universal
interoperability, which supports mediation (entities and protocols are translated
to an intermediate common representation) and is deployed as an infrastructure-
provided service. This design choice is appropriate for bridging communications
middleware, since it requires communication through different transport tech-
nologies that may not be available on all nodes. However, in our scenario, we
want to enable peer-to-peer streaming between smartphones without using an
untrusted third party server. As such, it is desirable that clients and servers are
able to perform mediation independently from the infrastructure.

Another approach for the automatic translation of protocols is z2z [7], which
combines a language for specification of protocols and messages, a compiler that
automatically generates protocol gateways using C code, and a runtime that
executes and manages protocol gateways. Z2z can translate a large number of
protocols, but it does not take into account timing requirements typical from
real-time streaming protocols. In such protocols, state transitions are not defined
by a fixed set of message exchanges but rather by the time deadlines that the
protocol must meet. With regard to message contents, z2z protocol gateways can
adapt messages by rearranging data from an input message to an output message.
This is also not sufficient to overcome the complexity of multimedia streaming
protocols, where timing limits may require that messages are processed and
regenerated when adapting protocols. Z2z evolved to Starlink [6] which enables
protocol translation dynamically at run time, a particularly important feature
in systems where existing protocols are unknown at compile time. Our approach
adopts an intermediate protocol and requires only clients to adapt their native
protocols to the intermediate protocol, which can be done at compile time.

AmbiStream: A Middleware for Multimedia Streaming 253

3 Challenges for Mobile Interoperable Media Streaming

As we mentioned in Section 1, two challenges must be solved to enable peer-to-
peer streaming of multimedia data between heterogeneous smartphones: (a) how
to enable interoperability among incompatible streaming protocols, and (b) how
to adapt media containers to consume multimedia data transmitted through an
incompatible streaming protocol.

Here, we detail the challenges introduced above. Specifically, Section 3.1 re-
views the process of streaming multimedia data from a server to heterogeneous
clients. Then, based on this general schema, Section 3.2 details the challenges
involved when translating multimedia streaming protocols, while Section 3.3 ex-
plains the issues caused by the different media container formats available on
current smartphones.

3.1 The Streaming Process

Streaming to heterogeneous devices is classically done by servers supporting a set
of audio/video codecs, media container formats and streaming protocols,
and comprises three phases: media capture, media transmission and media
presentation. The steps commonly required to stream multimedia between two
devices are depicted in Figure 1 and are detailed below.

Considering the sequence of steps in Fig. 1, media container formats are used
in multiple cases. At Step 1 the demuxing (or demultiplexing) phase refers either
to the unwrapping from a disk container if the media source is a file, or to a
streamable container if it is a media server or a camera. The elementary stream
obtained from Step 1 can be transcoded to a different video/audio compression
format and it is then re-multiplexed to a streamable container format in Step 3.
The format of multiplexing used is dependent on the streaming protocol, since
in most of the cases streaming protocols support a single format.

Media Capture: Media content can originate either from a camera, stored data
or from a remote source via a streaming protocol. The input can be already
wrapped inside a media container (for instance, MPEG-TS or RTP) by the

Streaming media Server Streaming Client

1. Demuxing

3. Multiplexing 4. Streaming protocol 5. Demuxing

6. Decoding

7. Presentation

2. Transcoding

Fig. 1. Multimedia streaming process

254 E. Andriescu, R. Speicys Cardoso, and V. Issarny

source hardware, so the first (Demuxing) step is optional. Possibly the most im-
portant characteristic of multimedia content is its audio/video encoding. Indeed,
being a highly resource demanding operation, multimedia encoding is subject to
software and hardware optimizations on both personal computers and embedded
devices. The availability of encoders and decoders therefore varies depending on
the mobile operating system, platform and device.

If a client does not support a decoder compatible with the server’s encoder,
the client cannot consume the media. When a server supports multiple encoders,
multimedia data can be re-encoded on a format compatible with the client sup-
ported decoders (Step 2 in Fig. 1), but this process is resource consuming and
can affect performance, especially when streaming live content.
Media Transmission: Since video and audio frames cannot be directly transferred
over an IP network, they are wrapped within media containers that provide the
necessary meta-information to facilitate the decoding and correct presentation
at the receiver (i.e., client) side. The process of wrapping and unwrapping au-
dio/video frames from a media container is also referred to as multiplexing and
demuxing, respectively. This is related to the fact that in some container formats,
frames (or frame fragments) from multiple audio and/or video tracks are inter-
leaved. The media transmission also requires control and signalling. This task is
assured by means of a communication protocol specifically designed to transport
multimedia content. Streaming protocols can be divided in two subgroups:

Real-time streaming protocols are best suited for conversational content such
as video conferences where user interaction with the streamed content is
important.

Video on-demand protocols are designed to offer better scalability and con-
nectivity; are usually based on the higher level Hypertext Transport Protocol
(HTTP) and introduces acceptable delays.

Media Presentation: In order to correctly reproduce an audio/video stream on
a mobile phone, it is required that the platform supports the given streaming
protocol, media container format, the audio/video codecs and the codec profile
used by the encoder. Being a resource consuming activity, multimedia decoding
is usually managed by the mobile platform through hardware decoders or by
efficient native code implementations. To offer a satisfactory multimedia user
experience on resource-constrained devices, mobile platforms provide a default
media player that applications can access through a standard API. This ap-
proach has the advantage of providing a uniform multimedia experience regard-
less of applications. However, it limits the possibilities to improve audio/video
handling in mobile devices since the exposed API is generally limited. For in-
stance, existing decoders used by the player to display multimedia content might
be inaccessible for use or extension by applications.

3.2 Streaming Protocol Heterogeneity

Most smartphone platforms support at least one streaming protocol client.
The most well known protocols used in mobile phones today are: Real Time

AmbiStream: A Middleware for Multimedia Streaming 255

Streaming Protocol (RTSP) [19], Apple HTTP Live Streaming (HLS) [16], Mi-
crosoft Smooth Streaming4 and Adobe HTTP Dynamic Streaming (HDS)5 (pro-
vided that the mobile platform supports Adobe Flash). The most commonly
found on mobile platforms is RTSP, but because it uses UDP as transport pro-
tocol on unprivileged ports it is inappropriate for use in restricted networks such
as 3G and public WiFi hotspots. A standard extension defined in [20] enables
interleaving messages over the TCP control connection, but is not supported by
most implementations. Protocols designed for video-on-demand scenarios, such
as HLS and HDS, are almost equivalent in terms of functionality and concept,
but differ in message formats and media containers.

Table 1. Audio/video decoders supported for streaming on smartphones

Decoder / Platform iOS Android BlackBerry OS Windows Phone 7
H.263 – + + –
H.264 + + + +

MPEG-4 + + + +
AAC-LC, AAC+, eAAC+ + + + +

AMR-NB – + + +
MP3 + + – +

Still, even if the streaming protocols are incompatible by default, the encoded
video and audio elementary streams may be compatible with multiple devices.
For example, HLS uses H.264 codec for video, but the same codec is also largely
used to stream video over RTSP to Android devices. As it can be seen in Table
1, there exists a common set of video and audio decoders available on multiple
mobile phone platforms. In contrast, streaming protocol support is increasingly
heterogeneous on mobile platforms, with the arrival of new proprietary protocols
such as HTTP Live Streaming and Microsoft Smooth Streaming. The currently
supported streaming protocols on mobile phone platforms are presented in Table
2. From both tables, we conclude that multimedia data can be exchanged be-
tween heterogeneous smartphones without the need to perform costly transcod-
ing operations. However, it is still necessary to adapt streaming protocols to
enable streaming between heterogeneous devices.

Table 2. Streaming protocols supported on smartphones

Protocol / Platform iOS Android BlackBerry OS Windows Phone 7
RTSP – + + –

RTSP interleaved – – – –
RTSP - SRTP – – – –

HTTP Live Streaming + + – –
HLS with SSL + – – –

MS Smooth Streaming – – – +
MSS with SSL – – – +

4 http://www.microsoft.com/silverlight/smoothstreaming/
5 http://www.macromediastudio.biz/products/httpdynamicstreaming/

http://www.microsoft.com/silverlight/smoothstreaming/
http://www.macromediastudio.biz/products/httpdynamicstreaming/

256 E. Andriescu, R. Speicys Cardoso, and V. Issarny

3.3 Media Container Adaptation

The conversion between different media container formats is a critical require-
ment for assuring interoperability between heterogeneous streaming protocols.
Supporting both real-time and video-on-demand protocols makes this task more
complex due to the mismatching of properties of the protocol groups.

Encoded elementary multimedia data is stored on disk using a media con-
tainer format (e.g., 3GPP, MP4, AVI). Such containers are designed to be used
only in random access scenarios and therefore are not suited for streaming over
a network connection. Another type of containers are streamable media contain-
ers (e.g., MPEG-TS, ASF, PIFF). They are designed to be transported over IP
packet networks, provide methods for fragmenting audio and video streams and
may also offer synchronization and recovery mechanisms to cope with network
delays or packet losses. The wrapped media packets can contain multiplexed au-
dio/video tracks (e.g., MPEG-TS, PIFF) or single tracks (e.g., RTP). Depending
on the streaming protocol type (real-time/on-demand), multimedia fragments
differ in size and structure. In general, real-time protocols use lightweight head-
ers and small packet sizes, usually less than the MTU6 in order to reduce the
transfer delay by avoiding packet fragmentation. Video-on-demand protocols reg-
ularly use large video fragments composing 10-30 seconds of audio/video each.
Such formats commonly rely on the ISO base media file format7 structure which
supports storing of multiple interleaved frames inside a single fragment, [5,1].
Larger fragments reduce the need of receiver buffers but also introduce a start-
up delay which is at least equal to the duration of the first fragment.

Real-time streaming protocols are generally designed over the UDP trans-
port protocol because timeliness is much more important than the reliability
offered by TCP. Consequently, simple reliability features, such as sequence num-
bers, sequence identification, synchronization codes, continuity counters, flags
and timestamps are integrated in the media container layer to cope with the
unreliable nature of the transport. Such features are not necessarily found in the
same configuration in all formats. As a result, transforming a real-time stream to
a video-on-demand fragment requires complex buffering and efficient transforma-
tion of real-time data. Such requirements impose strict temporal constraints for
the transformation. It is true that real-time to on-demand protocol translation
is less desirable, but interoperability should still remain possible.

4 AmbiStream Architecture

The aim of the AmbiStream middleware is to allow smartphones supporting dif-
ferent streaming protocols to directly connect to, and receive live multimedia
content from, other smartphones without using an untrusted server for adapta-
tion. AmbiStream consists of a set of portable server and client components as
well as a plug-in interface, designed to reduce the effort of adding support for
6 Maximum transmission unit (less than 1500 bytes for Ethernet).
7 ISO/IEC 14496-12:2008.

AmbiStream: A Middleware for Multimedia Streaming 257

Streaming server Streaming client Legacy client

Protocol translation
Camera

Demuxing

Platform API

File

RTP Media description

Network

Media player

RTP Media description

Network

Media container adaptation

P1 P2
C1 C2

Sample re-composing

API interface

Network

Media player

Local Server

Fig. 2. The AmbiStream middleware architecture

new protocols. The structure of the middleware is presented in Fig. 2, where the
greyed components are not part of AmbiStream, but are elements of the mobile
platform architecture or external components.

Our work extends the approach proposed by Starlink [6] in two directions.
First, our approach enables the translation between real-time and on-demand
streaming protocols, which requires buffering, dropping and combination of mes-
sages to deliver time-sensitive data at the right moment. Second, we support the
translation of container formats, which in the case of multimedia is dependent
on the streaming protocol.

The communication is realised in a client-server mode. The streaming server,
as well as the client, reside entirely on mobile devices. The current server im-
plementation is designed to support a single streaming protocol. This protocol
is translated by the client device to another protocol depending on its native
protocol support. On the server side, a platform specific API interface has to
be designed to access the Camera data stream. On the other hand, File access
for streaming from pre-recorded content can be designed in a portable fashion.
We assume that any input data is already multiplexed in the platform’s native
format (e.g., RIMM proprietary video format for BlackBerry). It is true that
demuxing might not be needed if the platform’s API gives access to elementary
frame buffers. That is why there is an initial demuxing step in Fig. 2. Once
the data is Demuxed (unwrapped) from its container we obtain the elementary
stream tracks (e.g., the audio track) and the necessary meta-data such as sam-
ple sizes and frame durations. Considering that the middleware should enable
applications to stream both in real-time and on-demand, we use RTP [19] as
an intermediate streaming protocol. As a consequence, the middleware trans-
lates from the intermediate protocol to each existing streaming protocol, thus
considerably reducing the total number of bridges required. However, this does
not imply that any of the mobile platforms or devices should support this in-
termediate protocol natively. RTP alone is not sufficient to describe the payload
characteristics such as audio/video encoders, sampling frequency, packet frag-
menting method, and other media information. AmbiStream thus introduces a
negotiation phase where the server sends a XML-formatted description message

258 E. Andriescu, R. Speicys Cardoso, and V. Issarny

to clients for the middleware to correctly instantiate the client protocol bridge
and the media container format adapter.

The client receives the Media description, and instantiates the appropriate
protocol translator (e.g., P1 or P2) and media container adapter. Streaming
protocol translators and media container adapters (e.g., C1 or C2) are used
as pluggable components created at compile time. To simplify support for a
large array of protocols, these components are generated automatically from
descriptions of messages and behaviour given in the form of DSL (domain specific
language), as detailed in Section 4.1. The plug-ins could as well be generated at
run-time, but since the required plugin of the platform is known at compile-time
the only use would be to support more legacy devices. Received RTP packets
are Re-composed into elementary streams and, once a sample is complete, they
are passed to the Media container adapter (which is detailed in Section 4.2).
Depending on the adapted protocol, the samples might be buffered at this point.
A Local server is managed by the protocol translator that composes the necessary
control messages for establishing a streaming session.

The adaptation server running on the client device can be also used as a
mediator agent to solve interoperability for streaming enabled legacy devices.
This is done using at least three nodes: a server running AmbiStream, a mediator
also relying on our middleware and a legacy client (i.e., without AmbiStream
or any other additional software installed). The mediator smartphone translates
the server streaming protocol to the one supported by the legacy device.

The AmbiStream architecture enables smartphones to stream multimedia be-
tween each other without involving a third party server, since all the adaptation
is performed on the client side. In terms of privacy, this solution is superior to
other architectures that require the stream to pass through an untrusted server
for adaptation and/or distribution. So, even though data passes through proba-
bly untrusted peers, the authenticity of the stream can still be established using
an efficient security protocol such as TESLA [17]. Even legacy clients, that re-
ceive the streaming from an intermediate node instead of directly from the server
can select a trusted peer based on any trust establishment protocol. The diver-
sity of existing legacy devices such as TVs, tablets, and mobile phones motivate
the use of distributed translation nodes instead of a centralised server.

4.1 Streaming Protocol Translation

Because writing protocol adapters for each existing streaming protocol implies
a high development effort for a large number of platforms, we introduce an au-
tomated protocol translation solution, to enable easier integration of additional
protocols. To achieve this, we base our solution on existing research in the do-
main of automated protocol translation. However, while advanced solutions for
interoperability between heterogeneous protocols exist [7,22,6], streaming proto-
cols tend to be more complex because of the constant data flow, time constraints
and multimedia wrapper formats.

Our approach is inspired by Starlink [6], a run-time solution for protocol inter-
operability. Although run-time adaptation of the media format and protocol is

AmbiStream: A Middleware for Multimedia Streaming 259

more flexible and enables adapting protocols that are unknown at compile-time,
in our case the availability is only subject to the support of mobile platforms,
thus making possible to know in advance the adaptation requirements of each
mobile device. Also, the adaptation only concerns the client-side since, at the
server side we use an intermediate protocol. We thus propose a simpler compile-
time interoperability solution based on Starlink.

Streaming protocols are a mix of control and complex data messages. We
discuss the translation of the control part of streaming protocols below, while
dealing with multimedia data adaptation in Section 4.2. To create a new protocol
translator, the developer must provide a high level description in the form of
two DSL-based models. One describes the format and structure of messages and
the other outlines the protocol states, transitions and the sequence of actions
performed at each protocol state. The model is expressive enough for generating
message parsers and composers for multiple existing streaming protocols. The
model obtained in this form is passed on to a compiler (which is part of the
currently presented solution) that produces multi-language (Java, C and C#)
protocol bridges in the form of plug-ins (e.g., P1 and P2 in Fig. 2) for our
middleware.

An schematic example of a message description for HLS protocol is shown in
Fig. 3. The description is divided in Input and Output to differentiate between
incoming messages that should be parsed into structured data types and outgo-
ing messages that are composed. This distinction is more important with text
protocols, where messages have loose requirements in terms of line order, op-
tional parameters, delimiters, spacing characters and so on. The DSL proposed
here supports protocols that use either binary, text or XML message formats.
To assure a sufficiently expressive message description, we extract the required
fields using value capture patterns defined using Posix regular expressions for
text protocols, XPath for XML and based on field size and location for binary
protocols. The choice of Posix regular expression for text protocols was driven
by its availability on most of the platforms, most notably that it is part of the
GNU C library and is compatible with the regular expressions integrated in Java
standard library (java.util.regex).

Real time protocols do not usually follow a request-response messaging pat-
tern, as implemented by on-demand ones, but rather a one-way pattern. The
problem here is that a protocol translator can not produce a response by calling
the real-time inner protocol. In fact, the translator must buffer the messages
of the real-time protocol and, upon a request of the video-on-demand client,
generate the corresponding message.

4.2 Media Container Format Adaptation

Translating the control part of streaming protocols is not sufficient to distribute
multimedia between incompatible protocols. The format in which audio/video
content is wrapped also differs depending on the protocol. To achieve a complete
solution, the translation between media container formats must also be taken
into account. The most important factors that led to the decision to separate

260 E. Andriescu, R. Speicys Cardoso, and V. Issarny

<Protocol type="text">
<Input>
<Header name="http_head">

<Var name="Url" type="String"/>
<Rule test="capture_order(Url)">1</Rule>
<Capture var="Method"> [RegEx] </Capture>
<Finish test="empty_line"/>

</Header>

<Message name="GET_IDX">
<Insert>http_head</Insert>
...

</Message>
...

</Input>
<Output>
<Message name="IDX">

<Var name="$TargetDuration" type="Integer"/>
<Line>#EXTM3U</Line>
...

</Message>
...

</Output>
</Protocol>

Fig. 3. DSL describing message formats for the HLS protocol

this part from the protocol translation model are: the much higher complexity of
multimedia packets, the dependence relation between messages (order, timing,
fragmenting), the buffering requirements, and the multiplexer logic required to
interleave multiple media tracks inside one packet/message.

We further divide the media container adaptation in four distinct steps: sam-
ple fragmenting, fragment packaging, multiplexing and final adjustment. The
process of adapting a stream composed of two tracks (one audio and one video)
is presented in Fig. 4. Each of the four phases is defined by the developer using
a DSL to describe multimedia containers, different from the ones used for proto-
col description. Similarly to the generation of protocol translation plug-ins, the
description of the multimedia container adaptation is compiled to be deployed
to designated platforms. To simplify the description, a number of media packet-
related parameters are exposed through the DSL. Parameters include: the length
of the media payload, media encoding, fragmentation flag, sampling frequency,
sequence number, inner frame sequence number and first/last fragment flag. The
components for protocol description and container adaptation are considered to
be independent, thus allowing, for example, a protocol to choose between multi-
ple supported data formats. The Sample Re-composing middleware component
(see Fig. 2) provides real-time input to the container adapter in the form of
elementary stream samples for audio and frames for video.

Because we use a real-time protocol (i.e., RTP) for transporting multimedia
data, the problem of timing should also be taken into account. We thus add
a time-stamp reference to each packet resulting from any of the four phases of
media format adaptation. Fragments of one frame share the same time-stamp in-
formation, while messages composing multiple frames contain the time-stamp of
the first frame and their duration. The time required for a frame to pass through

AmbiStream: A Middleware for Multimedia Streaming 261

Fragmenting Packaging

MUX

Fragmenting Packaging

Video sample

Audio sample

1
2
3
4

a

b

1
2
3
4

a

b

Final a b1 2 3 4

1 2 3 4

Fig. 4. Adapting the media container format

all of the phases required by the format should not exceed the sampling interval
of the content. Failing to assure this property can cause the client to run out of
buffered data, resulting in playback stalls. In order to prevent such behaviour,
frames should be explicitly dropped such that the output of the conversion is
completed at the right time to assure a fluent playback. At this moment, no QoS
related limits of packet drops are considered.

The fragmenting step defines the way large audio or video samples are
divided into smaller segments according to the limits imposed by the streaming
protocol, by the media container or by the network configuration. For example,
in the case of MPEG-TS, the samples are split into fragments which are infe-
rior in size to 184 bytes, such that they can be correctly wrapped inside the
standard 188 byte packets. For RTP, fragmentation follows the standard RTP
Payload Format depending on the codec used (for instance, the one described
in [25]). We note that a simplified description of the packet format is very useful
in the case of RTP, where there are multiple payload formats depending on the
media encoder used. In the case where media content is composed of multiple
tracks (i.e., one video and one audio track), two separate fragmenting units are
used. The number of fragments created from single frames is variable. Each frag-
ment contains a reference to the time-stamp of its originating frame. The time
required for fragmenting one frame should never exceed the sampling interval of
the content.

The packaging stage adds individual packet headers. This transformation
conforms to [19] for RTP packets and [13] for MPEG-TS. Depending on the
protocol, the resulting packets are passed to the multiplexer or sent directly to
the protocol translator.

The multiplexing phase assures time-division multiplexing for a set of given
fragments or frames of multiple data tracks. Depending on the format, the mul-
tiplexing is done at a frame level or at a frame-fragment level. In order to achieve
multiplexing at frame level, phase one of the adaptation should be skipped. This
phase outputs only at a given time or data limit. Such a limit is necessary to
be able to produce media fragments of specified duration or size. The split is al-
ways done at random access points of the stream, such that no reference between
frames is lost.

The final transformation adds extra headers or packets, such that the result-
ing fragment is recognised as valid by standard client protocol implementations.

262 E. Andriescu, R. Speicys Cardoso, and V. Issarny

Many existing media container formats also contain a number of specific fields
which are particularly hard to model. One example is the MPEG2 Transport
Stream [13], which requires a 32-bit cyclic redundancy check value to be added to
the Program Association Table package. In such a case we offer the possibility to
add function“hooks” inside the DSL media container description. The compiler
uses these to generate function templates, that developers can later implement.

5 Experimental Results

In order to evaluate the presented solution, we have implemented AmbiStream
in Java and Objective-C and used it on Android and iOS. The goal of the exper-
iments presented here is to evaluate the overall performance of the middleware
and the achievable stream quality. The experiments were performed on both
Android and iPhone smartphones.

Table 3. Test smartphones used

Device Samsung GT-I9000 Google Nexus One iPhone 3G
Role Server Client Client

Platform Android 2.2.1 Android 2.3.4 iOS 4.2.1
CPU 1 GHz (S5PC110) 1 GHz (QSD8250) 412 MHz

Memory 512 MB 512 MB 128 MB
Media framework PV OpenCORE Stagefright AV Foundation
Stream support RTSP RTSP/HLS HLS

In both of the experiments presented below, the same set of source media
files was used. The test files have a duration of 210 seconds, are encoded with a
single (H.264-avc video) track, have a CIF frame-size (352 by 288), and a frame-
rate of 30 fps. The test is conducted for 16 different bit-rates between 50kbps
and 1500kbps using the mentioned file format and content. Each set of tests is
repeated at least three times, so each of the metrics presented is characterized
by 168 minutes of video streaming to each client device. In total, more than
16 hours of streaming between smartphones were necessary. The mobile phones
used are mentioned in Table 3. The first two (Samsung GT-I9000 and Google
Nexus One) are used in the first experiment, and all three in the second one.

5.1 Collecting Mobile Device Performance Data

Although RTSP provides out-of-band feedback of stream quality through RTCP,
we have decided not to use this feature to obtain information related to the
quality of service. This is due to the fact that in the case of the media framework
Pocket Video OpenCore (used by Android platform in versions preceding 2.3)
the information provided is not sufficiently precise. For example, the interval
jitter value reported, used to observe the effect of network packet delays, is
usually ten times higher than what we found at network level or on the client
device. Furthermore, on the newer Stagefright media framework the feedback

AmbiStream: A Middleware for Multimedia Streaming 263

always reports no packet loss and inter-arrival jitter equal to zero. Android also
provides an information callback from the media player service. Unfortunately,
this information is limited to a small set of event codes and does not include any
metric.

We have chosen to favour system-wide metrics to more specific ones (i.e.,
metrics of the application process) because we also make use of native system
services and because mobile platforms do not frequently provide equivalent met-
rics. We use as metrics for device performance: the total CPU utilization and the
system-wide used RAM memory. Quality of service metrics considered are the
packet delay variation (also referred to as inter-arrival jitter, described in [19])
and packet loss ratio. The quality metrics are only provided for the case where
the protocol is adapted. The values are obtained at the middleware level and
should indicate the maximum bit-rate achievable while still providing satisfac-
tory quality. The reference test cases, used to compare the overall performance,
make use of system media services directly.

On Android mobile phones, the CPU and memory information is obtained by
accessing the proc filesystem, used as an interface to the operating system kernel
on most Linux based distributions. The logs are stored in the internal memory of
both Android phones. To avoid that the access to the filesystem and data parsing
are influencing the final results, the access to the /proc/stat and /proc/meminfo
is done every five seconds, and the same file-descriptors are reused multiple times
until the end of the test. On the iOS platform, system performance information
was collected using the tools integrated with the development kit.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 (

us
ed

/to
ta

l r
at

io
)

Video bitrate (kbps)

Native RTSP
AmbiStream

(a) CPU usage on Nexus One

0

128

256

384

512

 0 200 400 600 800 1000 1200 1400 1600

M
em

or
y

us
ag

e
(M

B
)

Video bitrate (kbps)

Native RTSP
AmbiStream

(b) RAM usage on Nexus One

Fig. 5. AmbiStream performance on Nexus One (RTSP)

5.2 Translating to RTSP between Android Smartphones

In this first experiment, we show that adaptation from the middleware interme-
diate protocol to RTSP/RTP/UDP is sufficiently efficient to be used in mobile
multimedia-enabled applications. Since in this case the message format used by
the client protocol is equivalent to the middleware transport protocol, the wrap-
ping and unwrapping of messages is simpler than in other cases. Nevertheless,
this client protocol is the only real-time streaming protocol currently available on

264 E. Andriescu, R. Speicys Cardoso, and V. Issarny

mobile phones, and is thus interesting to analyze the feasibility of streaming real-
time multimedia data through the middleware. Another experiment involving a
more complex media format adaptation is presented at the end of this section.
In this test we use two server implementations: one using the AmbiStream in-
termediate protocol and the other using RTSP. The RTSP server is not part of
the solution but it is used in this experiment to determine the overhead of the
adaptation (on the client-side) with reference to the native RTSP support.

-30

-20

-10

 0

 10

 20

 30

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
in

te
ra

rr
iv

al
 ji

tte
r

(m
s)

Video bitrate (kbps)

AmbiStream

(a) Inter-arrival jitter

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 200 400 600 800 1000 1200 1400 1600

P
ac

ke
t l

os
s

ra
tio

Video bitrate (kbps)

AmbiStream

(b) Packet loss

Fig. 6. Adapted stream quality (RTSP)

In the case of protocol translation to RTSP, the performance of the client
device (realising the content and protocol adaptation) is not badly affected, with
a processing overhead of less than 20% compared to a native RTSP session (see
Fig. 5a). As with all of the experiments conducted, the memory usage remains
constant, or increases slightly because of buffers required for higher data-rates
(Fig. 5b). The fact that our solution uses slightly less memory than the reference
one is due to the way jitter buffers are managed internally by the RTSP client,
most probably being influenced by the different transport protocols (UDP and
TCP). The quality of the stream remains within acceptable limits in terms of
inter-arrival jitter (see Fig. 6a) and packet loss (Fig. 6b), for all the test cases
(from 50 to 1500kbps) considered.

5.3 Translating to HLS between Android and iOS Smartphones

The second experiment consists of translating the intermediate middleware pro-
tocol to HTTP Live Streaming, using two different client platforms: Android
2.3.4 and iOS 4.2.1. The choice of the smartphones is motivated by their native
support of HLS. This way we can reason about the overhead introduced by our
middleware layer with two different devices. Contrary to the first experiment,
this one requires data conversion between RTP and MPEG-TS. MPEG-TS is one
of the most used multimedia formats, most notably for digital television. The
conversion from RTP to MPEG-TS requires a large number of transformations,
thus providing a good impression of achievable on-the-fly conversion limits of
media formats on current generation smartphones.

AmbiStream: A Middleware for Multimedia Streaming 265

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
P

U
 (

us
ed

/to
ta

l r
at

io
)

Time (s)

AmbiStream/iPhone 3G

(I) (II) (III) (IV)

Fig. 7. Data capture (HLS)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600

P
ac

ke
t l

os
s

ra
tio

Video bitrate (kbps)

AmbiStream - Nexus
AmbiStream - iPhone 3G

Fig. 8. Packet loss (HLS)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 (

us
ed

/to
ta

l r
at

io
)

Video bitrate (kbps)

Native HLS
AmbiStream

(a) CPU usage

0

128

256

384

512

 0 200 400 600 800 1000 1200 1400 1600

M
em

or
y

us
ag

e
(M

B
)

Video bitrate (kbps)

Native HLS
AmbiStream

(b) RAM usage

Fig. 9. AmbiStream performance on Nexus One (HLS)

Because HLS protocol requires the existence of a cached amount of content
on the server-side before a client can connect (and begin playback), while the
intermediate AmbiStream protocol does not, a 30s start-up delay is introduced
by the middleware layer to allow protocol translation. This aspect restricts the
use of the middleware for real-time applications in this situation. This is not the
case when the device supports a real-time protocol. During this delay period, less
memory and CPU are used. To better evaluate the performance of the devices,
we divide the experiment run in four periods (e.g., as shown in Fig. 7 for CPU
utilisation): (I) the buffering period (only multimedia data adaptation is per-
formed), (II) the media-player start-up (causes a short increase in CPU usage),
(III) the streaming period (both data adaptation and playback are performed)
and (IV) the stream-end (the source has finished streaming, but the playback
is continued until buffer depletion). Thus, only the part (III) of the observation
was used to produce the results presented in Figures 9 and 10.

As expected, the difference in container formats (RTP and MPEG-TS), in-
creases the overhead of AmbiStream. For Android platform, the tests for bit-rates
inferior to 400kbps (in Figures 9a and 9b) were discarded due to the existence
of a minimal caching size, requiring a longer start-up delay. While on the Nexus
One, the overhead introduced does not reach a quality limit for bit-rates below

266 E. Andriescu, R. Speicys Cardoso, and V. Issarny

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 (

us
ed

/to
ta

l r
at

io
)

Video bitrate (kbps)

Native HLS
AmbiStream

(a) CPU usage

0

32

64

96

128

 0 200 400 600 800 1000 1200 1400 1600

M
em

or
y

us
ag

e
(M

B
)

Video bitrate (kbps)

Native HLS
AmbiStream

(b) RAM usage

Fig. 10. AmbiStream performance on iPhone 3G (HLS)

1500kbps, the iPhone 3G is only able to adapt streams of up to 400kbps. Above
this limit, the packet loss (see Fig. 8) becomes noticeable and the media-player
suffers playback stalls. The results on the iPhone are worse due to the signifi-
cantly lower processing power and memory (see Fig. 3). Nevertheless, according
to the mobile platform providers, a 400kbps video bit-rate is considered to be
medium/high quality for smartphones8 9. Considering the results in Figure 10b,
we see that the memory usage is decreasing (in the case of AmbiStream) for
higher video bit-rates. This behaviour is normal considering the packet loss (see
Figure 8).

6 Conclusions and Future Work

In this paper we have identified the challenges raised by the heterogeneity of the
streaming protocols of existing mobile phone platforms. Further, we have intro-
duced the AmbiStream multimedia-oriented middleware architecture, designed
to enable the multi-platform and multi-protocol interoperability of streaming
services. We have also shown the applicability of the presented solution with an
experiment on two different platforms and two different streaming protocols.

AmbiStream was modelled taking into consideration the architecture of mod-
ern smartphone platforms, such that resource critical operations (e.g., multime-
dia decoding) are managed by each platform internally. We prove that automated
streaming protocol adaptation can be done locally on mobile phone platforms
without sacrificing performance or extensibility. Furthermore, we enable legacy
devices to employ unsupported streaming protocols by using an AmbiStream-
enabled device as mediator intermediary.

We intend to continue this work by extending the current model, taking into
account challenges such as routing over different networks and multi-peer collab-
oration. We will then integrate AmbiStream with iBICOOP [3], a middleware

8 http://developer.apple.com/library/ios/#technotes/tn2224/_index.html
9 http://developer.android.com/guide/appendix/media-formats.html

http://developer.apple.com/library/ios/# technotes/tn2224/_ index.html
http://developer.android.com/guide/appendix/media-formats.html

AmbiStream: A Middleware for Multimedia Streaming 267

designed to enrich the user collaboration and provide seamless access across
different networks and devices. Such an integration will complement the exist-
ing solution with features such as discovery, distributed storage and partnership
management, enabling the development of rich cross-platform and multimedia-
enabled applications. We will also port the solution to Blackberry and Windows
Phone to evaluate the approach on a greater number of mobile platforms.

Acknowledgement. This work is partially supported by the FP7 ICT FET IP
Project CONNECT.

References

1. Adobe Flash Video File Format Specification, Version 10.1 (August 2010),
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf

2. Andronache, A., Brust, M.R., Rothkugel, S.: Multimedia content distribution in
hybrid wireless networks using weighted clustering. In: Proceedings of the 2nd
ACM International Workshop on Wireless Multimedia Networking and Perfor-
mance Modeling, WMuNeP 2006. ACM (October 2006)

3. Bennaceur, A., Pushpendra, S., Raverdy, P.G., Issarny, V.: The iBICOOP mid-
dleware: Enablers and services for emerging pervasive computing environments.
In: PerWare 2009 IEEE Middleware Support for Pervasive Computing Workshop
(October 2009)

4. Blair, G.: On the failure of middleware to support multimedia applications.
In: Interactive Distributed Multimedia Systems and Telecommunication Services
(October 2000)

5. Bocharov, J., Burns, Q., Folta, F., Hughes, K., Murching, A., Olson, L., Schnell,
P., Simmons, J.: The Protected Interoperable File Format (PIFF) (March 2010)

6. Bromberg, Y.-D., Grace, P., Réveillère, L.: Starlink: runtime interoperability be-
tween heterogeneous middleware protocols. In: Proceedings of 31th International
Conference on Distributed Computing Systems, ICDCS (IEEE) (June 2011)

7. Bromberg, Y.-D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic Generation
of Network Protocol Gateways. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware
2009. LNCS, vol. 5896, pp. 21–41. Springer, Heidelberg (2009)

8. Coulson, G., Blair, G., Davies, N., Robin, P., Fitzpatrick, T.: Supporting mobile
multimedia applications through adaptive middleware. IEEE Journal on Selected
Areas in Communications (September 1999)

9. Coulson, G.: A configurable multimedia middleware platform. IEEE MultiMedia
(January 1999)

10. Cruz, R.S., Nunes, M.S., Gonçalves, J.E.: A Personalized HTTP Adaptive Stream-
ing WebTV. In: Daras, P., Ibarra, O.M. (eds.) UCMedia 2009. LNICST, vol. 40,
pp. 227–233. Springer, Heidelberg (2010)

11. Curran, K., Parr, G.: A middleware architecture for streaming media over IP net-
works to mobile devices. In: Wireless Communications and Networking (March
2003)

12. Do, N.M., Hsu, C.H., Singh, J.P., Venkatasubramanian, N.: Massive live video
distribution using hybrid cellular and ad hoc networks. In: Proceedings of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM 2011) (June 2011)

http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf

268 E. Andriescu, R. Speicys Cardoso, and V. Issarny

13. ITU-T Rec. H.222.0 — ISO/IEC 13818-1, Generic coding of moving pictures and
associated audio information,
http://www.iso.org/iso/catalogue_detail?csnumber=44169

14. Lindeberg, M., Kristiansen, S., Plagemann, T., Goebel, V.: Challenges and tech-
niques for video streaming over mobile ad hoc networks. Multimedia Systems 17(1)
(February 2011)

15. Nakazawa, J., Tokuda, H., Edwards, W.K., Ramachandran, U.: A bridging frame-
work for universal interoperability in pervasive systems. In: International Confer-
ence on Distributed Computing Systems (July 2006)

16. Pantos, R., May, W.: HTTP Live Streaming (Internet-Draft) (March 2011),
http://tools.ietf.org/html/draft-pantos-http-live-streaming-06

17. Perrig, A., Song, D., Canetti, R., Tygar, J.D., Briscoe, B.: Timed Efficient
Stream Loss-Tolerant Authentication. RFC 4082 (Proposed Standard) (June 2005),
http://tools.ietf.org/html/rfc4082

18. Ransburg, M., Jonke, M., Hellwagner, H.: An evaluation of mobile end devices
in multimedia streaming scenarios. In: Mobile Wireless Middleware, Operating
Systems, and Applications (July 2010)

19. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Trans-
port Protocol for Real-Time Applications. RFC 3550 (Standard) (July 2003),
http://tools.ietf.org/html/rfc3550, updated by RFCs 5506, 5761, 6051, 6222

20. Schulzrinne, H., Rao, A., Lanphier, R.: Real Time Streaming Protocol (RTSP).
RFC 2326 (Proposed Standard) (April 1998),
http://tools.ietf.org/html/rfc2326

21. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating
connectors for on the fly interoperability. In: Joint Working IEEE/IFIP Conference
on Software Architecture 2009 & European Conference on Software Architecture
2009 (September 2009)

22. Bissyandé, T.F., Réveillère, L., Bromberg, Y.-D., Lawall, J.L., Muller, G.: Bridging
the Gap between Legacy Services and Web Services. In: Gupta, I., Mascolo, C.
(eds.) Middleware 2010. LNCS, vol. 6452, pp. 273–292. Springer, Heidelberg (2010)

23. Van Lancker, W., Van Deursen, D., Mannens, E., Van de Walle, R.: Implementation
strategies for efficient media fragment retrieval. Multimedia Tools and Applications
(March 2011)

24. Vu, L., Nahrstedt, K., Rimac, I., Hilt, V., Hofmann, M.: ishare: Exploiting oppor-
tunistic ad hoc connections for improving data download of cellular users. In: 2010
IEEE GLOBECOM Workshops (December 2010)

25. Wang, Y.K., Even, R., Kristensen, T., Jesup, R.: RTP Payload Format for H.264
Video. RFC 6184 (Proposed Standard) (May 2011),
http://tools.ietf.org/html/rfc6184

http://www.iso.org/iso/catalogue_detail?csnumber=44169
http://tools.ietf.org/html/draft-pantos-http-live-streaming-06
http://tools.ietf.org/html/rfc4082
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc2326
http://tools.ietf.org/html/rfc6184

	AmbiStream: A Middleware for MultimediaStreaming on Heterogeneous Mobile Devices
	Introduction
	Related Work
	Challenges for Mobile Interoperable Media Streaming
	The Streaming Process
	Streaming Protocol Heterogeneity
	Media Container Adaptation

	AmbiStream Architecture
	Streaming Protocol Translation
	Media Container Format Adaptation

	Experimental Results
	Collecting Mobile Device Performance Data
	Translating to RTSP between Android Smartphones
	Translating to HLS between Android and iOS Smartphones

	Conclusions and Future Work
	References

