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1 Introduction

Recently, a new class of worldsheet theories called ambitwistor strings were discovered [1].

These are chiral, infinite tension analogues of ordinary string theory, whose basic worldsheet

action takes the first-order form

1

2π

∫

Σ
Pµ∂̄X

µ − e

2
P 2 (1.1)

in a natural generalization of the usual worldline action for a massive particle. The fields P

and X represent holomorphic coordinates on the cotangent bundle of complexified space-

time. However, to be able to integrate the worldsheet Lagrangian over Σ, Pµ must also be

a worldsheet (1,0)-form. Consequently, the field e is a Beltrami differential that imposes

the constraint that the quadratic differential P 2 = PµP
µ vanishes. The action (1.1) has

a gauge redundancy δXµ = αPµ that is conjugate to this constraint, which implies that

field configurations that differ by translation along a null geodesic in space-time are to
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be considered equivalent. Together, the constraint and gauge redundancy mean that the

target space is properly understood to be the space of complex null geodesics, known as

(projective) ambitwistor space PA [2, 3].

In [1] it was shown that these ambitwistor strings have no massive states in their spec-

trum, essentially on account of the triviality of the XX OPE. Like the usual string, the

bosonic model (1.1) admits both supersymmetric and heterotic generalizations. In partic-

ular, the NS-NS sector spectrum of a Type II ambitwistor string was shown to agree with

the Neveu-Schwarz sector of ten dimensional supergravity, with no α′ corrections, while the
heterotic model also involved a coupling to ten dimensional Yang-Mills theory. A (gauge-

fixed) pure spinor version of the ambitwistor string was subsequently constructed in [4].

The discovery of the ambitwistor string was motivated by trying to understand the

origin of the representations of the tree level S-matrices of gravity and Yang-Mills obtained

in [5, 6]. See [7] for a proof of the Yang-Mills formula via BCFW methods. The key feature

of these representations is that, while (as in string theory) the amplitudes are written in

terms of an integral over the moduli space of an n-pointed Riemann sphere, this integral

is completely localized to solutions of the genus zero scattering equations

∑

j 6=i

ki · kj
zi − zj

= 0 for i ∈ {1, . . . , n−4} . (1.2)

These equations were first discovered by Gross & Mende [8, 9] who showed that they

dominate the behaviour of usual string theory in the limit of high energy scattering at

fixed angle. They also appear in the context of twistor strings, as shown in [10].

The scattering equations have an extremely natural interpretation in the ambitwistor

string context. In the presence of vertex operator insertions, the field Pµ is not globally

holomorphic on Σ, but rather has poles whose residues are determined by the external

momenta. Likewise, P 2 becomes a meromorphic quadratic differential with poles only

at the vertex operator insertion points. At genus zero, the space of such meromorphic

quadratic differentials is n−3 dimensional. Now, noting that P 2 vanishes so that Pµ itself

is a (complex) null vector, was a crucial step in deducing that the target space of (1.1)

is indeed ambitwistor space and that the gauging of δXµ = αPµ is well-defined. The

scattering equations simply enforce that the residues of P 2 vanish at any n− 3 of the

insertion points, and hence that P 2 indeed vanishes globally on Σ.

More than just providing the underlying geometric explanation of the formulæ of [6],

the ambitwistor string allows us to extend these formulæ in a variety of ways. In this

paper, we consider two main extensions: to scattering amplitudes in supergravity and su-

per Yang-Mills (including fermionic states) and to loop amplitudes. After reviewing the

construction of the ambitwistor string in section 2, we construct Ramond sector vertex

operators representing space-time gravitinos and, in the heterotic model, gauginos. The

simplest tree level amplitudes involving these fermionic states are computed in section 3,

and are shown to agree with known expressions for gravitino and gaugino scattering am-

plitudes in supergravity and super Yang-Mills.

In section 4 we consider the ambitwistor string at genus one. We show that the

partition function is modular invariant — a non-trivial constraint on a purely chiral theory
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— and construct the correct generalization of the scattering equations (1.2) to elliptic

curves. We find that as well as imposing conditions on the residues of P 2 at n − 1 of the

vertex operators, we need a further condition on P 2 itself. This just reflects the fact that

the moduli space for genus one curves includes a specification of the complex structure τ

of the torus as well as a choice of the n marked points, up to an overall translation around

the torus. In section 4.3 we compute n-point correlation functions of gravitational vertex

operators on our genus 1 curve. As at genus zero [1, 5], these take the form of Pfaffians

whose dependence on the worldsheet coordinates is fixed by the g = 1 scattering equations.

We conjecture that these formulæ are new representations of n-point gravitational one

loop scattering amplitudes in ten dimensional Type II supergravity (IIA or IIB according

to the choice of GSO projection). In particular, in section 5, we check that our amplitudes

have the expected behaviour in both non-separating and separating degenerations of the

worldsheet, corresponding to the single cut of the loop amplitude and to factorization of

a tree sub-amplitude from off the loop, respectively. These checks demonstrate that the

worldsheet theory factorizes unitarily at higher genus, and also provide evidence in favor

of interpreting the one-loop expressions as gravitational amplitudes. Crucially, the result

of the single cut is a rational function of the kinematic data (for the same reason that the

tree-level amplitudes are), to be integrated over the on-shell phase space of the intermediate

particle. This is as expected for field theoretic amplitudes, and stands in contrast to what

happens in a generic string theory where an infinite tower of string oscillators propagate

around the loop.

We conclude in section 6 with a brief look at some open questions.

2 The ambitwistor string

We begin with a brief review of ambitwistor string theory, focussing on the type II model

associated with gravity. After first reviewing the worldsheet theory and its BRST symme-

tries, we discuss the structure of the Neveu-Schwarz and Ramond sector vertex operators

which describe gravitons, dilatons, B-fields, and space-time fermions. Further details may

be found in [1].

2.1 Type II worldsheet theory

The worldsheet action for the type II ambitwistor string introduced in [1] is

S =
1

2π

∫

Σ
Pµ∂̄X

µ − 1

2
ePµP

µ +Ψµ∂̄Ψ
µ − χPµΨ

µ + Ψ̃µ∂̄Ψ̃
µ − χ̃PµΨ̃

µ (2.1)

where Pµ ∈ Ω1,0(Σ) and so may be written as Pµ = Pµzdz in terms of some local holo-

morphic coordinate z ∈ Σ. Both Ψµ and Ψ̃µ are worldsheet fermions of the same chirality,

which are elements of ΠΩ0(Σ,K
1/2
Σ ), where Π is the parity reversing functor. Consequently,

for (2.1) to be well-defined we must have e ∈ Ω0,1(Σ, TΣ) and χ, χ̃ ∈ Ω0,1(Σ, T
1/2
Σ ).

This action has gauge redundancies that act as

δXµ = αPµ + ǫΨµ + ǫ̃Ψ̃µ δPµ = 0

δΨµ = ǫPµ δΨ̃µ = ǫ̃Pµ
(2.2)
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on the matter fields and

δe = ∂̄α δχ = ∂̄ǫ δχ̃ = ∂̄ǫ̃ (2.3)

on the gauge fields, where α ∈ Ω0(Σ, TΣ) is bosonic while ǫ, ǫ̃ ∈ Ω0(Σ, T
1/2
Σ ) are fermionic.

In particular, as emphasized in [1], the bosonic gauge field e imposes the constraint that

Pµ is null with respect to the target space metric and the associated transformation δXµ =

αPµ instructs us to count as equivalent field configurations that differ only by translation

of X along a null direction. Hence, the target space is properly understood as the space of

(complex) null geodesics, or ambitwistor space.

As usual, we can gauge-fix the chiral worldsheet gravity and gravitinos of this theory

by introducing a bc-ghost system and two copies of the superconformal ghost system which

we denote as βγ and β̃γ̃. In particular, these fields take values in the usual spaces

b ∈ ΠΩ0(Σ,K2
Σ) β, β̃ ∈ Ω0(Σ,K

3/2
Σ )

c ∈ ΠΩ0(Σ, TΣ) γ, γ̃ ∈ Ω0(Σ, T
1/2
Σ ) ,

(2.4)

except that both sets of ghost systems are chiral (left-moving). The only difference from the

gauge-fixing of ordinary string theory is the need to fix the gauge redundancy associated

to α in (2.2)–(2.3). To do this, we follow the usual BRST procedure and add to the action

a gauge-fixing term {
Q,

∫

Σ
b̃ F (e)

}
, (2.5)

where b̃ ∈ ΠΩ0(Σ,K2
Σ) and F (e) is a gauge-fixing functional. Naturally, we would like to

choose F to set e = 0; the obstruction to doing this is given by the moduli of the problem.

In particular, the BRST transformations of the gauge fields only allow us to vary e within a

fixed Dolbeault cohomology class. If Σ is a genus g Riemann surface with n marked points

{zi} at which the gauge transformation is required to vanish, then for r = 1, . . . , 3g− 3+n

let {µr} be a basis of H0,1(Σ, TΣ(−z1 − · · · − zn)). We can then choose our gauge-fixing

functional to be:

F (e) = e−
3g−3+n∑

r=1

sr µr, (2.6)

where sr ∈ C are coefficients of the basis.

Now, the action of the BRST operatorQ on the various fields in the gauge-fixing term is

δb̃ = m, δe = ∂̄c̃, δsr = qr, δm = 0, δqr = 0,

so after integrating out the Lagrange multiplier m, the relevant part of the action (2.1) be-

comes

1

2π

∫

Σ
b̃ ∂̄c̃−

∑

r

sr

∫

Σ
µr P

2 −
3g−3+n∑

r=1

qr

∫

Σ
b̃ µr . (2.7)

Integrating out the bosonic and fermionic parameters sr and qr leaves us with an insertion of

3g−3+n∏

r=1

δ̄

(∫

Σ
µrP

2

) ∫

Σ
b̃ µr (2.8)
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inside the path integral.

As in the holomorphic worldsheet reparametrizations of ordinary string theory, at genus

zero we can choose a basis of our n−3 Beltrami differentials so that
∫
b̃ µr simply extracts

the residue of b̃ at the location of the rth vertex operator. This then strips off the c̃ ghost

associated with a (fixed) vertex operator insertion. Similarly, the integral
∫
µrP

2 in (2.8)

extracts the residue of the quadratic differential P 2 at the location of the vertex operator,

leaving us with a δ-function that forces this residue to vanish. At genus zero, a quadratic

differential must have at least four poles (counted with multiplicity). Below, we shall see

that P 2 has at most simple poles, so enforcing vanishing of all but three of its residues

ensures that in fact P 2 = 0 globally over the genus zero Riemann surface. This is exactly

the content of the scattering equations [8]. They emerge here as a natural consequence of

the gauge redundancy enforcing that the target space is ambitwistor space in the presence

of vertex operator insertions.

Finally, we are left with the gauge-fixed action [1]

S =
1

2π

∫

Σ
Pµ∂̄X

µ +Ψµ∂̄Ψ
µ + Ψ̃µ∂̄Ψ̃

µ + b ∂̄c+ b̃ ∂̄c̃+ β∂̄γ + β̃∂̄γ̃. (2.9)

describing type II ambitwistor strings. Requiring that this theory have vanishing central

charge restricts the space-time dimension to be d = 10, so the critical dimension of the

type II ambitwistor string is the same as the type II superstring. Although this theory will

be our focus for most of this paper, it should be mentioned that there is a heterotic version

of the ambitwistor string. This is nearly identical to the type II model given here, except

that the Ψ̃ system is exchanged for a worldsheet current algebra for some gauge group.

At genus zero and leading trace in the current algebra this describes vector bosons of the

chosen gauge group [1], although interactions of the gravitational degrees of freedom in the

heterotic model are not understood.

2.2 Neveu-Schwarz sector vertex operators

The basic NS-NS vertex operator in the type II model is

cc̃ U(z) = cc̃ δ(γ) δ(γ̃) ǫ ·Ψ ǫ̃ · Ψ̃ eik·X(z), (2.10)

where ǫ, ǫ̃ are the polarizations and k is a momentum vector. The antisymmetric, symmetric

trace-free and trace parts of ǫµǫ̃ν represent a B-field, graviton and dilaton, respectively. The

form of this vertex operator is thus practically identical to that of fixed NS vertex operators

in type II string theory; the only difference is that all the fields in the ambitwistor string are

chiral and have only holomorphic conformal weight. Note that the total conformal weight

vanishes, as it must. Another important difference to the usual string is that (2.10) is the

only vertex operator present in the NS-NS sector after imposing the usual GSO projection

(−1)F = (−1)F̃ = +1 on both the Ψ and Ψ̃ systems. This is because the XX OPE is

trivial, so in particular eik·X has vanishing (anomalous) conformal weight.

As usual, the insertion of such vertex operators is really an instruction to quotient

the path integral only by those gauge transformations that vanish at the insertion points.
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Following the standard descent procedure for the worldsheet supersymmetries (see e.g. [11,

12]) transforms (2.10) into a vertex operator

cc̃ V = cc̃ (ǫ · P + k ·Ψ ǫ ·Ψ) (ǫ̃ · P + k ·Ψ ǫ̃ ·Ψ) eik·X , (2.11)

which is inserted at a fixed location on Σ, but no longer fixes a zero mode of the su-

perconformal ghosts γ, γ̃. This composite operator is well-defined provided k2 = 0 and

ǫ ·k = ǫ̃ ·k = 0. It is BRST trivial if ǫ or ǫ̃ are proportional to k, giving the usual linearized

diffeomorphism invariance in space-time.

Finally, we may obtain a vertex operator that is integrated over Σ by pairing (2.11)

with moduli insertions from the gauge-fixing as

(∫

Σ
b ∧ µr

)(∫

Σ
b̃ ∧ µr

)
δ̄

(∫

Σ
µr P

2

)
cc̃ V (z).

As usual, the factors of b and b̃ in the measure have the effect of removing the ghost factor

cc̃ from the vertex operator. As above, the remaining δ̄
(∫
P 2µr

)
factor imposes that the

residue of the quadratic differential P 2 should vanish at the insertion point. To compute

this residue, notice that together with the kinetic term 1
2π

∫
Σ Pµ∂̄X

µ in the action, these

vertex operators provide the only X dependence in the path integral. Integrating out the

zero modes of X leads to an overall momentum conserving δ-function, while integrating

out the non-zero modes leads to the constraint

∂̄Pµ = 2πi dz ∧ dz̄
n∑

i=1

ki δ
2(z − zi) (2.12)

on the 1-form Pµ. Thus Pµ is holomorphic everywhere except at the insertion points, where

is has residue given by the external momentum ki. Since all these external momenta obey

k2i = 0, P 2 also has only simple poles and1 Resi P
2(z) = ki · P (zi). Thus we are left with

an integrated vertex operator ∫

Σ
δ̄(k · P (z))V (z) . (2.13)

The integral makes sense because V is a quadratic differential on Σ, while δ̄(k · P ) takes

values in Ω0,1(Σ, TΣ).

Using the ambitwistor version of the Penrose transform [2, 13] it can be shown that

the vertex operators (2.10)–(2.13) represent the NS-NS sector of supergravity in ten di-

mensions [1]. They may be contrasted against the momentum eigenstates used in twistor

space for four dimensional flat space-time (see e.g. [10, 14])

δ̄ (〈λλ(z)〉) ei[µ(z)λ̃] ,

1Here we understand the residue at a point zi of a quadratic differential on Σ to be a 1-form at zi. This

follows from the residue exact sequence

0 → K
2 →֒ K

2(zi)
Res
−→ K|zi → 0

on Σ, where the second map is inclusion and the third is the residue map at zi. See e.g. [10] for further

explanation in a similar context.
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where pαα̇ = λαλ̃α̇ is an on-shell four-momentum and ZA(z) = (λα, µ
α̇)(z) are homoge-

neous coordinates on twistor space. In twistor space, the mass-shell condition is encoded

automatically, but vertex operators of different homogeneity are needed to describe differ-

ent helicity states. The ambitwistor wavefunction

δ̄ (k · P (z)) eik·X(z)

that appears in (2.13) can be seen as an analogue of the twistor wavefunction. The fact

that k2 = 0 is not manifest at the classical level in the ambitwistor version reflects the

fact that spaces of complex null geodesics may be constructed for any (globally hyperbolic)

space-time, not just Einstein spaces, while the fact that it is non-chiral reflects the fact

that, unlike twistor space, ambitwistor space has manifest parity invariance.

The genus zero NS-NS scattering amplitudes of this model were computed in [1]. When

Σ ∼= CP
1 there are three zero modes of both the c and c̃ ghosts, and two zero modes of both

γ and γ̃. At the level of a worldsheet correlation function, this means that the amplitude

for n external states is given by:

M0
n =

〈
c1c̃1U1 c2c̃2U2 c3c̃3V3

n∏

i=4

∫

Σ
δ̄(ki · P (zi)) Vi

〉
, (2.14)

which was evaluated in [1] and shown to reproduce the Cachazo-He-Yuan representation

of tree level graviton scattering amplitudes [5]. In this paper, we will generalize this

computation to the torus, where internal states from the Ramond sector appear.

2.3 Ramond sector vertex operators

Ramond sector vertex operators may also be constructed following the usual methods of

string theory. We introduce spin fields Θα of conformal weight 5/8 for the worldsheet

spinor Ψµ, as well as the bosonization of the superconformal ghosts β, γ [15, 16].2 The

latter involves a bosonic field φ with OPE

φ(z) φ(w) ∼ − ln |z − w|,

and insertions of the form eℓφ have conformal weight − ℓ2

2 − ℓ. Since a spin field has

conformal weight 5/8, the combination e−φ/2Θα takes values in KΣ. This allows us to

define the fixed vertex operator

cc̃ Û−1/2 = cc̃ e−φ/2Θαζ
α eik·X Ũ , (2.15)

of picture number −1/2, where Ũ may either be δ(γ̃)ǫ̃ · Ψ̃ if we wish to describe space-time

gravitinos of polarization ζαǫ̃µ, or (in the heterotic model) an element J of a worldsheet

current algebra if we wish to describe gauginos of polarization ζα. In either case, Ũ also

has holomorphic conformal weight 1 so that e−φ/2ΘαŨ together balance the holomorphic

conformal weight −2 of cc̃. The corresponding integrated vertex operator is
∫

Σ
δ̄(k · P ) V̂ −1 =

∫

Σ
δ̄(k · P ) e−φ/2Θαζ

α eik·X Ṽ , (2.16)

2We denote spinor indices as α, β. In ten space-time dimensions, these indices run from α = 1, . . . , 32.
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and has picture number −1. As in the NS sector, the scattering equation constraint δ̄(k ·P )
ensures that the expression under the integral sign is a (1,1)-form that may be integrated

over Σ.

In type II ambitwistor strings, we may construct either R-NS or NS-R vertex operators,

where the two sectors refer to the Ψ and Ψ̃ systems, but where-in contrast to the usual

string-both sectors are holomorphic. Imposing the standard GSO projections on each of

these sectors implies that the spin fields must transform as a Weyl spinor in ten dimensions,

leading to two gravitino states of either the same (IIB) or opposite (IIA) chiralities. There

are also R-R sector p-form fields with vertex operators

cc̃ e−φ/2Θα e−φ̃/2Θ̃β γ
µ1···µp

αβ εµ1···µp eik·X , (2.17)

where as usual p must be odd in the IIA model and even in the IIB. Thus the complete

spectrum of Type IIA/B ambitwistor strings agrees with that of Type IIA/B supergravity

in ten dimensions. Again we emphasize that triviality of the XX OPE implies eik·X has

vanishing conformal weight, so the ambitwistor string contains no massive states and no

α′ corrections.

3 Amplitudes involving fermions

In this section, we compute the simplest amplitudes involving space-time fermions and

verify them against known results. For amplitudes involving more than four particles, we

encouter the usual difficulties associated with space-time fermions in the RNS formalism.

3.1 Three and four point amplitudes

The computation of three- and four-point amplitudes involving two space-time fermions

closely mirrors those of standard string theory (see e.g. [11, 16]). In particular, for the three-

point amplitude we use the correlation functions of the bosonized ghost and spin fields

〈
e−φ1/2 e−φ2/2 e−φ3

〉
= z

−1/4
12 z

−1/2
23 z

−1/2
31 〈Θ1αΘ2β ψ

µ
3 〉 =

γµαβ

z
3/4
12 z

1/2
23 z

1/2
31

, (3.1)

where γµαβ are the 10-dimensional gamma matrices. Individually, each of these correlators

introduces branch cuts that cancel in the combined expression. There are no scattering

equations to be imposed when n = 3, so integrating out the PX system just gives an

overall momentum conserving δ-function.

In the heterotic model, the correlator of three worldsheet currents J gives

〈J(z1)J(z2)J(z3)〉 =
tr (Ta1Ta2Ta3)

z12z23z31
,

and including the c and c̃ ghost contributions leaves us with the heterotic amplitude

Mhet(1f , 2f , 3b) = δ10

(
3∑

i=1

ki

)
tr (Ta1T

a2T
a3) ζ1 · /ǫ3 · ζ2 , (3.2)
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the correct amplitude for two gauginos and a gauge boson. Likewise, the three-point

amplitude for two gravitini and a graviton in the type II model is given by

MII(1f , 2f , 3b) = δ10

(
3∑

i=1

ki

)
ζ1 · /ǫ3 · ζ2 ǫ̃1µǫ̃2ν ǫ̃3ρTµνρ, (3.3)

where Tµνρ is built from the metric and momenta as

Tµνρ = ηµν(k1 − k2)
ρ + ηνρ(k2 − k3)

µ + ηρµ(k3 − k1)
ν . (3.4)

Thus (3.3) is the correct amplitude for the scattering of two gravitinos and one graviton.

Four point amplitudes involving two bosons and two fermions may also be computed

by following the usual steps in string theory. The main tool is the Ward identity [17]:

〈Θ1αΘ2β ψ
µ
3 ψ

ν
4 ψ

ρa
4 〉 =

∑

i 6=4

Mνρ
i

z4i
〈Θ1αΘ2β ψ

µ
3 〉 , (3.5)

where Mi is a rotation matrix acting on the insertion at site i. This allows us to compute

the leading trace contribution to the four point amplitude in the heterotic model

Mhet(1f , 2f , 3b, 4b) =

〈
c1c̃1Û

−1/2
1 c2c̃2Û

−1/2
2 c3c̃3V

−1
3

∫

Σ
δ̄(k4 · P )V4

〉

= δ10

(
4∑

i=1

ki

)
tr (Ta1T

a2T
a3T

a4)

∫
δ̄

(
3∑

i=1

k4 · ki
z4i

)
z31
z34z41

×

ζ1 ·/ǫ3 ·ζ2

3∑

j=1

ǫ4 · ki
z4i

+

(
ζ1 ·γ[νσ] ·/ǫ3 ·ζ2

z41
− ζ2 ·γ[νσ] ·/ǫ3 ·ζ1

z42

)
k4 νǫ4 σ

+
k4 ·ǫ3 ζ1 ·/ǫ4 ·ζ2 − ǫ4 ·ǫ3 ζ1 ·/k4 ·ζ2

z43

]
+ permutations + multi-trace .

(3.6)

We have confirmed that upon reducing to four dimensional kinematics (always possible for

four particle scattering) this expression produces the correct amplitude for the scattering

of two gauginos and two gluons. Similarly, one can compare (3.6) with the single trace

contribution to the α′ → 0 limit of 4-point heterotic string amplitudes given in e.g. [11, 16].

A similar computation confirms that the type II amplitude

MII(1f , 2f , 3b, 4b) =

〈
c1c̃1Û

−1/2,−1
1 c2c̃2Û

−1/2,−1
2 c3c̃3V

−1,0
3

∫

Σ
δ̄(k4 · P )V4

〉

= δ10

(
4∑

i=1

ki

) ∫
δ̄

(
3∑

i=1

k4 · ki
z4i

)
z23z31

×


ζ1 · /ǫ3 · ζ2

3∑

j=1

ǫ4 · ki
z4i

+

(
ζ1 · γ[νσ] · /ǫ3 · ζ2

z41
− ζ2 · γ[νσ] · /ǫ3 · ζ1

z42

)
k4 νǫ4 σ

+
k4 · ǫ3ζ1 · /ǫ4 · ζ2 − ǫ4 · ǫ3ζ1 · /k4 · ζ2

z43

]
× Pf

(
M̃12

12

)

(3.7)
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is the correct one for the scattering of two gravitinos and two gravitons. Here, the 8 × 8

matrix M̃ is the same as the one appearing in the formulæ of Cachazo et al. [5] and accounts

for the contribution to the amplitude from the NS Ψ̃ fields.

3.2 Remarks on higher point amplitudes

One of the attractive features of the n-particle formulæ of [5] is their compactness. It

is natural to ask if we can find similarly compact expressions for scattering amplitudes

involving two gravitinos and an arbitrary number of gravitons. It is easy to see that in the

type II ambitwistor string, these amplitudes are determined by the correlator

〈
c1c̃1Û

−1/2,−1
1 c2c̃2Û

−1/2,−1
2 c3c̃3V

−1,0
3

n∏

i=4

∫

Σ
δ̄(ki · P ) Vi

〉

=

∫ n∏

j=4

δ̄


∑

k 6=j

kj · kk
zjk


 z23z31 Pf

(
M̃12

12

)

×
〈
Θ1 · ζ1 Θ2 · ζ2 ǫ3 · ψ3

n∏

j=4

(ǫj · Pj + ǫj · ψj kj · ψj)e
i
∑

k·X
〉
.

involving one copy of the Pfaffian from the NS sector. Unfortunately, due to the non-

polynomial nature of the spin field Θα, we have been unable to find a compact, closed-form

expression for this correlator. This is as expected: the RNS formulation of a string theory

(including an ambitwistor string) obscures space-time supersymmetry and makes calcula-

tions of scattering amplitudes involving arbitrary numbers of fermions rather laborious.

Berkovits recently constructed a pure spinor version of the ambitwistor string [4],

which possesses manifest space-time supersymmetry and so may be expected to be able to

treat scattering amplitudes more easily by adapting the techniques of [18]. Indeed, it has

now been shown that the genus zero amplitudes of this model correspond to those of ten

dimensional N = 1 super-Yang-Mills in the heterotic case, and type II supergravity in the

type II case [19]. We note however that the Pfaffians appearing in [5, 6] for the NS-NS

sector seem inevitably to point to an RNS model with real worldsheet spinors.

In four dimensions, compact expressions for all tree amplitudes, of any helicity type,

in N = 8 supergravity are available using the twistor string [20, 21]. The integrals over

the moduli space occurring in these representations are also frozen in terms of the external

momenta, which are now manifestly on-shell. The constraints imposed on the twistor string

also imply that the scattering equations are satisfied [10].

4 Ambitwistor strings at genus one

We now investigate the ambitwistor string a genus one. We begin by considering the

scattering equations on an n-pointed elliptic curve, showing that two different types of

equation must be imposed: on the residues of P 2 and on P 2 itself. We then proceed to

study the partition function and worldsheet correlation functions.
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4.1 The scattering equations at genus 1

At genus one, the moduli of the Riemann surface includes the complex structure parameter

τ of the unmarked curve, as well as the markings (up to the freedom to fix one marked

point). So after converting n − 1 of the vertex operators to integrated vertex operators,

the measure on the moduli space also involves an insertion
∫

Σ
b̃ µ × δ̄

(∫

Σ
P 2µ

)
= b̃0 δ̄(P

2(z0; τ)) , (4.1)

where µ is the Beltrami differential associated to changes in the complex structure of the

elliptic curve. As usual, the insertion of b̃0 serves to absorb the single constant zero mode

of b̃ at genus 1, so its insertion point is arbitrary. The remaining δ-function forms part of

the genus 1 scattering equations. It should be interpreted as

δ̄(P 2(z0; τ)) = dτ̄
∂

∂τ̄

(
1

P 2(z0; τ)

)
, (4.2)

and fixes the integral over τ . Thus, in addition to imposing ResiP
2(zi) = 0 (as at g = 0

but now for n−1 of the marked points) we also impose that P 2 itself vanishes at some

other point z0. To understand these two different types of scattering equations, note first

that (as we will find below) P 2 has at most simple poles at the marked points and no

other singularities. Thus, once we impose that the residue of P 2 vanishes at n−1 of these

marked points we know that P 2 must in fact be globally holomorphic over Σ, since the

remaining residue must inevitably vanish. However, at genus one there exists a unique

globally holomorphic quadratic differential which must be constant, since K2
Σ
∼= O. The

final scattering equation P 2(z0) = 0 ensures that this constant piece also vanishes.

Altogether then, the n scattering equations

Resi P
2 = 0 i = 2, . . . , n and P 2(z0) = 0 (4.3)

are exactly what is needed to ensure that P 2 in fact vanishes everywhere on the worldsheet.

This vanishing is the content of the scattering equations at any genus, and is crucial

to ensure that the gauge symmetry δXµ = c̃Pµ is consistent in the presence of vertex

operators. It is precisely because the scattering equations hold that we must interpret the

target space of the string theory as ambitwistor space, not T ∗M .

We can write the genus 1 scattering equations in a more explicit form by performing

the XP path integral. As in the genus zero case discussed in [1], we do this by treating

the plane wave eiki·X(zi) factors in the vertex operators as localized contributions to the

worldsheet action. At any genus, zero modes of Xµ must be constant, and integrating over

these constants leads to the ten-dimensional momentum conserving δ-function δ10(
∑

i ki).

The path integral over the non-zero modes of X imposes the constraint

∂̄Pµ(z) = 2πi dz ∧ dz̄
n∑

i=1

kiµ δ
2(z − zi) (4.4)

saying that Pµ is holomorphic except for poles at the vertex operators. However, unlike for

a Riemann sphere, an elliptic curve possesses a globally holomorphic abelian differential
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that, using the identification Eτ
∼= C/Λ, may be written as the holomorphic 1-form dz on

the complex plane. Thus at genus one (4.4) has a homogeneous solution Pµ(z) = pµdz

where pµ are constants. These constants are the zero modes of Pµ and must be separately

integrated over. Accounting for the poles, the general solution of (4.4) is

Pµ(z) = pµdz +
n∑

i=1

kiµS̃1(z, zi; τ) , (4.5)

where

S̃1(z, zi; τ) =

(
θ′1(z − zi, τ)

θ1(z − zi, τ)
+ 4π

Im(z − zi)

Im(τ)

)
dz (4.6)

is the propagator for the PX-system on an elliptic curve. Note that

S̃1(z, zi; τ) = dz
∂

∂z
G(z, zi; τ) (4.7)

where

G(z, zi; τ) = − ln |E(z, zi; τ)|2 + 2π
(Im(z − zi))

2

Im(τ)
(4.8)

is the usual genus one propagator for a non-chiral scalar, written in terms of the prime

form E(z, w; τ).

The term proportional to Im(z − zi) in (4.6) ensures that S̃1 is orthogonal to the zero

mode Pµ(z) = pµdz. However, on the support of the momentum conserving δ-function,

the sum
∑n

i=1 kiµS̃1(z, zi) in (4.5) is independent of Im(z), so that (4.5) is meromorphic

in z as required. The dependence of the sum on the Im(zi) can be absorbed into a shift of

the zero mode pµ if need be. However, it is simpler to treat this term as part of S̃1 as it

ensures that (4.6) behaves as

S̃1(z, zi; τ) = S̃1(z, zi; τ + 1) = S̃1

(
z

τ
,
zi
τ
;−1

τ

)
, (4.9)

under modular transformations, where we recall that S̃1(z, zi) is a (1,0)-form in z and a

scalar in zi.

Using (4.5) and the fact that k2i = 0, the δ̄-functions in the integrated vertex operators

now impose the constraint

0 = ki · p+
∑

j 6=i

ki · kj S̃1(zi, zj ; τ) (4.10)

at all but one of the marked points. The remaining constraint comes from δ̄(P 2) in the

measure for integrating over the moduli space. This imposes

0 = p2(dz)2 + (dz)

n∑

i=1

p · ki S̃1(z, zi; τ) +
∑

i 6=j

ki · kj S̃1(z, zi; τ)S̃1(z, zj ; τ) , (4.11)

where the second sum runs over both i and j. Equations (4.10)–(4.11) are the genus one

analogue of the genus zero scattering equations used in [1, 5, 6]. It would be interesting
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to compare them to the genus one saddle point equations found by Gross and Mende [9],

although we note that the scattering equations here depend on the zero mode pµ of the

field Pµ that is absent in usual, second-order formulations of string theory.

The n scattering equations completely fix the integral over the n-dimensional moduli

space M1,n of n-pointed genus 1 curves in terms of the external momentum ki and the

zero mode p. However, the zero modes p of P (z) are not fixed. These variables are just the

usual (generically off-shell) momentum circulating around the loop in the corresponding

1-loop Feynman diagrams. Thus, in contrast to standard non-chiral string theory, the

ambitwistor string explicitly introduces a loop momentum and, if one wishes to evaluate

the full amplitude rather than merely the loop integrand, the loop integral d10p must be

performed explicitly after evaluating the worldsheet correlation functions (for which see

sections 4.3.1–4.3.2).

The fact that the loop momentum appears explicitly in this formalism has a very

important consequence. Usual string theory is UV finite because (given a well-defined

worldsheet CFT) its bosonic moduli space is essentially Mg,n — the Deligne-Mumford

moduli space of marked curves.3 Worldsheet correlation functions have singularities on

the boundary Mg,n\Mg,n of this space, but these correspond to (physically important) IR

divergences. See e.g. [12, 22] for a recent comprehensive discussion.

By contrast, in the case of ambitwistor strings the moduli space also includes an integral

over a copy of real (Minkowskian) momentum space R
1,9 ⊂ C

10 corresponding to the Pµ

zero modes. This space is non-compact, and this final integral is potentially divergent. This

is how the chiral ambitwistor string can be both a string theory and yet be equivalent to a

pure (massless) supergravity in the target space — potential UV divergences come not from

the integral over the (compact) moduli space of marked curves, but from the non-compact

loop integrals over zero-modes of P (z). In particular, we expect type II supergravities to

display a quadratic4 UV divergence at one loop in ten dimensions. It would be interesting

to see this behaviour in the final expressions for worldsheet correlation functions below.

At genus g we expect to have a total of n+ 3g − 3 scattering equations, of which (for

g ≥ 2) n would be of the type ki · P (zi) = 0 constraining the residues of P (z) to vanish

at the vertex operators, while 3g − 3 would be of the type P 2(zr) = 0 constraining the

possible holomorphic quadratic differential P 2 to vanish at 3g − 3 points zr ∈ Σ. Since

h0(Σ,K2(z1+ · · ·+zn)) = n+3g−3 these scattering equations suffice to impose P 2(z) = 0

globally over the marked Riemann surface, ensuring as in [1] that the true target space of

the string is ambitwistor space PA. On the other hand, there are g holomorphic Abelian

differentials ωa (with a = 1, . . . , g), these higher genus amplitudes will involve an integral

3The statement that the integral is over the moduli space Mn,g rather than over the non-compact

Teichmüller space makes crucial use of invariance under the modular group Sp(2g,Z). The full bosonic

moduli space also includes the space of worldsheet instantons over each point of Mg,n. In flat space-

time R
1,9 these are just the (constant) zero modes of Xµ(z, z̄) and, in the presence of vertex operators,

the corresponding integral yields a momentum conserving δ-function. In compactifications the worldsheet

instanton moduli space can be more complicated, but still leads to no new divergences essentially because

it is either compact or admits a natural compactification.
4In dimensional regularization, such power law divergences are absent, so 10d supergravity will be

accidentally finite until two loops
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over the zero modes
∏

a d
10pa of P (z), corresponding to the loop momenta at g loops in

field theory. Again, we expect these integrals to diverge, both in the UV and IR.

4.2 Modular invariance and the partition function

As usual in string theory, the path integrals over the non-zero modes of the fields are non-

trivial at genus one, even in the absence of any vertex operator insertions. For the odd spin

structure, the Ψµ and Ψ̃µ fields each have (constant) zero modes which, in the absence of

vertex operator insertions, kill the contribution of the odd spin structure to the partition

function. For an even spin structure, neither the fermionic fields Ψ, Ψ̃ nor the associated

βγ and β̃γ̃ ghost systems have any zero modes. Therefore the partition function becomes

Zα(τ)Z̃β(τ) =
det′(∂̄TΣ

)
2

det′(∂̄O)
10

Pf(∂̄
K

1/2
Σ

(α)
)10

det(∂̄
T

1/2
Σ

(α)
)

Pf(∂̄
K

1/2
Σ

(β)
)10

det(∂̄
T

1/2
Σ

(β)
)

=
1

η(τ)16
θα(0; τ)

4

η(τ)4
θβ(0; τ)

4

η(τ)4
,

(4.12)

where α and β are the spin structures associated to {Ψ, γ, β} and {Ψ̃, γ̃, β̃} respectively,

and η(τ) is the Dedekind eta function.

We can combine these partition functions to form modular invariants. To begin with,

the standard GSO projections of Type II strings correspond to the g = 1 partition functions

ZIIA(τ) =


Z1 +

∑

α=2,3,4

(−1)αZα




Z̃1 −

∑

α=2,3,4

(−1)αZ̃α




ZIIB(τ) =


Z1 +

∑

α=2,3,4

(−1)αZα




Z̃1 +

∑

α=2,3,4

(−1)αZ̃α


 ,

(4.13)

for type IIA and type IIB ambitwistor strings. Here Z1 and Z̃1 are the (vanishing) partition

functions of the Ψ and Ψ̃ systems in the odd spin structure. As usual, both these partition

functions vanish as a consequence of the Jacobi ‘abstruse identity’ θ2(τ)
4−θ3(τ)4+θ4(τ)4 =

0 that reflects space-time supersymmetry and imposes the one-loop vanishing of the space-

time cosmological constant.

We can also construct a type 0 ambitwistor string by requiring the Ψ and Ψ̃ systems

to have the same spin structures. This choice breaks space-time supersymmetry. However,

unlike the real partition function∝ |θ2(τ)|N+|θ3(τ)|N+|θ4(τ)|N of non-chiral Type 0 strings

which is modular for any value of N , the chiral partition function ∝ θ2(τ)
8+θ3(τ)

8+θ4(τ)
8

of the type 0 ambitwistor string can be modular only in 8k + 2 space-time dimensions.

The above partition functions (4.13) are modular functions of weight −8. Including

the integral over the zero modes of X and P , together with the zero modes of the bc and

b̃c̃ ghost systems, the full genus one partition function of the type II string is formally

ZIIA/B =

∫
d10x d10p

(volC∗)2
δ̄
(
p2(dz)2

)
ZIIA/B(τ) dτ , (4.14)

where we have solved (4.4) to find Pµ(z) = pµdz in the absence of any vertex operator

insertions. Here xµ is just a constant zero mode of Xµ, while pµ is the coefficient of the
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abelian differential dz arising as a zero mode of Pµ. Under the modular transformation

τ → −1/τ this differential behaves as dz → dz/τ , so we should also transform

pµ → τpµ (4.15)

to ensure that the zero mode pµdz itself is invariant. With this definition, the loop integral

measure d10p acquires a factor of τ10 under this modular transformation. This compensates

the weight of the modular function ZIIA/B(τ) dτ so that (4.14) is invariant.

The factor of 1/(volC∗)2 arises from fixing the zero modes of the c and c̃ ghosts. The

c ghost zero mode may be used to fix the insertion point of δ̄(p2(dz)2) to any point on

the torus. Recalling that the c̃ ghost is associated to the transformation δXµ = c̃Pµ that

allowed us to translated X along the null geodesic in the direction of P , we may use the

remaining volC∗ factor to fix one of the x integrals, picking a representative point on each

null geodesic. Combining this action with the constraint p2 = 0 we see that the integral

over zero modes of X and P is really an integral over the target space PA. This is as

expected in string theory, and once again emphasizes the fact that the target space of this

chiral model is best thought of as ambitwistor space, rather than space-time.

4.3 NS-NS scattering amplitudes at genus 1

We now wish to consider the contribution to the n-point scattering amplitude of particles

in the NS-NS sector of ten dimensional supergravity — i.e., gravitons, B-fields and dilatons

— from the genus one ambitwistor string. As in section 2, for momentum eigenstates these

particles may be described either by fixed vertex operators

cc̃Ui(zi) = cc̃ δ(γ) δ(γ̃) ǫi ·Ψ(zi) ǫ̃i · Ψ̃(zi) e
iki·X(zi) (4.16)

or by the corresponding integrated vertex operators
∫

Σ
δ̄(ki · P (zi))Vi(zi) =

∫

Σ
δ̄(ki · P (zi))

[
ǫi · P + ǫi ·Ψ ki ·Ψ

] [
ǫ̃i · P + ǫ̃i · Ψ̃ ki · Ψ̃

]
(zi) e

iki·X(zi)
(4.17)

that follow from (4.16) via the descent procedure. We will consider the case that the

fermions have even or odd spin structures separately.

4.3.1 Even spin structure

In an even spin structure, neither the worldsheet fermions Ψµ, Ψ̃µ nor the ghosts γ, γ̃ have

zero modes, so we want no U insertions. However, the c and c̃ ghosts have one zero mode

each, corresponding to constant translations around the torus, or along the null geodesic

xµ(λ) = xµ+λpµ. This freedom is fixed by one insertion of cc̃V . We thus wish to compute

M1; even
n =

〈
b0b̃0 δ̄(P

2) cc̃V1(z1)
n∏

i=2

∫
δ̄(ki · P (zi))Vi(zi)

〉
, (4.18)

where the factor of δ̄(P 2) in the measure was explained above.
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Because none of the vertex operators involve δ(γ) or δ(γ̃), the correlator of the Ψ fields

and of the Ψ̃ fields each lead to Pfaffians of 2n× 2n matrices M ′
α and M̃ ′

β. In other words,

unlike at genus zero [1, 5, 6], no rows or columns are removed from these matrices. The

matrix M ′
α has elements

M ′
α =

(
A −C ′T

C ′ B

)
(4.19)

where

Aij = ki ·kj Sα(zij ; τ) Bij = ǫi · ǫj Sα(zij ; τ) C ′
ij = ǫi ·kj Sα(zij ; τ) (4.20)

and Aii = Bii = C ′
ii = 0 again on account of ǫi · ki = k2i = 0. In this matrix,

Sα(zij , τ) =
θ′1(0; τ)
θ1(zij ; τ)

θα(zij ; τ)

θα(0; τ)

√
dzi
√
dzj (4.21)

is the g = 1 free fermion propagator, or Szego kernel, in the even spin structure α. We have

defined this to be a half-form in both zi and zj (like Ψ(zi)Ψ(zj)) so that under a modular

transformation it simply changes to a Szego kernel in a different (even) spin structure (i.e.

it does not acquire any factors of
√
τ).

The elements of M ′
α arise from considering contractions between the various Ψ inser-

tions at points zi and zj (with i 6= j) on the worldsheet, where we recall that the ith vertex

operator involves a term ǫi ·Ψ(zi) ki ·Ψ(zi). As at genus zero [1, 21], we may incorporate

the contributions from the ǫi ·P (zi) factors in the vertex operators by modifying the matrix

C ′ → C, where the off-diagonal elements are unchanged, but where the diagonal elements

now become5

Cii = ǫi · p dzi +
∑

j 6=i

ǫi · kj S̃1(zi, zj ; τ) , (4.22)

independent of the spin structure. That is, the diagonal elements Cii = ǫi ·P (zi), with P (z)
given by (4.4) and we use ǫi · ki = 0 before taking the z → zi limit. Alternatively, normal

ordering of the vertex operators means that we should ignore the divergent contribution

obtained if one sets z → zi in (4.4) before contracting with the polarization tensor ǫi. Thus,

in an even spin structure α, the vertex operators contribute a factor of Pf(Mα) Pf(M̃β) to

the string correlation function, where

Mα =

(
A −CT

C B

)
(4.23)

and M̃β is similar but with tilded polarization tensors and a (perhaps) different spin struc-

ture β. On the support of the scattering equations, these Pfaffians are invariant under

the target space gauge transformations ǫi → ǫi + ki, as follows from worldsheet BRST

invariance.

5Recall that S̃1(z, w; τ) is a (1,0)-form in z and a scalar in w.
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Combining this with the non-trivial path integral that gave the partition function and

summing over even spin structures α and β according to the type II GSO projection, we

obtain

M1; even
n = δ10

(
n∑

i=1

ki

)∫
d10p ∧ dτ δ̄

(
P 2(z1; τ)

) n∏

j=2

δ̄(kj · P (zj))

×
∑

α;β

(−1)α+βZα;β(τ) Pf(Mα) Pf(M̃β)

(4.24)

as the contribution to 1-loop scattering amplitudes from even spin structures. Note that

the integrand in (4.24) is a (top,top) form on Mn,1; the product of the two Pfaffians

transforms as a quadratic differential at each marked point zi for i ∈ {1, . . . , n}, while the

constraints
∏n

j=2 δ̄(kj ·P (zj)) provide holomorphic conformal weight −1 at all the marked

points except z1, whereas the constraint δ̄
(
P 2(z1; τ)

)
provides holomorphic weight −2 at z1.

As mentioned above, these scattering equation constraints fix the vertex operator in-

sertion points zi and the worldsheet complex structure τ in terms of the external and loop

momenta ki and p. The integral over the loop momentum p must be treated as a contour

integral and is expected to diverge on the physical contour R
9,1 ⊂ C

10. Notice that the

loop momentum appears in the Pfaffians, through the diagonal elements (4.22) of C, as

well as in the scattering equations. Modular invariance of the right hand side of (4.24)

follows trivially from the modular invariance of the partition function; indeed, we included

form weights in the elements of Mα and M̃β precisely to ensure that their Pfaffians are

invariant under modular transformations, up to a change in spin structure.

4.3.2 Odd spin structure

At genus one, there is a single odd spin structure corresponding to periodic boundary

conditions around each of the two non-trivial cycles on the torus. In this spin structure

the the ghosts and antighost have one, constant zero mode each. The zero modes of the

antighosts correspond to fermionic moduli, which as in the RNS string we fix by inserting

two picture changing operators

Υ0 = δ̄(β)(P ·Ψ+ b̃γ) Υ̃0 = δ̄(β̃)(P · Ψ̃ + b̃γ̃) . (4.25)

At least at genus one, there are no spurious singularities and BRST invariance ensures the

amplitude is independent of the choice of insertion point of these operators.

Since each component of the fermionic fields Ψµ and Ψ̃µ also has a zero mode, as

usual only amplitudes with at least five particles receive any contributions from this spin

structure. For n ≥ 5 the amplitude receives a contribution from the worldsheet correlator

M1; odd
n =

〈
b0b̃0 δ̄(P

2(z0))Υ0Υ̃0 c1c̃1U(z1)
n∏

i=2

∫
δ̄(ki · P (zi))V (zi)

〉
. (4.26)

Evaluating this correlator leads again to Pfaffians of 2n × 2n matrices. For the Ψ system

we obtain the matrix

M =

(
A −CT

C B

)
, (4.27)
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where the entries now depend on the Ψ zero modes Ψ0. For i 6= j we have

Aij = ki · kj S1(zij ; τ) + ki ·Ψ0 kj ·Ψ0 i, j 6= 1

Bij = ǫi · ǫj S1(zij ; τ) + ǫi ·Ψ0 ǫj ·Ψ0

Cij = ǫi · kj S1(zij ; τ) + ǫi ·Ψ0 kj ·Ψ0 ,

(4.28)

whenever i 6= 1, and diagonal entries

Cii = −ǫi ·P (z0)dzi −
n∑

j 6=i

ǫi ·kj S(zij ; τ) , (4.29)

again for i 6= 1. When i = 1, the entries of A and C are modified to

A1j = P (z0)·kj S1(z0j) + P (z0)·Ψ0 kj ·Ψ0

C11 = ǫi ·P (z0) S1(z10) + ǫi ·Ψ0 P (z0)·Ψ0 ,
(4.30)

as they originate from contractions involving the picture changing operator. In these

expressions, S1(zij ; τ) is the free fermion propagator

S1(zij ; τ) :=

(
θ′1(zi − zj ; τ)

θ1(zi − zj ; τ)
+ 4π

Im(zi − zj)

Im(τ)

) √
dzi
√

dzj (4.31)

orthogonal to the zero mode. Again we have chosen to treat this as a half-form in each

of zi and zj , making it invariant under modular transformations. Note also that the zero

mode Ψµ
0 = Ψµ

0z

√
dz, where Ψµ

0z are anticommuting constants.

After performing all contractions to obtain the Pfaffian of M (and a Pfaffian of a

similar matrix M̃), we must still perform the path integral over all the fields. Here we find

simply

det′(∂̄TΣ
)
2

det′(∂̄O)
10

Pf(∂̄
K

1/2
Σ

)10

det(∂̄
T

1/2
Σ

)

Pf(∂̄
K

1/2
Σ

)10

det(∂̄
T

1/2
Σ

)
= 1 , (4.32)

where we have used the fact that K
1/2
Σ = T

1/2
Σ = O for the odd spin structure.

Finally then, including the integration over zero modes, the contribution of the odd

spin structure to n ≥ 5 particle amplitudes is

M1; odd
n = δ10

(∑
ki

)∫
d10p d10Ψ0 d

10Ψ̃0 dτ δ̄(P
2(z1))

n∏

i=2

δ̄(ki · P (zi))

× Pf(M) Pf(M̃)
dz1

(dz0)3
, (4.33)

where d10Ψ0 and d10Ψ̃0 are the integrals over the Ψ and Ψ̃ zero modes, while the ratio

dz1/(dz0)
3 arises from the zero modes of the ghost and antighosts in the picture changing

operators. It is easy to see that (4.33) is invariant under τ → τ + 1. Under τ → −1/τ ,

invariance of pdz again implies that d10p→ τ10 d10p. Likewise, invariance of Ψ0

√
dz implies
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that the Berezinian integration d10Ψ0 → τ−5 d10Ψ0, and similarly for the Ψ̃ zero modes.

Therefore, under τ → −1/τ ,

d10p d10Ψ0 d
10Ψ̃0 dτ → 1

τ2
d10p d10Ψ0 d

10Ψ̃0 dτ . (4.34)

Since the Pfaffians and δ-functions are modular invariant, the only remaining factor comes

from the ghost zero mode contribution dz1/(dz0)
3. This produces the missing τ2 and

renders the result modular invariant.

5 Factorization

At genus one, there are two distinct factorization limits to consider when studying the IR

behaviour of the NS-NS scattering amplitudes. Heuristically, these correspond to the two

ways in which the torus worldsheet can degenerate: either by pinching a cycle which reduces

the torus to a Riemann sphere, or by pinching a cycle which factors the worldsheet into a

sphere and another torus. We refer to these as a non-separating or separating degeneration,

respectively, and both can be understood as contributions from the boundary in the moduli

space of curves M1,n (cf., [12] for a review).

In the non-separating case, we approach a boundary divisor denoted by D
ns, which

looks like the moduli space of genus zero worldsheets with two additional punctures:

D
ns ∼= M0,n+2.

The separating degeneration corresponds to a divisor D
sep where the worldsheet pinches

off a genus zero component ΣL
∼= CP

1. The n marked points corresponding to the vertex

operators distribute themselves between the two factors, with nL on ΣL and nR on ΣR

such that nL + nR = n. This boundary divisor then looks like the product

D
sep ∼= M0,nL+1 ×M1,nR+1.

We confirm that in both factorization limits, the genus one amplitude develops a

simple pole in the modulus transverse to the boundary divisor, as required by unitarity.

In addition, we also observe that in the non-separating degeneration, the amplitude is a

rational function of the kinematic data, as appropriate for amplitudes in a field theory such

as gravity. This indicates that the various theta functions in the amplitude and partition

function are actually subsumed by the sum over solutions to the scattering equations.

The situation in ordinary superstring theory is quite different, where factorized amplitudes

are not rational functions of kinematic data, and the Jacobi product expansion of theta

functions builds an infinite series of modes on the string.

Of course, the unitary IR behavior of our formula (as well as the genus zero formulae of

CHY) follows in a more abstract fashion simply by the properties of the worldsheet theory

which produced it. The worldsheet perspective on factorization allows us to deduce the IR

behavior of amplitudes in this theory from basic geometric arguments, just as in ordinary

string theory [12, 23] or twistor-string theory [24]. However, since our concern here is with

the validity of the actual formula, it is important to derive the factorization behavior at

the level of the amplitude itself.
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5.1 Pinching a non-separating cycle

Pinching a non-separating cycle corresponds to approaching the non-separating boundary

divisor D
ns ⊂ M1,n, which is described by a degenerate limit of the complex structure τ

for the torus worldsheet. In particular, we need to consider the limit where Imτ → ∞; to

do this it is convenient to work with the alternative parameter q = e2πiτ so that pinching

the non-separating cycle is described by q → 0.

As this cycle is pinched, it will be essential to understand how the various ingredients

appearing in the expression for the amplitude behave. Using either their infinite sum or

product representations, one can easily deduce that

η(τ) ∼ q1/24, θ3(0; τ), θ4(0; τ) ∼ 1, θ2(0; τ) ∼ q1/8, (5.1)

in the limit as q → 0. The behavior of the Szego kernel depends on the spin structure,

and is apparent from (4.21) or can be rigorously derived using the sewing formalism for

Riemann surfaces [25, 26]:

Sα(zij , τ) ∼
{ √

dzi
√

dzj
zi−zj

if α = 2

κ×
√
dzi

√
dzj otherwise

, (5.2)

where κ is some constant. On the right-hand side, we have abused notation by implicitly

choosing an affine coordinate z on the Riemann sphere; the appropriate coordinate system

should always be evident from the context. Similarly, we find that

S̃1(zi, zj ; τ) ∼
dzi

zi − zj
, (5.3)

as q → 0.

Upon pinching the non-separating cycle, the contribution to the amplitude from the

odd spin structure vanishes since there are no odd spin structures on the sphere. Hence,

we only need to account for the behavior of M1; even
n as q → 0. First, consider the behavior

of Pf(Mα), Pf(M̃β) in (4.24). By (5.2) and (5.3), it is clear that when α = 2, the block

entries of Mα become:

Aij = ki · kj
√
dzi

√
dzj

zi − zj
, Bij = ǫi · ǫj

√
dzi

√
dzj

zi − zj
, Cij = ǫi · kj

√
dzi

√
dzj

zi − zj
,

which are the expected entries at genus zero [1, 5]. The only subtlety is in the diagonal

entries of the C-block, which read:

Cii|q→0 = −
∑

j 6=i

ǫi · kj
zi − zj

dzi + ǫi · p|q→0 dzi,

where pµdzi is the zero mode of Pµ(zi) on the torus. On the boundary divisor Dns, a global

holomorphic differential (such as pµdzi) degenerates into a meromorphic differential on the

sphere with simple poles at the two new marked points, having equal and opposite residues
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at those points (cf., [27]). Calling this residue kµ, and denoting the two new marked points

as za, zb ∈ CP
1, we find:

Cii|q→0 =


−

∑

j 6=i

ǫi · kj
zi − zj

+
ǫi · k
zi − za

− ǫi · k
zi − zb


dzi = Cn+2

ii ,

which is the diagonal entry for the C-block with n + 2 particles, two of which have equal

and opposite momentum. The story for M̃α is identical.

Hence, we see that

Pf(M2), Pf(M̃2)
q→0−−−→ Pf(Mab

ab ), Pf(M̃
ab
ab ), (5.4)

where Mab
ab is the matrix whose entries are the same as in the genus zero case for n + 2

particles, with rows and columns corresponding to the new external states at za, zb (and

with momentum kµ, −kµ) removed. Note that unlike boson scattering amplitudes at genus

zero, the rank of the Pfaffian is un-changed. For the other two even spin structures, the

matricesMα, M̃α do not approach recognizable structures. However, we will see that these

contributions actually cancel due to the GSO projection.

At this point, we note that the only factors in M1; even
n which encode the spin structure

and potential q-dependence are

dτ
∑

α;β

(−1)α+βZα;β(τ)Pf(Mα) Pf(M̃β)

=
1

2πi

dq

q

∑

α;β

(−1)α+β θα(0; τ)
4 θβ(0; τ)

4

η(τ)24
Pf(Mα) Pf(M̃β). (5.5)

Using the leading behavior given by (5.1), we see that as q → 0 this sum looks like

dq

q2

∑

β

(−1)βθβ(0; τ)
4 Pf(M̃β)

[
q1/2Pf(M2)− Pf(M3) + Pf(M4)

]
, (5.6)

which appears to have a tachyonic double pole in q. But as q → 0, we know that Pf(M3) =

Pf(M4), so the last two terms in (5.6) cancel with each other via the GSO projection.

The same argument works for the sum over β, leading to power of q in the numerator

from the only surviving term where α = β = 2. Hence, close to the boundary divisor Dns

the contribution to the measure from (5.5) is given by:

dτ
∑

α;β

(−1)α+βZα;β(τ)Pf(Mα) Pf(M̃β) ∼
dq

q
Pf(Mab

ab ) Pf(M̃
ab
ab ). (5.7)

This is in direct analogy with the role of the GSO projection in ordinary string theory:

a generic term in M1; even
n has a tachyonic double pole in the modulus q as we pinch the

non-separating cycle, but the sum over spin structures (with appropriate signs dictated by

modular invariance) cancels these double poles and leaves only the simple pole consistent

with unitarity.
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The last piece of the amplitude we need to analyse in this factorization limit are the

scattering equations enforced by

δ̄(P (z1)
2)

n∏

j=2

δ̄(kj · P (zj)). (5.8)

The role of these equations is to set to zero the meromorphic quadratic differential P 2(z)

by imposing that any possible pole has zero residue (4.10) and that its value at a point is

zero (4.11). As we approach the boundary divisor, the equation for the residues of P 2(z)

reduces to the familiar form of the tree-level scattering equations

ki · P (zi) =
ki · k
zi − za

− ki · k
zi − zb

+
∑

j 6=i

ki · kj
zi − zj

, (5.9)

where two new particles were created at points za, zb with equal and opposite momentum

k. Taking this factorization limit leaves us with an (n + 2)-point tree amplitude which

should come with n − 1 scattering equations, which is precisely the number of equations

given for each choice of i in (5.9). As usual in the factorization limit we insert operators

cc̃ which create punctures so the states inserted at these points are fixed; hence we don’t

get scattering equations for the particles inserted at za, zb.

On the support of (5.9) the remaining scattering equation becomes

P 2(z1) = p2dz21 = k2dz21

(
za − zb

(z1 − za)(z1 − zb)

)2

= 0 , (5.10)

which forces the momentum running through the cut to be on-shell, with {z1, za, zb} fixed

by the SL(2,C) freedom on the degenerate worldsheet.

We take this opportunity to note that for generic values of the modular parameter τ ,

δ̄(P 2) does not constrain pµ to be null. If this were true, then the loop momentum would

always be constrained to be on-shell. For a generic value of τ , we can use the remaining

n− 1 scattering equations and momentum conservation to write (4.11) as

P 2(z1) = p2 dz2 +
∑

j 6=i

kj · ki f(zi, zj , τ) dz2 , (5.11)

where the function f(zi, zj , τ) is smooth and has no singularity when xi → xj . Furthermore,

when Imτ → ∞, f approaches a constant independent of the worldsheet coordinates. By

momentum conservation, this means that P 2(z1) → p2 as we pinch the non-separating

cycle. Hence, the degeneration parameter q is directly related to the off-shellness of the

internal loop momentum.

This implies that in general the scattering equation (4.11) can be seen as fixing the

integration over τ , leaving a loop integral over the non-compact space of P zero modes.

Integrating over this space might introduce divergences which are absent from string theory

amplitudes but are expected from a theory which gives field theory amplitudes. We can also

interpret this equation as reducing the integral over the P zero modes to some hypersurface

parametrized by τ . The moduli of the Riemann surface then can be seen as an off-shellness

– 22 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
4

parameter for the loop momentum and we retain the interpretation that the target space

is ambitwistor space.

We have seen that when a non-separating cycle is pinched a pole of order one appears

and the amplitude factorizes in terms of an expression on a genus zero worldsheet with two

additional particles of equal and opposite null momenta. This is integrated over the phase

space of the on-shell loop momenta and summed over all possible intermediate states.

Critically, the integrand of the result is a rational function of kinematic invariants, as

expected for field theory amplitudes; the various elliptic functions only contribute to the

simple pole rather than adding higher mode dependence as in ordinary superstring theory.

This is true for the same reason that the integrand of the tree-level expression for graviton

amplitudes is a rational function.

In this factorized amplitude, the intermediate states could be gravitons or gravitinos.

While there is a compact expression for n-graviton scattering that could be used to check

the above formula, we lack a similarly simple expression for 2-gravitino and (n−2)-graviton

scattering. Nevertheless the result of this factorization limit seems to imply that a simple

expression for such amplitudes exists. Perhaps a formalism which makes target-space

supersymmetry manifest as in [4] could be used to find such expressions.

5.2 Pinching a separating cycle

Pinching a separating cycle on the genus one worldsheet factors off a Riemann sphere

ΣL
∼= CP

1 as we approach the boundary divisor Dsep. In this case, the degeneration of the

worldsheet has nothing to do with the modular parameter τ ; instead, it corresponds to a

set of nL of the external vertex operators becoming very close to each other. A conformally

equivalent situation is that these nL insertions are on a sphere ΣL which is connected to

the torus ΣR by a long tube.

In the neighborhood of this tube, we can model the worldsheet by

(zL − w)(zR − y) = s, (5.12)

where zL is a local coordinate on ΣL and zR is a local coordinate on ΣR.
6 Clearly, s acts

as a modulus for the length of the tube connecting the two branches, and as s → 0 the

worldsheet separates into ΣL ∪ ΣR, joined at the points zL = w and zR = y (see [12]

for a review). Thus, we can think of s as a modulus transverse to the boundary divisor

D
sep ⊂ M1,n. We are interested in the behavior of the genus one scattering amplitude as

we approach this boundary.

Unfortunately, the expression for the g = 1 amplitude computed in 4.3 is not optimal

for studying the separating degeneration. This is because we calculated the amplitude in a

picture with no insertions of δ(γ) or δ(γ̃); this was natural because there are no zero modes

of the superconformal ghosts which need to be fixed at genus one. However, upon pinching

the separating cycle we produce the branch ΣL on which γ and γ̃ have two zero modes

each. In other words, the two worldsheets produced by the separating degeneration have

different numbers of fermionic moduli. The new states we expect to appear at w ∈ ΣL

6Once again, we will leave the choice of a coordinate system on ΣL or ΣR implicit from now on.
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and y ∈ ΣR should be represented by fixed vertex operators (i.e., with picture number

−1), which is un-natural from the perspective of the picture used in section 4.3. In other

words, the use of integrated vertex operators corresponds to a choice of gauge which makes

pinching a separating cycle difficult.

This issue is familiar from the conventional RNS superstring: at arbitrary genus, am-

plitudes are easiest to compute using a mixture of fixed and integrated vertex operators

appropriate to the number of zero modes in the superconformal ghost system. At the level

of the integrand (i.e., before performing the moduli integrals), this expression is optimal in

the sense that it minimizes the number of picture changing insertions and behaves appro-

priately under all non-separating factorizations and all separating factorizations for which

the resulting worldsheets have the same number of fermionic zero modes.7 However, this

choice of picture is un-natural for generic worldsheet degenerations where new states will

appear in the fixed picture, making it difficult to isolate the IR behavior of the amplitude.

The solution to this issue is to represent all external states by fixed vertex operators

at the expense of introducing an appropriate number of picture changing operators. The

resulting amplitude-while appearing superficially different from an expression obtained with

integrated vertex operators-will be independent of the PCO insertions and in fact equal to

the alternative expression (although proving this in specific examples can be difficult). The

amplitude in this all-fixed picture is naturally suited to studying all boundary divisors in

the moduli space since all external states are on the same footing as new states which

appear in the factorization channel. Another way of seeing this is by considering the

worldsheet perspective on factorization, where it is essential to work in the all-fixed picture

(see [12, 24] for more details).

At genus one in even spin structure, this means that we should compute the NS-NS

sector scattering amplitude from the worldsheet correlation function:

M1; even
n =

〈
n∏

i=1

cic̃iUi

n∏

a=1

ΥaΥ̃a

n−1∏

r=1

(br|µr) (b̃r|µr)δ̄
(∫

Σ
µr P

2

)〉
, (5.13)

where we use the short-hand

(br|µr) =
∫

Σ
br ∧ µr ,

for the measure on the moduli space.

The resulting amplitude can be computed in much the same way as our previous

expression. In an even spin structure, we find:

M1; even
n = δ10

(
∑

i

ki

)∫
d10p ∧ dτ ∧ δ̄

(
P 2(z1)

) n∏

i=2

δ̄(ki · P (zi))

×
∑

α;β

(−1)α+βZα;β(τ)
Pf(Mα)

|Rα|
Pf(M̃β)

|R̃β|
, (5.14)

7For example, at genus two the expression will factorize correctly for a non-separating degeneration as

well as the separating degeneration that results in two tori (cf., [28]).
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where the partition function Zα;β(τ) is as in (4.12). The skew-symmetric 2n× 2n matrix

Mα arises from the matter systems, is analogous to the matrix Mα appearing in (4.24),

and has a block decomposition

Mα =

(
A −C

T

C B

)
.

Entries of the A-block are indexed by the locations of the PCOs, which we denote as

xa, xb ∈ Σ, for a, b = 1, . . . , n:

Aab = Sα(xab; τ)




n∑

i,j=1

ki · kj S̃1(xa, zi; τ) S̃1(xb, zj ; τ) +
n∑

i=1

ki · p dxb S̃1(xa, zi; τ)

+
n∑

j=1

p · kj dxa S̃1(xb, zj ; τ) + p2 dxa dxb


 , (5.15)

with Aaa = 0. The entries of the B-block are indexed by the vertex operator locations, and

are identical to those in (4.20):

Bij = ǫi · ǫj Sα(zij ; τ), Bii = 0. (5.16)

Finally, the rows of the C-block are indexed by the vertex operators, while its columns are

indexed by the PCOs:

Cia = Sα(xa − zi; τ)




n∑

j=1

ǫi · kj S̃1(xa, zj ; τ) + ǫi · p dxa


 . (5.17)

A determinant of the n×n matrix Rα arises in the denominator due to the correlator

in the βγ-system. This is the expected bosonic ‘Slater determinant’ (cf., [12], section 10)

whose entries are composed of the propagators between the γ insertions for vertex operators

and the β insertions for the PCOs:

Ria = Sα(zi − xa; τ)
dxa
dzi

. (5.18)

Of course, then entries of M̃β and R̃β are exactly the same, except for the spin structure

and polarization vectors.

At first, it may appear that (5.14) cannot be equivalent to our earlier expression (4.24):

not only are the various Pfaffians different, but there are also novel Slater determinants as

well as apparent dependence on the locations of the PCOs. Of course, this answer must

be independent of the locations xa, but there appear to be various poles in Mα and M̃β

as these locations coincide with the external operator locations zi. However, by carefully

considering the limit where xi → zi, it can be shown that all these apparent singularities

vanish, and the resulting expression is in fact equal to (4.24). By Liouville’s theorem,

this means that (5.14) and (4.24) are equivalent representations of the even spin structure

contribution to the amplitude! A similar story exists for the odd spin structure, although

we will not present it explicitly here.
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So (5.14) provides us with an expression for the genus one amplitude in which all

external states are on the same footing. This allows us to pinch the separating cycle using

the local model (5.12). All the ingredients in the amplitude which are associated uniquely

with the torus simply remain on the ΣR factor without contributing any dependence on

the parameter s. In particular, the integrals over d10p and dτ , as well as Zα;β simply move

onto ΣR as s→ 0. The odd spin structure also contributes nothing to the ΣL branch since

there is no odd spin structure on the sphere.

As we pinch the separating cycle, we let nL of the vertex operators move onto ΣL,

while the remaining nR = n−nL remain on ΣR. The PCO locations also divide themselves

between the two factors; in order for the result to be non-vanishing, we must have nL−1 of

the xa on ΣL and nR+1 on ΣR. Near the boundary divisor, there is a natural identification

of three of the moduli in play: the modulus s, and the locations of the two new fixed points

w, y. These will contribute to the overall measure as [12]

dw dy
ds

s2
, (5.19)

by the scaling properties of (5.12). We expect that the form degrees in w, y will be absorbed

by the various Pfaffians and scattering equations, so we begin with an insertion of s−2ds

as we approach the boundary divisor.

As the worldsheet degenerates, the scattering equations likewise become degenerate.

Since this degeneration is practically identical to the situation for factorization at genus

zero [29], we will be rather brief here. Recall that zero-modes of Pµ solve the equation:

∂̄Pµ(z) = 2πi dz ∧ dz̄
n∑

i=1

ki µ δ
2(z − zi).

On a genus zero curve, this equation has no homogeneous solution, while on the torus it

has the homogeneous solution pµdz. As we approach the separating divisor, Pµ develops

a new homogeneous term on each factor ΣL, ΣR which must have a simple pole at the

new marked point, with opposite residue on the two factors (cf., [27]). This residue is then

integrated as part of the integral over zero-modes, and is interpreted as the momentum

flowing through the cut. In particular, this means that we have:

Pµ(z)|ΣL
→ − kR µ

z − w
dz +

∑

i∈L

ki µ
z − zi

dz, (5.20)

Pµ(z)|ΣR
→ pµdz + kR µS̃1(z, y; τ) +

∑

j∈R
kj µS̃1(z, zj ; τ). (5.21)

Now, the original set of n− 1 scattering equations splits into a set of nL− 2 scattering

equations on ΣL and nR scattering equations on ΣR. The remaining scattering equation

degenerates into a delta function enforcing momentum conservation on each factor as s→ 0.
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Without loss of generality, we can assume that z1, z2 ∈ ΣL which leaves us with:

δ̄
(
P 2(z1)

) n∏

i=2

δ̄(ki · P (zi)) −→
dw dy

s
δ̄
(
sF + k2R

)

× z12z2wzw1

dz1 dz2dw

∏

i∈L\{1,2}
δ̄ (ki · P (zi)) δ̄

(
P 2(y)

) ∏

j∈R
δ̄ (kj · P (zj)) , (5.22)

where F is some rational function of the ki and zi [29]. The first factor on the right-hand

side ensures that the resulting expression has the correct homogeneity and form degrees

required by (5.12). In conjunction with (5.20)–(5.21), we find the scattering equations for

nL + 1 external particles on ΣL and for nR + 1 external particles on ΣR, as desired.

Now let us turn to the behavior of the Pfaffians as s→ 0. Every entry in Mα falls into

one of two classes: either both of its indices are on the same side of the separating cycle,

or they are on different sides. If z, z′ ∈ ΣL, then as s → 0 the Szego kernel Sα(z − z′; τ)
simply reduces to the Szego kernel on ΣL, and similarly for z, z′ ∈ ΣR [25, 26].

On the other hand, when z ∈ ΣL and z′ ∈ ΣR, homogeneity and conformal invariance

dictate that the Szego kernel behaves like

Sα(z − z′; τ) =

√
s√

dw
√
dy

√
dz

√
dw

z − w
Sα(y − z′; τ) +O(s3/2), (5.23)

as s→ 0. Similar reasoning dictates that the propagator S̃1 behaves as

S̃1(z, z
′; τ) =

s

dy

dz

z − w
S̃1(y, z

′; τ) +O(s2), (5.24)

in this situation.

This allows us to determine the behavior of the entries in Mα in the s→ 0 limit. For

instance, if xa, xb ∈ ΣL then

Aab =

√
dxa

√
dxb

xa − xb

∑

i,j∈L∪{w}
ki · kj

dxa dxb
(xa − zi)(xb − zj)

+O(s). (5.25)

Using (5.20)–(5.21) in conjunction with (5.23)–(5.24) it is easy to see that for a general

entry in Mα, we have

(Mα)iLjL → (ML)iLjL , (Mα)iRjR → (MR
α)iRjR , (5.26)

where M
L is the matrix for the genus zero amplitude on ΣL with external particles in

L ∪ {a} and M
R
α is the matrix for the genus one amplitude on ΣR with external particles

in R ∪ {b}.
But what about the entries of Mα which tie together locations on opposite sides of the

separating cycle? A simple calculation reveals that for xa ∈ ΣL, xb ∈ ΣR,

Aab =

√
s√

dw
√
dy

√
dxa

√
dw

xa − w
Sα(y − xb; τ)

×


 ∑

i∈L∪{w}

∑

j∈R∪{y}
ki · kj

dxa
xa − zi

S̃1(xb, zj ; τ) +
∑

i∈L∪{w}
ki · p dxb

dxa
xa − zi


+O(s3/2)

(5.27)
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as s→ 0. Likewise, for xa ∈ ΣL and zi ∈ ΣR we find

Cia =

√
s√

dw
√
dy

√
dxa

√
dw

xa − w
Sα(y − zi; τ)

∑

j∈L∪{w}
ǫi · kj

dxa
xa − zj

+O(s3/2), (5.28)

and for zi ∈ ΣL, zj ∈ ΣR,

Bij =

√
s√

dw
√
dy

√
dzi

√
dw

zi − w
Sα(y − zi; τ) ǫi · ǫj +O(s3/2). (5.29)

In each of these entries, we have a product ei · ej , where eµ is either a momentum

or polarization vector. The completeness relation allows us to write these contractions in

terms of polarization vectors:

ei · ej = eµi e
ν
j

(
∑

ǫI

ǫa µǫb ν −
kR µkR ν

k2R

)
,

where the sum runs over the possible polarizations of the internal particle. The second

term in this expression is actually just a gauge transformation so it can be neglected. Upon

inspecting (5.27)–(5.29), we can see that the completeness relation actually generates all

the entries in the (2w)th row and column of ML as well as the (2y)th row and column of

M
R
α, up to an overall factor proportional to

√
s.

Using the basic properties of Pfaffians, we now deduce the factorization behavior of

Pf(Mα) as the separating cycle is pinched:

Pf(Mα) →
√
s√

dw
√
dy

Pf(ML) Pf(MR
α), (5.30)

where M
L is the 2nL × 2nL matrix at genus zero and M

R
α is the 2(nR + 1) × 2(nR + 1)

matrix at genus one. The final ingredient is given by the factorization of the determinant

|Rα|, which is guaranteed by the properties of the βγ-system.8 In particular, we have:

|Rα| →
1√
s
|RL| |RR

α|, (5.31)

for the appropriate (nL + 1)× (nL + 1) Slater determinant on ΣL and (nR + 1)× (nR + 1)

determinant on ΣR. The factor of s−1/2 ensures the appropriate homogeneity, since there

is now a row corresponding to w in R
L and a row corresponding to y in R

R
α.

Pulling all the pieces together, we find that near the separating boundary divisor the

genus one amplitude looks like:

∫
z12z2wzw1

dz1 dz2dw

∏

i∈L\{1,2}
δ̄ (ki · P (zi))

Pf(ML)

|RL|
Pf(M̃L)

|R̃L|
ds

s
δ̄
(
sF + k2R

)

d10p dτ δ̄
(
P 2(y)

) ∏

j∈R
δ̄ (kj · P (zj))

∑

α;β

(−1)α+βZα;β(τ)
Pf(MR

α)

|RR
α|

Pf(M̃R
β )

|R̃R
β |

. (5.32)

8This behavior is universal for the superconformal ghost system, or for any general Slater determinant,

in ordinary string theory as well as the ambitwistor string.
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As expected, there is only a simple pole in the degeneration modulus s; taking the residue

of this pole sets the momentum flowing across the cut to be null (k2R = 0), and it is easy

to show that the resulting on-shell amplitudes for ΣL and ΣR are equivalent to the genus

zero NS-NS formula and (5.14) respectively.

Hence, the genus one amplitude of the ambitwistor string factorizes correctly in the

separating channel. Note that in this case the resulting amplitudes were identified as the

tree-level and one-loop all-boson amplitudes. This is because the Ramond sector cannot

contribute to the separating degeneration, since the resulting amplitudes would have only

one external fermion and therefore vanish.

6 Conclusions

In this paper we have used the ambitwistor string of [1] to extend the formulæ for n-particle

gravitational scattering amplitudes found in [5] in several directions. Firstly, we showed

that, in close analogy to the usual string, the ambitwistor string contains Ramond-Neveu

Schwarz vertex operators describing fermionic states in the target space. As usual, these

can be the gravitinos of the type II supergravity, or gravitinos and gauginos in a heterotic

model. We studied the simplest scattering amplitudes involving these fermionic states,

showing explicitly that they agree with the expected tree level supergravity amplitudes.

The type II models also contain massless p-form fields in the Ramond-Ramond sector, and

as usual these have p even or odd depending on the choice of GSO projections. However,

due to triviality of the XX OPE, the ambitwistor string contains no α′ excitations, so the

complete spectrum of the type IIA or type IIB ambitwistor string is just type II supergravity

in ten dimensions.

We then investigated the genus one correction to these scattering amplitudes. The

integral over the moduli space of n-pointed elliptic curves was again shown to be completely

fixed by a genus one version of the scattering equations. These equations involved n−1

constraints on the residues of P 2 at the vertex operators, and also a further constraint on

P 2 itself that originated from the measure of integration over the moduli of the worldsheet

gauge field e responsible for quotienting the target space from T ∗M to ambitwistor space.

We also showed the loop integral d10p itself emerges naturally in our formalism as the

integral over zero modes of the Pµ field. This is somewhat similar to the origin of the

loop integral in the chiral factorization theorems of D’Hoker and Phong [30], although here

the zero mode pµ is an independent field, unrelated to periods of ∂Xµ. In particular the

definition of these zero modes does not appear to require a choice of homology cycles; we

merely pick any basis of H0(Σ,KΣ).

We computed the ambitwistor string partition function and showed that it is modular

invariant — a highly non-trivial result for a chiral theory. In the case of type II ambitwistor

strings, the partition function vanishes as a consequence of target space supersymmetry

(as usual), but a non-supersymmetric type 0 theory also appears to exist. It would be

interesting to investigate this theory further, particularly because unlike the usual string,

it does not appear to contain a tachyon in its (strictly massless) spectrum.
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We then computed the n-point g = 1 correlators for states in the NS-NS sector of

supergravity, showing that just as at tree level, these correlation functions may be repre-

sented in terms of Pfaffians. We checked that these formulæ have the expected behaviour

under factorization of the worldsheet, both in separating and non-separating channels.

This paper leaves open many unanswered questions. Firstly, since the integral over

M1,n is here interpreted as providing the one-loop integrand of supergravity, with the loop

integral left to be done, we would expect that the worldsheet correlation function becomes

simply a rational function of the external and loop momenta. In particular, the presence of

elliptic functions, while completely natural from the point of view of correlation functions

on a torus, is completely the wrong category for what we expect in pure supergravity.

For instance, the Jacobi product expansion of theta functions is usually interpreted as

describing the contribution of all the higher string modes to the correlation function. The

only ray of hope seems to be that the g = 1 scattering equations do not directly fix the

worldsheet coordinates in terms of the external and loop momenta, but rather fix elliptic

functions of the worldsheet coordinates in terms of these momenta. Thus, we appear to

require that a miraculous simplification should occur, in which all trace of elliptic functions

disappears, after summing the correlator over all solutions of the g = 1 scattering equations

(with the appropriate Jacobian).

It is not at all clear to us how this actually transpires, and for example whether it occurs

only after also summing over spin structures. However, the non-separating factorization

channel (corresponding to the single cut of the loop amplitude) does lead to a rational

function of the kinematic data, which is strong evidence in favor of such a simplification.

This indicates that (unlike conventional superstring theory) no trace of the elliptic functions

remains in the factorization limit, and the scattering equations hopefully perform this

simplification in the interior of the moduli space as well. It would be fascinating to see

this explicitly, even in the case of the n = 4 particle amplitude. We remark that a similar

simplification must also be at work in the N = 8 twistor string of [21].

Going further, it would be important to actually solve the g = 1 scattering equations,

even for n = 4, and compare the resulting expressions with more standard forms of the

1-loop supergravity amplitude in terms of box integrals [31, 32]. It may be possible to

make this connection already at the worldsheet level, perhaps using techniques introduced

in [33] and extended in [34, 35]. As a first step, it would be important to understand how

to see the expected quadratic9 UV divergence of ten dimensional supergravity.

The ambitwistor string formalism presented here and in [1] is a chiral analogue of the

usual RNS string. Thus, it comes with all the familiar shortcomings of RNS strings, such

as the rather awkward spin field vertex operators, picture changing formalism and the need

to sum over spin structures. In [4], Berkovits has presented a pure spinor version of the

(gauge-fixed) ambitwistor string that, having manifest space-time supersymmetry, should

in principle provide a simpler framework to study both g = 1 and space-time supersym-

metric amplitudes. It will be interesting to investigate how to compute n-point worldsheet

9In dimensional regularization, power law divergences do not occur, so d = 10 type II supergravity will

be accidentally finite until two loops.
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correlators in these pure spinor models in closed form, perhaps using the methods of [18].

One of the main attractions of the amplitude representations of [5] is that they provide

such a sharp statement of the general KLT slogan of “gravity = gauge × gauge”, or

better [36] “gravity × scalar = gauge × gauge”. Indeed, in [1] it was also shown that

a heterotic ambitwistor string theory exists whose g = 0 correlation functions for Yang-

Mills states reproduce the Yang-Mills formulæ of [5] at leading trace. It is then natural to

wonder whether this relation could also be extended to higher genus. Of course, heterotic

ambitwistor string amplitudes can be computed at g = 1, and we may anticipate that they

will again be localized to solutions of the g = 1 scattering equations, and will again take

the form of a Pfaffian of the matrix M appearing in the supergravity calculation, times

a g = 1 current correlator. However, since the heterotic ambitwistor string also contains

vertex operators corresponding to gravitational states in space-time, we do not expect

these g = 1 heterotic amplitudes to describe pure (super) Yang-Mills, even at leading

trace. Thus, like the KLT relations themselves [37], at least naively it seems that the

remarkable relationships between gravity, Yang-Mills and scalars found by Cachazo et al.

are restricted to tree level. In fact, the gravitational sector of the heterotic ambitwistor

string is currently rather poorly understood — even at g = 0, worldsheet correlators of n

gravitational vertex operators do not seem to agree with known formulæ for gravitational

scattering amplitudes. One ray of hope perhaps comes from the recent very interesting

paper [38] investigating the BCJ relations [39] at higher genus in closed strings.
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