
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1991

Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and

k Smallest Spanning Trees k Smallest Spanning Trees

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Report Number:
91-048

Frederickson, Greg N., "Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest

Spanning Trees" (1991). Department of Computer Science Technical Reports. Paper 889.

https://docs.lib.purdue.edu/cstech/889

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AMBIVALENT DATA STRUcrURES FOR

DYNAMIC 2-EDGE-CONNECTIVITY AND

k SMALLEST SPANNING TREES

Greg N. Frederickson

CSD-TR-91-048

June 1991

Ambivalent data structures for

dynamic 2-edge-connectivity and

k smallest spanning trees

Greg N. Frederickson'

Department of Computer Science

Purdue University

West Lafayette, Indiana 47907

gnf@cs.purdue.edu

June 13, 1991

Abstract. Ambivalent data structures are presented for several problems on undi

rected graphs. They are used in finding the k smallest spanning trees of a weighted

undirected graph in Oem log [3(m, n)+min{p/2, km1
/

2
}) time, where m is the number

of edges and n the number of vertices in the graph. The techniques can be extended to

find the k smallest spanning trees in an embedded planar graph in O(n + k(logn)3)

time. Ambivalent data structures are also used to maintain dynamically 2-edge

connectivity information. Edges and vertices can be inserted or deleted in O(.jTii:)

time, and a query as to whether two vertices are in the same 2-edge-connected com

ponent can be answered in O(logn) time, where m and n are understood to be the

current number of edges and vertices, resp. Again, the techniques can be extended

to maintain an embedded planar graph so that edges and vertices can be inserted or

deleted in O((log n)3) time, and a query answered in O{log n) time.

Key words and phrases. Analysis of algorithms, data structures, k smallest span

ning trees, minimum spanning tree, on-line updating, embedded planar graph, topol

ogy tree, 2-edge-connectivity.

-This research was supported in parL by the National Science Foundation under grant CCR

9001241 and by the Office of Naval Research under contract NOOOI4-86-K-0689.

1

1. Introduction

Efficient handling of on-line requests requires that data be stored flexibly. At each

location in a data structure, it can be advantageous to keep track of a small number of

alternatives, only one of which can in fact be valid. An example of such alternatives

might be whether a path between vertices x and y in a spanning tree of a graph goes

through a vertex w or through a vertex w'. We say that a data structure possesses

ambivalence if at each of many locations it keeps track of several alternatives, even

when a global examination of the data structure would identify for each location the

alternative (or valence) that is in fact valid. The structure necessarily organizes the

data in such a way that the correct alternative is known for some crucial case. We

apply this technique in the design of data structures for several graph problems related

to connectivity. Our data structures are ambivalent with regard to the structure of

a spanning tree as that spanning tree is being updated, and yield algorithms faster

than any previously known.

Our first problem is that of finding the k smallest spanning trees of a weighted

undirected graph. Using ambivalent data structures, we give an algorithm that uses

O(m log {3(m, n) + min{k3
/

2
, km1

/
2
}) time, where m is the number of edges and n is

the number of vertices. Here {3C .) is a very slowly growing function, as defined by

Fredman and Tarjan [FT], and the first term in our running time represents the best

known time to find a minimum spanning tree [GGST]. Where appropriate, we shall

substitute this time when quoting previous results. The amount of space used by our

algorithm is O(m + min{ k3
/
2

, km1
/
2

}). For the case of a planar graph, we give an

algorithm that uses O(n + k(log n)3) time and O(n + k(log n)') space.

Our results compare with previous results on this problem as follows. The problem

of enumerating the k smallest combinatorial objects of some particular type has been

studied in a number contexts, including the assignment problem [M], the shortest

1

path problem [Y], [L1], and the minimum spanning tree problem [BH], [CFMJ, [G],

[KIM], [FI), [E]. Early algorithms for finding the k smallest minimum spanning

trees can be found in [BH) and [CFM]. Gabow has given an O(kmlogj1(m,n))-time

algorithm [G], Katoh, Ibaraki and Mine have given an O(mlog,B(m,n) + km)-time

algorithm [KIM). Frederickson gave an O(m log (3(m, n)+Pm1j2)_time algorithm [Fi],

and Harel claimed an O(mlogn + kn(logn)2)-time algorithm [HI2]. Most recently,

in [E], Eppstein has given an elegant preprocessing step that allows him to achieve,

in conjunction with the algorithm of [KIML a running time of O(m log P(m, n) +

min{P,km}), using Oem + k) space. OUf algorithm matches the running time of

Eppstein's for k ~ (m log (3(m, n))1/2 I and is faster for larger values of k. While our

algorithm uses more space than Eppstein's for sufficiently large k, the space used by

our algorithm is O(k + m) whenever k :s; m2
/
3

•

For the case of a planar graph, there are two previous results. In [FI], Frederickson

gave an O(n+k'(logn)')-time algorithm, and in [E], Eppstein has given an O(n+k')

time algorithm. Thus the time for our algorithm is never worse than that in [E], and

is strictly better whenever k > n l
/
2

• The space of our algorithm is O(n) whenever

k Snj(logn)'.

Our second problem is that of maintaining a data structure for an undirected graph

under the operations of inserting and deleting edges and vertices, so as to be able to

answer queries about whether two given vertices are in the same 2-edge-connected

component. Using ambivalent data structures, we achieve an update time of O(m l
/

2
)

and a query time of O(log n), where m and n are understood to be the current number

of edges and vertices, resp. For an embedded planar graph, we achieve an update

time of O({log n)') and a query time of O(log n).

The question of whether there are data structures with sublinear-time algorithms

for maintaining 2-edge-connectivity information under the operations of both inser-

2

tion and deletion of edges was posed by Westbrook and Tarjan [WT]. Gabl and

Italiano [GIl describe a data structure that achieves O(m2
/
3

) update and query

times. For 2-edge-connectivity for planar graphs, a data. structure in [GIl achieves

O(n1/2 log log n) update and query times, although the associated algorithms cannot

verify whether the insertion of any given edge would ruin the planarity of the graph.

Note that our update times are considerably better than those in [GI] (except in the

case that the graph is planar but no embedding is maintained, in which case they are

slightly better) and that our query times are dramatically better than those in [GIl.

Our update times for 2-edge-connectivity information in general graphs match

the best update times for two simpler problems. Data structures for maintaining

connected component information have been studied. in [ES], [HlI] and [Fl]. The best

of these is in [Fl], with an update time of 0(m1
/

2
) and a query time that is 0(1). For

the related problem of updating minimum spanning trees) data structures have been

investigated in [SP], [CHI, (Hl2] , [FI] and (EITTWY], with the best time achieved

for general graphs being O(m1
/
2

) in [Fl]. Our approach is based on variants of the

topology tree and the 2-dimensional topology tree structures presented in [Fl]. To

make the approach work we present a different, and in some sense simpler, multi-level

partition of the vertices, on which the topology tree and 2-dimensional topology tree

are based. In addition to ambivalence, we apply other ideas in our solutions. These

include an encoding scheme for vertex names, with the encoded names changing as

the topology of a spanning tree changes, and also a partition of the spanning tree

into paths based on the multi-level partition.

Our paper is organized as follows. In section 2 we descdbe the new multi-level

partition and the data structures used for updating spanning trees. In section 3 we

describe the variations necessary to make the approach in section 2 work for embedded

planar graphs. In section 4 we describe the basic algorithm for finding the k smallest

3

spanning trees, omitting the description of the key data structure. In section 5 we

describe this key data structure for general graphs. In section 6 we describe this key

data structure for planar graphs. In section 7 we give a data structure to maintain 2

edge-connectivity in general graphs. In section 8 we give a data structure to maintain

2-edge-connectivity in embedded planar graphs.

2. Data structures for maintaining spanning trees

In this section we review basic data structures from [Fl] and show how to adapt

them for our problems. The main contribution of the section is a new way to partition

the vertices based on the topology of a spanning tree. vVe first describe a graph

transformation that we use throughout. We then define vertex clusters and our new

partition, and show that the partition can be applied recursively for only 8{log n)

levels. Following [Fl], we define a "topology tree" based on the partition, and show

how to update the topology tree when an edge not in the spanning tree is swapped

for an edge in the spanning tree. We then define a "2-dimensional topology tree",

again following [Fl], and show how to update this tree when edges and vertices are

inserted into or deleted from the underlying graph.

Throughout this paper we shall wish to deal with graphs that have maximum

vertex degree 3. We first describe how to transform our graph into a graph in which

every vertex has degree no greater than three. A well-known transformation in graph

theory [Hy, p. 132] is used. By 00 we designate a sufficiently large value, say equal

to the largest value that can be represented in a single word of memory. For each

vertex v of degree d > 3 and neighbors wo, WI,"', Wd_1 1 replace v with new vertices

va, Vb ... ,Vd_l· Add edges {(Vi, vi+d Ii = 0"", d - 2}, each of cost -00, and edge

(Vd_I,VO) of cost 00, and replace edges {(wi,v)li = 0,1,·" ,d -I} with {(Wj,vi)li =

0, ... I d - I}, of corresponding costs. Note that a minimum spanning tree for the

4

transformed graph will be a minimum spanning tree for the original graph with every

edge of cost -00 added.

We next define some terms that serve as the foundation for data structures from

[Fl] that we wish to use. Let G = (V, E) be a connected undirected graph with

maximum vertex degree at most 31 and let T be a spanning tree of G. A vertex

cluster with respect to T is a set of vertices such that the subgraph of T induced on

the cluster is connected. A boundary vertex of a cluster is a vertex that is adjacent

in T to some vertex not in the cluster. The tree degree of a vertex cluster is the

number of tree edges with precisely one endpoint in the cluster. Two vertex clusters

are adjacent if there is a tree edge that contains one endpoint in each of the clusters.

We define a partjtion of a set of vertices so that the resulting vertex clusters

possess certain nice properties. Let z be a positive integer. A restricted partition of

order z with respect to T is a partition of V such that

1. Each set in the partition is a vertex cluster of tree degree at most 3.

2. Each cluster of tree degree 3 is of cardinality 1.

3. Each cluster of tree degree less than 3 is of cardinality at most max{112z - 2}.

4. No two adjacent clusters can be combined and still satisfy the above.

It is not hard to show that the number of clusters in a restricted partition of order z

is 0(mjz).

An operation that changes the structure of T may force a change in the clusters

of a restricted partition. If the removal of any edge from T causes the tree degree of

a cluster to decrease, then we must check if it should be combined with an adjacent

cluster or clusters. If the addition of an edge to T causes the tree degree of a cluster

containing more than 1 vertex to increase from 2 to 31we must do the following. Let

the cluster now have boundary vertices WI Wi and w". Identify the common vertex

x on paths in the tree between wand Wi, between w' and Will and between Wll and

5

w. Split the cluster by making the vertex x into a cluster by itself, and taking the

remaining subtrees as clusters. For each resulting subtree that contains fewer than

z vertices, check if the other cluster that is adjacent to it has fewer than z vertices

and is of tree degree at most 2. If so, combine these clusters. This completes the

description of how to handle a cluster when its tree degree increases to 3. Note that

these operations can be performed in time proportional to the size of the cluster.

We next define our restricted multi-level partition. A restricted multi-level parti-

tion is a set of partitions of V that satisfy the following:

1. For each level 1= 0, 1, ... , q, the vertex clusters at level 1form a partition of V.

2. The clusters at level a form a restricted partition of order z.

3. The clusters at any level I > a constitute a restricted partition of order 2 with

respect to the tree resulting by viewing each cluster at level 1-1 as a vertex.

4. There is precisely one vertex cluster at level q, which contains all vertices.

A vertex cluster at level 0 of a restricted multi-level partition is called a basic

vertex cluster. Since any basic vertex cluster of tree degree 3 consists of a single

vertex, and any cluster resulting from the union of two clusters will have tree degree

at most 2, any cluster of tree degree 3 will consist of a single vertex. All three of

its incident edges will be tree edges. Note that there are no non tree edges with an

endpoint in a cluster of tree degree 3.

As an example, consider the spanning tree from the graph in Figure 1. A restricted

multi-level partition for this tree is shown in Figure 2. Here we assume that z = 1,

so that each basic vertex cluster contains precisely one vertex. There are six levels in

this multi-level partition.

We next show that the restricted multi·level partition has other nice properties.

Consider any level 1> a of a restricted multi-level partition. Call any vertex cluster

of level 1-1 matched if it is unioned with another another cluster to give a vertex

cluster at level l. Call all other vertex clusters at level i-I unmatched.

6

Lemma 2.1. For any level I > 0 of a restricted multilevel partition, the number

of matched vertex clusters at level 1-1 is at least 1/3 of the total number of vertex

clusters at level I-I.

Proof. Consider any level I > 0 of a restricted multi-level partition. Contract the

graph by contracting all tree edges, both of whose endpoints are in the same cluster at

levell-I. Let each vertex resulting from a matched duster by such a contraction be

called a matched vertex. Let the tree degree of a resulting vertex be the tree degree of

the corresponding cluster. rr all vertices are matched, then clearly the lemma follows.

Otherwise, root the tree at an unmatched vertex of largest tree degree. We shall give

6 credits to each pair of vertices that have been matched together, and show that

these credits can be spread around so that, in the end, each vertex will receive at

least 1 credit. The lemma will then follow.

Consider any pair of vertices that have been matched together, and assume that

the pair has been allocated 6 credits. Since neither is the root, and the number of

unmatched neighbors of the pair is at most 2, the higher of the two has a parent,

which may be unmatched, and the second neighbor (if any) is a child, which may

be unmatched. If the higher vertex of the pair has an unmatched parent, let the

matched pair send 3 credits to this parent. If there is a second neighbor, let the

matched pair send 1 credit to this child. Let each matched vertex in the pair retain

at least 1 credit. Call any unmatched vertex of tree degree 2 that is the root or has

an unmatched parent of tree degree 3 sheltered. From the properties of a restricted

multi-level partition, every unmatched vertex of tree degree 1 and every unsheltered

unmatched vertex of tree degree 2 must have a neighbor that is matched. Thus each

such vertex will receive from some neighbor at least 1 credit, which it will retain.

The above credit-sharing rule guarantees that if an unmatched vertex has not

received a credit from either its children or its parent, then it must be either a vertex

7

of tree degree 3 or a sheltered vertex of tree degree 2. We add the following two rules

to handle these cases. For any sheltered unmatched nonroot vertex of tree degree 2,

if it receives 3 credits from its child, it should pass 2 credits to its parent and retain

the other 1. For any unmatched nonroot vertex of tree degree 3, if it receives at least

2 credits from each of its two children, it should pass 3 credits to its parent and retain

the other at least 1 credit. By a simple induction it can be shown that every sheltered

unmatched nonroot vertex of tree degree 2 will receive 3 credits from its child and

retain 1 of them, and every unmatched nonroot vertex of tree degree 3 will receive

at least 4 credits from its children and retain at least 1 of them. It follows that at

the end of all credit passing, each vertex will retain (at least) 1 credit. A root of tree

degree 3 will receive 2 credits from each of its 3 children, and a root of tree degree 2

will receive 3 credits from each of its 2 children. Since an unmatched vertex of tree

degree 1 must have a matched neighbor I an unmatched tree root will receive 3 credits

from its child. 0

There is an infinite family of examples that match the bound of Lemma 2.1 in the

following way. Let nl_l be the number of clusters at level 1 - 1. For nl_l 2: 13 and

n'_l +5 a multiple of 6, the number of matched vertex clusters is at least (n'_l +5)/3.

It has not escaped our attention that we could match more vertex clusters if rule 3 in

the restricted multi-level partition allowed unions whose resulting vertex cluster had

tree degree 3. However, it appears difficult and inefficient to update the corresponding

topology tree structures when changes occur. {Indeed, the difficulty encountered when

trying to make things work with tree degree 3 rather than tree degree 2 in rule 3 was

the reason that the multi· level partition was defined as it was in [Fl].)

Theorem 2.2. The number of levels in a restricted multi-level partition is 8(logn).

Proof. The number of vertex clusters at level 0 is O(n). By Lemma 2.1, for any level

8

I > 0, the number of matched vertex clusters at level l-1 is at least 1/3 of the total

number of vertex clusters at levell-I. Since each pair of matched vertex clusters at

levell-l that are paired together are replaced by the union at level l, the number of

vertex clusters at levell is at most 5/6 the number of vertex clusters at levell-I. It

follows that the number of levels is O(logn). 0

We next define structures from [Fl] that we will use directly. A topology tree for

spanning tree T is a tree in which each nonleaf node has at most two children, and

all leaves are at the same depth, such that:

1. A node at level 1 in the topology tree represents a vertex cluster at level I in

the restricted multi-level partition.

2. A node at level I > 0 has children that represent the vertex clusters at levell-l

whose union is the vertex cluster it represents.

We label a node in the topology tree by the indexed name of the vertex cluster that

the node represents.

A topology tree for the restricted multi-level partition of Figure 2 is given in Figure

3. Each node in the topology tree is labeled with the index of the vertex cluster that

it represents.

A topology tree based on a restricted multi-level partition has the same nIce

properties as a topology tree based on the multi-level partition of [Fl]. In particular,

it can be modified efficiently to show the result of inserting or deleting an edge, or

performing a swap. A swap (e, f) in a spanning tree T replaces a tree edge e by a

non tree edge f, yielding another spanning tree. We next discuss how to modify the

topology tree when a swap is performed. We first consider a swap in which a nontree

edge replaces a tree edge that spans between two basic clusters. When such a swap is

performed, consider the endpoints of the edge swapped in and the edge swapped out.

9

These endpoints are contained in at most four basic vertex clusters. Remove from

the topology tree each node that is a proper ancestor of one of the nodes for these

basic clusters. This leaves a forest of topology trees. We then rebuild the topology

tree from the bottom up as follows. While the tree is not finished, let 1be the lowest

level of any of the roots in the forest. First we consider roots at level 1 representing

a clusters whose tree degree is 3. Suppose there is a root at level 1 representing a

cluster W' whose tree degree is 3. If W' is adjacent to a cluster W" at level 1of tree

degree 1, and Wit corresponds to some root, then union W' and l-V" to give a cluster

l-V at level 1+1 (with tree degree 2), and join the two trees by creating a new root and

making each of the two previous roots a child of it. Otherwise, make W' a cluster at

levell+1, by creating a new root and making the previous root a child of it.

Next we consider roots at level I representing a clusters whose tree degree is 2.

Suppose there is a root at levell representing a cluster W' whose tree degree is 2. If

W' is adjacent to a cluster W" at level l of tree degree 1 or 2 corresponding to some

root, then union the two clusters to give a cluster W at level 1+1 (with tree degree

1 or 2), and join the two trees by creating a new root and making each of the two

previous roots a child of it. Otherwise, if W' is adjacent to a cluster W" at level l

of tree degree 2 and the node for W" has a single parent named W in its tree, then

union W' and W" to give a cluster named W at levell+1 (with tree degree 2), and

make the parent of the node for W' the node for W. Otherwise, make W' a cluster

at levell+1, by creating a new root and making the previous root a child of it.

Next we consider roots at level I representing a clusters whose tree degree is 1.

Suppose there is a root at level 1 representing a cluster W' whose tree degree is 1. If

W' is adjacent to a cluster W" at levell of tree degree 1 corresponding to some root,

then union the two clusters to give a cluster W at level 1+1 (with tree degree 0), and

join the two trees by creating a new root and making each of the two previous roots a

10

child of it. (At this point, the new topology tree will be complete.) Otherwise, if W'

is adjacent to a cluster W" at level I of tree degree 2 or 3 and the node for W II has

a single parent named W in its tree, then union W' and W" to give a cluster named

W at level 1+1 (with tree degree 1 or 2), and make the parent of the node for W'

the node for W. Otherwise, make W' a cluster at level 1+1, by creating a new root

and making the previous root a child of it. This completes the handling of all roots

at level I.

The case in which the deleted edge has both endpoints in the same cluster can be

handled similarly, once the cluster has been split and recombined as necessary. For

each basic vertex cluster that has split or whose tree degree has changed, delete all

proper ancestors in the topology tree, and then proceed as discussed above. Call the

above algori thm basic-swap.

Lemma 2.3. Consider a topology tree based on a restricted multilevel partition. The

time required by algorithm basic-swap to modify a topology tree to when performing

a swap is O(logn).

Proof. Note that we are not counting the cost of splitting and recombining the basic

vertex clusters in the cost of modifying the topology tree. The time to perform this

algorithm exclusive of changing the basic clusters will be proportional to the number

of nodes deleted, examined and created. There will be at most a constant number of

such nodes per level. Since the topology will be of height O(log n), the lemma follows.

o

A 2-dimensional topology tree for a given topology tree is a tree in which for every

pair of nodes labeled Vi and Vr at the same level in the topology tree, there is a node

labeled Vi x Vn and there is a child of node Vi X 1t.-, labeled \Ii, x v;." for each pair

consisting of a child Vj, of Vi and a child lI,., of 1t.- in the topology tree.

11

When one modifies a topology tree as the result of performing a swap, the 2

dimensional topology tree must be modified. This modification is essentially the

same as that discussed in [FI].

Lemma 2.4. Consider a 2-dimensional topology tree for a topology tree that is based

on a restricted multi-level partition. The time required to modify the 2-dimensional

topology tree to show the result of performing a swap is O(mjz).

Proof. As in [FIJ, the time to modify all affected nodes will be O(mjz). 0

As in [FI], it is not hard to cast the problems of edge and vertex insertion and

deletion into an edge update framework. We allow a vertex to be inserted whenever

it is an endpoint of an edge that is being inserted, and the other endpoint of the edge

is already in the graph. A vertex is deleted whenever it is an endpoint of degree I

and its incident edge is being deleted. (We thus force our graph to always be con

nected.) When an edge is inserted, the degree of the incident vertices in the original

graph increases. If the degree of such a vertex becomes four, then the transformation

discussed earlier must be applied to the vertex. If the degree with respect to the

original graph becomes greater than four I then the transformation discussed earlier

has already been applied but now must be modified. In both cases, the number of

new edges and vertices introduced is a small constant. Similar transformations can

be performed in reverse if an edge is deleted.

When edges are being inserted or deleted, the number of edges is of course chang

ing. We understand m to be the number of edges currently in the graph. We claim

that an update can be carried out in time O(Jffi). This can be achieved as follows.

As before, let z = rJrnl. When the value of z changes due to an insertion or deletion,

there will be at least ..;m updates before z advances to the next value up or down

in the same direction. The idea is to adjust a small constant number of basic vertex

12

clusters each time that there is a new update. Since there will be no more than vm
clusters that need to be adjusted, the adjustment may be accomplished before a new

round of adjustments is initiated. Thus every time an insertion occurs, the clusters

can be scanned to find any cluster that is too small and this cluster can be combined

with a neighbor as necessary. Similar operations are performed upon a deletion.

Theorem 2.5. Consider a structure based on a restricted multi-level partition. The

time required to insert or delete an edge or vertex is O(-J77i), where m is the current

number of edges.

Proof. As in [Fl], splitting and merging basic vertex sets will use O(z) time. The

time to modify all affected nodes in the topology and 2-dimensional topology tree

will be O(m/z). 0

3. Data structures for embedded planar graphs

For embedded planar graphs, we use the topology tree of section 2 as a basis for

an update data structure. Nontree edges with precisely one endpoint in any given

vertex cluster will be ordered according to the embedding and then represented by a

balanced tree structure. Our work will follow the general idea in [Fl] for representing

embedded planar graphs, but will elaborate the details with more care than in [Fl].

We shall first choose a size for basic vertex clusters, and then make a number

of simple observations about the consequences of this choice. We next define sets

of non tree edges, called "boundary sets ll
, with precisely one endpoint in any given

vertex cluster, and then define the corresponding edge-ordering balanced trees. We

then show how to generate a boundary set of a cluster that is the union of two other

clusters from their edge-ordering trees. Next we define the edge-ordered topology

tree, which is a topology tree augmented by the edge-ordering information. We then

discuss how to update the edge-ordered topology tree to show the result of a swap.

13

Finally we discuss how to update the edge-ordered topology tree to show the effect

of the insertion or deletion of an edge or vertex.

First, we choose z = 1 in our restricted multi-level partition, so that each basic

vertex cluster will be a vertex by itself. We examine carefully how to represent the

non tree edges. Recall that a cluster of tree degree 3 will consist of a single vertex, and

will have no nontree edges incident on it. Next consider a cluster Vi of tree degree

1. All nontree edges with exactly one endpoint in Vi can be ordered in clockwise

order around Vi, starting with the first edge in a clockwise direction from the tree

edge with one endpoint in Vj. This ordering will be entirely consistent with the

embedding. Next consider a cluster Vi of tree degree 2. There will be a unique path

of tree edges between the two boundary vertices of Vj. We partition all nontree edges

with one endpoint in Vj into two sets, depending on which "side" of the path an

edge is incident on. Each set can be ordered in a natural way corresponding to the

embedding, and represented by a balanced tree. Call each such ordered set of edges

a boundary set, and the corresponding balanced tree an edge-ordering tree. Each leaf

in the edge.ordering tree will represent an edge in the boundary set. It is easy to

identify the two boundary sets of a basic cluster in constant time, given a list of edges

incident on the single vertex in the cluster, as well as an indication of which edges

are tree edges.

Given cluster Vi that is the result of the union of two clusters Vj, and Vj'" we

show how to generate the boundary set of Vj from the boundary sets of Vj, and Vj".

If Vi is the set of all vertices, then its boundary set is empty. Suppose that Vj, is of

tree degree 1 and Vjll is of tree degree 3. Make the boundary set of Vjl one of the

two boundary sets of Vj. The other boundary set of Vj is empty. Suppose that 11;,

is of tree degree 1 and Vjll is of tree degree 2. Then we search each boundary set of

Vj, to identify the subset of edges with other endpoint in Vj". This subset consists of

14

all edges in the boundary set starting at one end and going up to some edge in the

ordering. With the boundary sets represented by edge-ordering trees, the "last" edge

in this subset can be determined by an appropriate tree search. We then split the

boundary sets of Vi" at these points, and also split the single boundary set of Vi, at

the corresponding points. We take those portions of the boundary sets whose edges

have one endpoint not in 1!i, and concatenate them together to give the boundary set

for Vi.

Suppose that ltj, and ltju are both of tree degree 2. We note an annoying anomaly

that may occur. There may be one or more nontree edges with one endpoint in

each of Vj, and Vi'" such that the endpoint in Vj" is on the "opposite" side of the

path from the endpoint in ltj/. We call any such edge e a separating edge, since the

cycle induced bye in the tree separates two clusters that are different from ltj. The

possible presence of these edges complicates the search slightly, as we must search the

boundary sets of both Vi. and Vi .. to identify the subset of edges in one cluster with

other endpoint in the other cluster. As before, such a subset consists of all edges in

the boundary set starting at one end and going up to some edge in the ordering. We

split the boundary sets at the appropriate points, and concatenate the two remaining

subsets on one side of 1!i to give the boundary set on that side, and similarly for the

boundary set on the other side.

When we form the boundary set of a cluster Vi from the boundary sets of the chil

dren, we do not change the edge-ordering trees for the boundary sets of the children,

but rather build a new edge-ordering tree by introducing some new nodes and shar

ing subtrees with the already existing edge-ordering trees. For each cluster, we keep

track of the portions of boundary sets of the children that are not used in building

the boundary set of the cluster. We call the set of such edges on each side to be the

newly-interior set of edges. Each newly-interior set of edges will be represented by

15

an edge-ordering tree. In our one remaining case, suppose that Vj, and Vj" are both

of tree degree 1. Then Vi is the set of all vertices, and all edges in the boundary sets

of Vj, and Vj" will be edges in the newly-interior sets of Vj.

We define an edge-ordered topology tree for an embedded planar graph of maximum

degree 3 to be the topology tree, along with pointers from each node in the topology

tree to the edge-ordering trees for its one or two boundary sets, and its one or two

newly-interior sets. It is understood that the root of the tree has a pointer to an

empty boundary set.

To swap a non tree edge into the tree, replacing a tree edge, we would perform

an operation similar to basic-swap of section 2, with the following additional work.

When nodes are removed from the topology tree, they should be removed from the

top down. When a node in the topology tree is removed, its boundary sets and newly

interior sets should be removed. Since subtrees are being shared in the edge-ordering

trees, we keep a reference count in each node in a balanced tree indicating how many

pointers have been set to point at it. When a node in an edge-ordering tree is removed,

the reference count in each of its two children should be decremented. If a reference

count goes to zero, then its node should be deleted. Thus edge-ordering trees will

be removed as nodes are removed from the topology tree. In rebuilding the topology

tree, whenever a parent is created for two nodes, the corresponding operations are

done with respect to boundary and newly-interior sets.

This approach is related to that in [FI], but we are specifying it carefully, as we

believe there is an error in {FI] with regard to the analysis of the running time. In

particular, we believe that the time to search for the correct point to split boundary

sets is underestimated in [FI]. The reason is the following. Consider a cluster Vi

created by the union of two clusters Vj, and Vj'" each of tree degree 2. We wish to

search an edge-ordering tree representing a boundary set for Vj, to find the last edge

16

that has one endpoint in each of Vj, and ltj". It is easy to produce in constant time a

suitable edge in this boundary set to test. The problem is determining whether the

other endpoint of that edge is in Vj". It is easy to keep a pointer from the leaf of

one edge-ordering tree to the leaf in another edge-ordering tree representing the same

edge, but with respect to its other endpoint. However, it does not seem possible to

deduce the name of the corresponding cluster v;. in constant time, unless an excessive

amount of work is performed on each update.

Since subtrees of the edge-ordering trees are shared, we give a top-down procedure

to search within ltj and Vj" simultaneously. We are actually interested in finding

the maximum number of edges in common in a given boundary set of Vj, and the

corresponding boundary set of Vj". We store in each node of the edge-ordering tree

the number of edges represented by the subtree rooted at that node. We then binary

search to find the number of shared edges. For any test value, we search down through

both trees to find the corresponding leaf in each tree. If the pointers in the leaves

point at each other, then there are at least that many common edges; otherwise there

are fewer. Clearly, such a search will also involve O{logn) tests at O(logn) time per

test, or O((log n)2) time in total. Call the above procedure planar-swap.

Lemma 3.1. The edge-ordered topology tree for an n-vertex embedded planar graph

of maximum degree 3 uses O(n) space, can be set up in O(n) time, and can be updated

to show the result of a swap in O((logn)3) time.

Proof. The topology tree itself uses O(n) space. Each nontree edge will appear in

two boundary sets (one for each endpoint) at the lowest level in the partition. Thus

edge-ordering trees at level 0 use O(n) space. We count the additional space used

by the edge-ordering trees as follows. It follows from Lemma 2.1 that at level i,

i = 0,1,·'·, q, there are at most (5/6)in clusters. Por a cluster 1'; of size nj there are

at most clog(2nj) new nodes created in building additional boundary trees, where c

17

is a constant. The sum of clog(2nj) over all clusters Vi at level i is maximized when

there are as many clusters as possible, and each cluster is of roughly equal size. Thus

we bound the total additional space used by edge-ordering trees by L:r=o(5/6)in (1 +

ilog(6/5)). This quantity is clearly O(n). It follows that the total space is O(n).

We next discuss the set-up time. For a cluster Vi of size nj the time to generate

its edge-ordering trees from those of its children is at most c(log(2nj))2, where c is a

constant. The sum of c(log(2nj))2 over all clusters Vi at level i is within a constant

multiplicative factor of maximum when there are as many clusters as possible and

each cluster is of roughly equal size. Thus we bound the total additional space used

by edge-ordering trees by 2:1=o(5/6)'n(1 + i log(6/5))'. This quantity is clearly O(n).

By Lemma 2.3, a topology tree can be updated in O(log n) time to show the result

of a swap, and thus O(logn) nodes are affected. Since there are a constant number

of concatenations or splits per node, there are at most O(logn) concatenations and

splits that must be performed. Each such concatenation or split uses at most one

search, at O((log n)') per search. 0

The edge-ordered topology tree for the embedded planar graph can also be up

dated to reflect the insertion or deletion of an edge, as long as the insertion is con

sistent with the current embedding. The approach is similar to what is described in

the discussion preceding Lemma 2.4, except that there is no need to adjust the value

of z, since z = 1 is independent of the number of vertices in the graph.

Lemma 3.2. The edge-ordered topology tree for an embedded planar graph of

maximum degree 3 can be updated to show the result of an edge or vertex insertion

or deletion that is consistent with the embedding in O«(logn)3) time, where n is the

current number of vertices.

Proof. The number of inserted and deleted vertices and edges will be a small con-

18

stant. Thus by reasoning similar to that in the proof of Lemma 2.3, the number of

nodes in the topology tree that are changed will be O(logn). The time bound then

follows by the same argument as in Lemma 3.1. 0

Theorem 3.3. Using the edge-ordered topology tree, the minimum spanning tree of

an embedded planar graph can be updated in O«(logn)3) time. The data structures

will use O(n) space.

Proof. By Lemma 3.1, the edge-ordered topology tree can be updated to show

the result of a swap in O«logn)3) time. By Lemma 3.2, the edge-ordered topology

tree can be updated to show the result of an edge or vertex insertion or deletion in

O«(logn)3) time. Resetting the values in the additional fields of the edge-ordering

trees will take constant time per node examined. Thus the total time is as claimed.

The space bound follows from Lemma 3.1. 0

4. Basic approach for finding the k smallest spanning trees

In this section we discuss the overall structure of our algorithm for finding the k

smallest spanning trees, leaving out the description of the particular data structure

that we employ. We shall assume that there are at least k distinct spanning trees

of the graph. (It is easy to modify the algorithm to detect the case in which there

are fewer than k distinct spanning trees.) We shall also assume that all edge weights

are nonnegative. (If not, we can add a positive value to each edge weight to give an

equivalent problem with all edge weights nonnegative.)

We first find a minimum spanning tree of our graph, using the fast algorithm

of [GGST] for general graphs or leT] for planar graphs. Then we use Eppstein's

technique to reduce the problem to one in which there are O(k) vertices and edges

[E]. If k < m - n, this technique identifies and deletes m - n - k edges that will be in

none of the k smallest spanning trees, and if k < n, it identifies and contracts n - k

19

edges that will be in all of these trees. Identifying these edges uses an algorithm for the

sensitivity analysis of minimum spanning trees, either Tarjan's algorithm [Tl],[T2]

for general graphs or the algorithm of Booth and Westbrook (BW] for planar graphs.

Also used is the linear-time selection algorithm [BFPRT]. We call the resulting graph

the contracted graph. Note that the k smallest spanning trees of the contracted graph

are in one-to-one correspondence with the k smallest spanning trees of our original

graph.

Next we transform the contracted graph into a graph in which every vertex has

degree no greater than 3, using the transformation discussed in section 2. Note

that each edge of cost -00 will be in all of the k smallest spanning trees, and each

edge of cost 00 will be in none. It follows that the k smallest spanning trees of the

transformed graph are in one-to-one correspondence with the k smallest spanning

trees of the contracted graph.

Let T j denote the i-th smallest spanning tree of the transformed graph. Thus T1

denotes the minimum spanning tree. Having already found TIl our algorithm will

generate the k - 1 spanning trees Tz,' .. ,T/; one at a time. Each tree 1'; with i > 1

will be derived from some tree Tj , j < i, by a swap (ei, 1;), in which a tree edge

ej is replaced by a nontree edge Ii. To guarantee that no tree is derived more than

once, the trees will have certain restrictions placed on them, of the form that any

tree derived from Tj must include certain edges and exclude certain other edges. This

inclusion-exclusion approach was presented by Lawler in [Ll] and [L2, pages 100-104].

Associated with each spanning tree Ti that is generated will be a best-swap struc

ture R;. We shall discuss the best-swap structure in greater detail later, but mention

a few properties now. Structure 14 will represent all spanning trees derivable from

T j by a sequence of swaps, and will identify a swap for T j of minimum cost. The al

gorithm will maintain a heap on the costs of the trees obtainable via these minimum

20

cost swaps. (When k is very large, our final version of the algorithm will manage the

heap somewhat differently: See the discussion at the end of this section.)

We now proceed with a description of the rest of the algorithm. Given the min

imum spanning tree Tl, we generate a best-swap structure for T1 • We initialize the

heap with the value representing the cost of the spanning tree derived from T1 by

applying the swap of minimum cost. We then repeat the following k - 1 times. Ex

tract the minimum from the heap. The extracted value represents the cost of a tree

Ti produced by applying a swap (ei, Ii) to spanning tree Tj • Generate a best-swap

structure R.;, from Rj, not by changing Rj but by creating new nodes and sharing

common subtrees as necessary. The changes in generating Rj from Rj should reflect

the effect of two changes: replacing ej by Ii in the spanning tree and resetting the

cost of edge ej to be the value 00. Resetting the cost of edge ei effectively keeps edge

ej out of any of the spanning trees that are subsequently derived (transitively) from

Ti • Finally, modify R j to reflect the resetting of the cost of ei to be -00. Resetting

the cost of edge ej in this manner effectively forces edge ei to be in all of the span

ning trees that are subsequently derived (transitively) from Tj . The minimum costs

identified by each of R; and R j should now be inserted into the heap. This completes

the description of the repeat loop.

As we have described the algorithm, its output will be in the form of a minimum

spanning tree, plus a sequence of triples (eil li,J"i), i = 2,3,,"·, k. Note that it is easy

to include the cost of tree Ti with the triple.

We can visualize the inclusion-exclusion using a binary tree B. Each node x in

B represents a modified version G(x) of the original graph G based on the inclusion

and exclusion conditions. Associated with each node is the minimum spanning tree

T(x) for G(x) • • long with. v.lue th.t is the cost of T(x) with respeel to the edge

weights in G. The root of B represents G, T(root) is the minimum spanning tree

21

TI of G, and the value associated with the root is the cost of TI . For any node x in

B, we determine the children of x as follows. If there is a swap of finite cost that

can be applied to T(x), let (e(x),f(x)) be the minimum-cost such swap. Then x will

have right and left children. Graph G(right(x)), will be graph G(x) with the cost of

e(x) reset to 00, and spanning tree T(right(x)) will be T(x) - e(x) + J(x). Graph

G(Left(x)), will be graph G(x) with the cost of e(x) reset to -00, and spanning tree

T(Left(x)) will be T(x). This completes the definition of binary tree B.

As an example, we consider the spanning trees for the graph in Figure 1. We shall

name edges by their weights. In Figure 4 we give binary tree B for this graph. The

minimum spanning tree, as shown in Figure 1, has a cost of 91, and is represented

by the root of the tree in Figure 4. The best swap for this tree is (13,14). The right

child of the root represents the resulting tree, with cost 92. Note that edge 13 is

excluded from being a member of any of the spanning trees represented by this node

or any of its descendants. Conversely, edge 13 is required to be included in any tree

represented by the left child of the root, or any of its descendants. The minimum

cost swap given that edge 13 must be included is (12,14), yielding a tree with cost

of 93. In our representation, the edge to a right child is labeled with a tree edge

that is excluded, and the edge to the left child is labeled with a tree edge (the same

edge) that must be included. To make the representation less cluttered, we put the

included/excluded tree edge between the edges to the right and left children. Note

that that we label a nonroot node with its cost only if its spanning tree differs from

that of its parent. Also, we do not draw the complete representation, but only the

first four levels, noting that all nodes shown have children except the lower rightmost

one.

The time required by the algorithm will be the following. From [GGST], [E], [Tl],

[T2], (BFPRT], [Fl], finding the contracted graph and transforming it into one with

22

maximum degree 3 will take O(mlogl1(m,n)) time and O(m) space. From [eT], IE],

[BW], [BFPRT], [FI], finding the contracted graph of a planar graph and transforming

it into one with maximum degree 3 will take O(n) time and space. In addition to

setting up R11 the algorithm will perform 2(k - 1) updates of best-swap structures.

With regard to the heap, k - 1 extraetmins and 2(k - 1) inserts will be performed.

Thus the total time for all heap operations is O(k log k).

For very large values of k, the total time for maintaining the heap on the costs of

trees may dominate the total time for updating the best-swap structures. In such a

case we may reduce the O(k log k) charge for maintaining the heap to O(k) as follows.

Note that when a best-swap structure is modified, the cost of the new spanning tree

induced by the new best swap is never smaller than the spanning tree from which it

was derived.

From [F2] it is known that the k-th smallest value in a min-heap can be selected

in O(k) time. This algorithm is then used in place of the simple heap mechanism.

Given O(k) values that include the costs of all k smallest spanning trees, it is then

straightforward to identify the costs of the k smallest spanning trees. Note however

that these costs will not necessarily be output in sorted order. Suppose that these

costs can be viewed as forming a min-heap. Then from [F2] it is known that the

k-th smallest value in a min-heap can be selected in O(k) time. This algorithm is

then used in place of the simple heap mechanism. Given O(k) values that include the

costs of all k smallest spanning trees, it is then straightforward to identify the costs

of the k smallest spanning trees. Note however that these costs will not necessarily

be output in sorted order.

It remains to show that the costs in binary tree B can be viewed as forming

a min-heap. Since the spanning tree for each left child is the same as that of its

parent, we need to compress B to get our min-heap. Note that for any node x such

23

that right(lejt(x)) is defined, the value labeling right(x) is no larger than the valne

labeling right(lejt(x)). This follows since a swap of smallest cost relative to T(x)

in G(x) is of cost no larger than a swap of smallest cost relative to T(left(x)) in

G(left(x)). Thus we generate OUf min-heap to contain nodes that correspond to a

subset of the nodes in B in the following way. The root of the min-heap corresponds

to the root of B. For any node y in the min-heap corresponding to node x in B we

determine the children of y as follows. If right(x) is defined, then right(y) is defined

to be a node that corresponds to right(x). If node x has a parent, parent(x), and if

right(lejt(parent(x))) is defined, then lejt(y) is defined to be a node that corresponds

to right(left(parent(x))). Since the algorithm in [F2] first accesses an element in the

min-heap only after having accessed its parent, the portion of the min-heap actually

accessed by that algorithm can be constructed on the fly as we create and access

our replacement data structures. Thus only O(k) nodes in the min-heap need to be

created. The binary min-heap corresponding to binary tree B in Figure 4 is shown

in Figure 5.

5. Ambivalent data structures I: best-swap structures

In this section we adapt the data structures from section 2 to give an efficient

best-swap structure for the case of general graphs. This will lead to an efficient

algorithm for finding the k smallest spanning trees of a graph. We first define what

we call a "pseudo-swap", which will allow us to design an ambivalent data structure.

Using pseudo-swaps, we next describe the information maintained in the nodes of the

2-dimensional topology tree, and show how to generate this information for a node,

given the information for its children. We then specify the best-swap data structure,

and discuss how to update this structure. We conclude with a claim of the time and

space bounds on our algorithm for finding the k smallest spanning trees.

24

We seek to build a data structure in which we can mainta.in a large set of swaps

in heap-like fashion, so that a best swap can be identified quickly. We do this by

considering nontree edges that have both endpoints in the same cluster, and nontree

edges that have their endpoints in different clusters. It is not hard to compute the

most advantageous swap involving edges, both of whose endpoints are in the same

basic cluster. Thus the more challenging task is is handling nontree edges that have

their endpoints in different clusters. We set up ambivalent information for each cluster

Vi as follows. For each boundary vertex w of Vi, and every other cluster Vr at the

same level, a pseudo-swap is a pair (e, f) of edges, where f is a nontree edge having

one endpoint in each of Vi and v;. and e is an edge on the path in the tree from w to

the endpoint of f in Vi. A pseudo-swap is a valid swap if e is in the path in the tree

between the endpoints of f. This condition clearly holds if w is on this path.

Consider the graph shown in Figure 1, with a restricted multi-level partition as

shown in Figure 2. Let Vi be VISI boundary vertex w of VIS be vertex 6, nontree edge

f be edge 17, and tree edge e be edge 6. Then (6,17) is a pseudo-swap, but it is not

a swap, since vertex 6 is not on the path in the tree between vertices 5 an 14, the

endpoints of edge 17. Note that ir edge 14 were swapped into the tree for edge 12,

then (6,17) would also be a swap.

We next discuss carefully the additional information that will be maintained in

the nodes of the 2-dimensional topology tree. These include the cost of a maximum

weight edge on the path between certain pairs of boundary vertices, the cost of a

minimum-cost nontree edge between a given pair of clusters, the cost of a minimum

cost pseudo-swap from a certain class of pseudo-swaps, and the cost of a minimum-cost

swap from a certain class of swaps.

We first discuss the cost of a maximum weight edge on the path between certain

pairs or boundary vertices. Let Vi be a vertex cluster with tree degree 2, and let

25

treemax(j) be the cost of a tree edge of maximum weight on the path between the

two boundary vertices. We store treemax(j) for a given j in node Vi x Vi in the

2-dimensional topology tree. If Vi is a basic vertex cluster, then treemax(j) can be

determined by inspection of Vi. If Vi is not a basic vertex cluster, then treemax(j)

can be computed in constant time given the treemax values of the children in the

topology tree and the cost of the boundary edge between the children's corresponding

clusters. Note that it is easy to keep track of the edge that yields the treemax(j)

value.

We next discuss the cost of a minimum-cost non tree edge between a given pair of

clusters. Let Vi and 11,. be two distinct clusters at the same level. Let nontreemin(j, r)

be the cost of a non tree edge of minimum cost with an endpoint in each of Vi and

11,.. Store nontreemin(j,r) at node Vi x Yr' If Vi and 11.- are basic vertex clusters,

then nontreemin(j,r) can be computed for any particular j and all r by inspection

of Vj. If Vj and Vr are not basic vertex clusters, then nontreemin(j,r) is the min

imum of the values nontreemin(j', rl), where Vi, x v;., is a child of Vi x v;. in the

2-dimensional topology tree. Note that it is easy to keep track of the edge that yields

each nontreemin(j,r) value.

We next discuss the cost of a minimum-cost pseudo-swap from a certain class of

pseudo-swaps. Let Vj and v;. be two distinct clusters at the same level. For each

boundary vertex w of Vi, let pswapmin(j,T,w) be the minimum value from the set

of differences consisting of the cost of a nontree edge with an endpoint in each of

Vi and Vn minus the cost of an edge of maximum cost on the path in T from w to

the endpoint in Vj. The values pswapmin(j,T,w) for any particular value of j and T

are stored in the node labeled Vj x v;.. If Vi and v;. are basic vertex clusters, then

pswapmin(j,r,w) can be computed for any particular j, all boundary vertices w of

Vi, and all T, by inspection of Vi.

26

If Vi and v;. are not basic vertex clusters, then pswapmin(j, r, w) can be computed

in constant time given the treemax values for all children of Vi, and the nontreemin

and pswapmin values for all children of Vi x v;. in the 2-dimensional topology tree.

We specify this computation in detail. If the node for Vi in the topology tree has a

single child Vj" then pswapmin(j, r, w) is the minimum of pswapmin(j', r' , w) taken

over the one or two clusters v,., that form Vr • Otherwise, Vj is formed from two

clusters Vj, and Vj'" and we assume without loss of generality that w is contained in

Vi,. Let w' be the boundary vertex of Vi, adjacent to Vi'" and let w" be the boundary

vertex of Vi" adjacent to Vi'. Then pswapmin(j,r,w) is the minimum taken over

the one or two clusters Vr, that form Vr of pswapmin(j', r' , w), pswapmin(jI', r', w"),

nontreemin(j", r') - c(Wi, w"), and nontreemin(jll, r') - treemax(w, w'). Once again,

it is easy to keep track of the pair of edges that yield each pswapmin(j,r,w) value.

We finally discuss the cost of a minimum-cost swap from a certain class of swaps

Let Vi be a vertex cluster. Let swapmin(j) be the cost of the minimum cost swap

such that the nontree edge has both endpoints in Vi. This value can be maintained in

node Vj x Vi of the 2-dimensional topology tree. If Vi is a basic vertex cluster, then

swapmin(j) can be computed by inspection of Vj. If Vi is not basic vertex cluster,

then swapmin(j) can be computed in constant time given the swapmin, nontreemin

and pswapmin values for children of Vi X Vi in the 2-dimensional topology tree. We

specify this computation in detail. If the node for Vi in the topology tree has a

single child \1;" then swapmin(j) = swapmin(j'). Otherwise, Vj is formed from two

clusters Vj, and Vj". Let w' be the boundary vertex of Vj, adjacent to Vj'" and let w"

be the boundary vertex of Vj" adjacent to Vj,. Then swapmin(j) is the minimum of

pswapmin(jl, r", w'), pswapmin(j", jl, w"), and nontreemin(j', j") - c(Wi, wll). Once

again, it is easy to keep track of the pair of edges that yield each swapmin(j) value.

We choose z = rm1/21. A best-swap structure Rt will consist of a topology tree for

27

tree Ti , a pointer to a 2-dimensional topology tree, many of whose subtrees are shared

with other 2-dimensional topology trees, and pointers to representations of basic

vertex clusters, most of which are shared. Each node in the topology tree will have

the index of the corresponding cluster and a pointer to the node1s parent. Each node

in the 2-dimensional topology tree will have the indices of the corresponding clusters,

along with the following. If the node is of type Vi x Vj , it will have treemax values

and a 3wapmin value, while if it is of type Vi x v;., for r =f:. i, it will have nontreemin

and pswapmin values. Note that each such treemax, nontreemin, pswapmin and

swapmin value should also carry with it the index of the edge or edges involved and

the indices of its basic vertex clusters. The representation of a basic vertex cluster

Vj will consist of a list of vertices, a list of edges with both endpoints in the cluster

(both tree and nontree edges), and for every other cluster 'V;., a pointer to a list of

non tree edges with one endpoint in each of Vi and v;.. In addition, for each nontree

edge with both endpoints in the same basic cluster, there will be the largest cost tree

edge with which it can swap.

We now discuss how to update a best-swap structure. If the swap causes a basic

vertex cluster to be split or combined, generate a description of each new cluster

Vi, consisting of a list of vertices, a list of edges with both endpoints in Vi, and for

every other cluster Vn a list of nontree edges with one endpoint in each of Vi and

\/;.. If the new cluster Vi is merged from Vi and Vp, determine the best swap for

each nontree edge with one endpoint in each of Vi and Vp as follows. Let tree edge

(W'1W
Il

) connect Vi to Vp with Wi in VI and w ll in VJ'. Find the maximum cost edge

from each vertex in Vi to Wi, and from each vertex in Vp to w ll
. Given nontree edge

(v', VII) with Vi in Vi and v" in Vr, the best tree edge that can swap with (Vi, vtl
) can

then be found in constant time. A similar approach can be used if a tree edge (Wi, wIt)

with both endpoints in Vi has its cost set to -00 to find the new swaps that replace

28

those involving edge (w', w").

We next generate the new topology tree and the new 2-dimensional topology

tree. For each basic vertex cluster that has changed, do the following. For each pair

of boundary vertices wand Wi in Vj, determine the value treemax(j, w, Wi). Next

determine the value swapmin(j) by finding the minimum cost swap over all best

swaps for nontree edges with both endpoints in Vj. For each set of nontree edges with

one endpoint in each of Vj and 'V;., set the appropriate pointers in the descriptions of

Yj and 'V;.. Also, find the minimum cost edge in the set, giving the nontreemin(j, r)

value. For each vertex v in Yj and each boundary vertex w of Yj, determine the

maximum cost tree edge on the path from v to w. For every other basic cluster \1;.,

examine every edge with one endpoint in each of Vi and 'V;., to find the best pseudo

swap for each boundary vertex w of Yj. Thus we can determine the pswapmin(j, r,w)

values. Create a new copy of the topology tree, and then modify the structure of the

new topology tree and the 2-dimensional topology tree. As selected portions of the

2-dimensional topology tree are being rebuilt bottom-up, modify the information in

the treemax, nontreemin, pswapmin and swapmin fields.

We discuss carefully how the 2-dimensional topology tree is handled, since subtrees

are shared and there are thus no parent pointers. When a swap is performed, the

indices of the basic clusters containing the endpoints of the swap edges are available at

the root of the 2-dimensional topology tree being updated. For each endpoint, search

up in the topology tree from the leaf for the corresponding basic cluster. Then, given

this path in the topology tree, one can search down in the 2·dimensional topology

tree. As one searches down, one can set temporary parent pointers, so that one can

come back up the new 2-dimensional topology tree, computing new values for the

various fields of new nodes.

Theorem 5.1. Let G be a graph with m edges and n vertices, for which we know the

29

minimum spanning tree T1 and the best swap for each nontree edge. The best-swap

structure R1 can be set up in O(m) time and space. A best-swap structure R; can

be updated in O(m1
/

2
) time and space.

Proof. Basic vertex clusters can be found in Oem) using an algorithm in [FIJ. Sjmilar

to that in [Fl], a restricted multi-level partition, a topology tree, and a 2-dimensional

topology tree can be found in Oem) time. Generating all other values can be done in

time proportional to the number of them.

We next discuss the resources needed to update R. The size of a description

of a basic vertex cluster is O(m1/ 2), and at most a constant number of basic vertex

clusters are changed by any update operation. The time to generate the new infor

mation associated with a new cluster is O(m1
/
2
), if we are given the description of

the c1uster(s) from which it is formed. The size of the new topology tree is O(m1
/

2
),

and can be created in that much time. The number of nodes examined and created in

generating the new 2-dimensional topology tree is O(m1
/
2
), by an argument similar

to one in [Fl]. The time to compute each value in a newly created node is constant, if

these values are computed bottom.up. Thus the total time to update R; is O(m1
/

2
).

The space needed is no larger. 0

Theorem 5.2. The k smallest spanning trees of a weighted undirected graph can

be found in O(m log l3(m, n) + min {k'/2 ,km' /2)) time and O(m + min{k'/2, km' /
2

))

space.

Proof. As discussed in section 4, the time to find the minimum spanning tree and

also find a transformed graph with O(min{k,m)) edges will be O(mlogl3(m,n)). By

the discussion in section 4, there will be O(k) such updates. By the discussion at

the end or section 4, the cost or the k-th smallest spanning tree can be found by

performing O(k) updates which produce O(k) values, from which one selects the k-th

smallest in O(k) time. By Theorem 5.1, updating a best-swap structure for a graph

30

with O(min{k,m}) edges will take O(min{k,m})' j 2) time. The time bound then

follows. By Theorem 5.1, each update will introduce O(min{k3
/

2
, km1

/
2
}) additional

space. The space bound then follows. 0

6. Best-swap data structures for embedded planar graphs

In this section we describe our ambivalent data structure to find a best swap for

a spanning tree of an embedded planar graph. We first discuss how to store in the

edge.ordering trees ambivalent information with respect to the boundary sets. We

then describe how to compute the minimum-cost swap for a vertex cluster, given

the appropriate information about the cluster's children. We next describe the best

swap structure and its updating, while ignoring one significant problem. We then

discuss the problem, namely that we have no parent pointers in our tree structures.

We introduce internal names of vertices, which are based on a vertex's position in

the topology tree, and show how to keep track of internal indices while performing

operations that change the structure of edge-ordering trees. We then discuss updating

the best-swap structure while using these internal indices. Finally, we claim the time

and space bounds for our algorithm that finds the k smallest spanning trees in a

planar graph.

We first describe how to maintain ambivalent information in the edge-ordering

tree for each boundary set. Consider a cluster Vi of tree degree 2. Consider the

path Pj between the two boundary vertices of Vi. For any vertex u in Vi, we define

proj(j, u), the projection of u onto Pj, to be the vertex on Pj that is closest to u in

the tree. Now consider one of the two boundary sets. For each edge (u, v) in the

boundary set with u in Vi, consider proj(j,u). There may be some vertex on Pj that

has several vertices u projected onto it, and there may be some vertex that has no

vertices projected onto it. We consider a modified path m(Pj) in which every vertex

31

of m(Pi) hM exactly one vertex projected onto it except for the endpoints, which

have none. Between two consecutive vertices x and y of m(Pj) we shall have an edge

whose cost is the cost of a maximum-cost edge on the subpath between x and y in

Pi. In the case that x and y represent the same vertex in Pj, this cost will be -00.

Note that m(Pj) should be set up so as to be consistent with the planar embedding.

We represent information about the modified path within the edge-ordering tree

M follows. For each leaf, we keep the cost of the edge in the boundary set, the cost

of the next edge in a given direction on the modified path, the cost of the swap using

this next next edge, the cost of the next edge in the other direction on the modified

path, and the cost of the swap using that next next edge. For each nonleaf node in

the edge-ordering tree, we keep the cost of the minimum-cost boundary edge in the

subtree rooted at the nonleaf node, the maximum of the costs of next edges in the

given direction on the modified path in the subtree, the cost of the best swap if all

boundary edges in the subtree can swap with their next edges in this given direction,

the maximum of the costs of next edges in the other direction on the modified path

in the subtree, and the cost of the best swap if all boundary edges in the subtree

can swap with their next edges in that other direction. Given these values for any

two siblings in the edge-ordering tree, the values for the parent can be computed in

constant time.

If cluster Vi has tree degree 1, then the information is represented in an especially

simple form. We let Pi be the trivial path (of no edges) whose endpoints are both

the single boundary vertex of Vi' The endpoints of all boundary edges of Vi then

project onto this single point in Pj, and all edges in m(Pi) will have cost -00. We

note that the information corresponding to tTeemax, nontTeemin, and pswapmin

which we maintained in section 5 is now held within the edge-ordering trees for the

boundary sets and the newly-interior sets.

32

As in section 5, we shall keep for each cluster Vj the cost swapmin(j) of the

best swap found within Vi. We discuss what additional changes are necessary in the

handling of edge-ordering trees when two clusters Vj, and Vj" are unioned to give

cluster Vi. This involves examining four cases. Suppose Vj, is of tree degree I, and

Vj" is of tree degree 3. We take swapmin(j) to be the minimum of swapmin(j') and

c(J) - c(e), where e is the tree edge between Vj, and Vi", and f is the boundary edge

of smallest cost in Vj,. In a fashion similar to that discussed before, the now modified

edge-ordering tree for Vj, will represent the modified edge-ordering tree for one of the

two boundary sets of Vj.

Suppose Vj, is oftree degree 1, and Vj" is of tree degree 2. We split and concatenate

boundary sets as in section 3. For any remaining portions of these sets, we now

know in which direction the connection lies. For each newly-interior set, we query

the corresponding edge-ordering tree to get the minimum swap in the appropriate

direction. We then take the minimum of the costs of these swaps, along with the

values swapmin(/), swapmin(j"), and c(J) - c(e), where e and f are as before, and

also the cost of the minimum-cost swap for the resulting boundary set for Vj. Since

Vj is of tree degree 1, we must reset the cost of tree edges in the modified path to

be -co. We do this symbolically by letting the cost of the maximum-cost edge in

this be set to -co. In any subsequent splits that affect this node, we propagate this

value down as necessary in the edge-ordering tree. (This can be done by creating new

nodes.)

When two boundary sets are concatenated together, values in the edge.ordering

trees must be changed. One important change is that on each side we must find

the maximum cost of a tree edge on the path between the nearest pair of boundary

edges, one edge from each of "'i' and Vjn, that will be in boundary sets for Vj. This

can be done by taking the maximum over the tree edges in the edge-ordering trees

33

representing newly-interior edges on that side, along with the tree edge between V;,

and Vj".

Suppose Vj, and Vj" are both of tree degree 2. As discussed previously, we split

and concatenate boundary sets and form newly-interior sets. This case is similar to

the case in which Vj, is of tree degree 1 and Vi" is of tree degree 2, except that the set

of separating edges (if any) needs to be identified as a sepamting newly-interior set.

For each newly-interior set, we query the corresponding edge-ordering tree for the

minimum swap in the appropriate direction. We then take the minimum of the cost

of these swaps, along with swapmin(j'), 8wapmin(j"), and c(J) - c(e), where e is as

before, and f is the minimum-cost edge over all the newly-interior sets of Vi· This

concludes the examination of the four cases when two vertex clusters are unioned.

Finally, suppose Vi, and Vi" are both of tree degree 1. For each newly-interior

set, we query the corresponding edge-ordering tree for the minimum swap in the

appropriate direction. We then take the minimum of the cost of these swaps, along

with swapmin(j'), swapmin(i"), and c(J) - c(e), where e is as before, and f is the

minimum-cost edge over all the newly-interior sets of Vi·

We next specify a first and somewhat incomplete description of the swap structure.

We shall then augment the structure to address a problem that we shall raise shortly.

The best-swap structure R j will consist of a pointer to an edge-ordered topology tree,

many of whose subtrees are shared. Note also that subtrees of the edge-ordering trees

at various nodes in the edge-ordered topology tree are also shared.

We discuss how to update a best-swap structure when a swap occurs. Perform the

procedure planar-swap as discussed earlier. Note that this procedure swaps nontree

edge f in for tree edge e. We also wish to reset edge e to have cost 00, so we reset

the cost of this edge before rebuilding the edge-ordered topology tree. As we rebuild

these structures, we update the swapmin value and the values in the edge-ordering

34

trees of the affected nodes.

As in section 5, a similar but simpler approach is used to handle an update when

no swap is performed but the cost of a tree edge is reset to -00.

As shown in Theorem 3.3, a minimum spanning tree of a planar graph can be

updated in O«(log n)3) time using structures based on the edge-ordered topology

tree. It would at first appear easy to use this representation in the same fashion as

we did the 2-dimensional topology tree in section 5 to give a best-swap structure for

a spanning tree of a planar graph that can be updated in O«(logn)3) time. This

would then give the desired O(n +k(log n)3)_time algorithm for finding the k smallest

spanning trees. The difficulty is that on each update in the best-swap structure we

made an unshared copy of a topology tree, at a cost of O(m1
/

2
) time. This was

done because there appears to be no good way to both share subtrees and still have

a pointer from each node to its parent. If we wish to achieve O«logn)3) time per

update in the best-swap structure for planar graphs, we must do it without making

complete copies of objects such as topology trees. Instead, we shall present a scheme

for encoding new internal names of vertices. These names will be generated bottom

up and read top-down.

The names will be based on the structure of the topology tree, and will thus

change as its topology changes. We first note that the topology tree is a binary tree

of height O(logn). We shall assume that any child of a node with exactly one child

will be designated as a left child. We shall also assume that a node with two children

will have the children designated as left or right in an arbitrary but fixed fashion.

We encode the level-I internal index of a vertex as follows. Consider the path up to

the ancestor at level I from the leaf node representing the vertex. Starting with the

empty string, concatenate on the right of the string a a if the path comes from a left

child and a 1 the path comes from a right child. To differentiate the original names

35

from these new names, the original index of a vertex or vertex cluster will be called

its external index.

Consider the graph in Figure 1, along with the restricted multi-level partition of

Figure 2. We give the internal indices of vertex 13, using the topology tree as shown

in Figure 3. The level-l indices of vertex 13, for I = 1,2,3,4,5 respectively, are 1, 01,

001, 1001, and 11001.

We now proceed with a complete description of the best-swap structure. The

best-swap structure R; will consist of a pointer to an edge-ordered topology tree for

tree T; and a description of each basic vertex cluster. The description of each basic

vertex cluster will be in the form of the original name of the vertex contained in it,

along with each edge incident on it, specified by the original names of the endpoints

and the cost. The edge-ordered topology tree will share subtrees with other best-swap

structures.

Each node Vi at level [in the topology tree will have the external index of its

corresponding cluster, a list of its boundary vertices specified by both external index

and level-l internal index, its swapmin value, and the level-l internal indices of the

pair of edges realizing that value. If node Vi has two children, then it will have

the level-I internal index for each endpoint of the tree edge that connects the two

clusters corresponding to the children. Each value in an edge-ordering tree associated

with node Vi will have its corresponding edge or pair of edges specified by a level-I'

internal index for some [' :::; l. There will be an additional field substr in each node

of the edge-ordering tree. The concatenation of the substr fields on a path from the

root down to any node in the tree, when concatenated with a level-i' index there,

will give a level-l internal index for the corresponding vertex. When two clusters

are unioned, the substr fields at the roots of the corresponding edge-ordering trees

are appended with either a 0 or 1, before the trees are concatenated. Clearly, these

36

fields can be mainta.ined as trees are split and concatenated. Indeed, we note tha.t

the edge-ordering trees will be balanced naturally if every time we concatenate we

just add a new root above the current two (or three) roots, rather than performing

some complicated rebalancing. This follows since there are only O(logn) levels in the

topology tree.

We now discuss the full algorithm for generating the k smallest spanning trees.

We first consider setting up the trees for R I • Clearly, the structure of the topology

tree can be determined and set up in O(n) time. The information in each leaf can be

set up in constant time. Then the information in nonleaf nodes can be determined in

a bottom-up fashion, at a constant cost per operation in setting up an edge-ordered

topology tree as in section 3.

We next discuss updating a best-swap structure when it has been determined that

a swap should be performed. This would occur when a value has been extracted from

the heap, representing the cost of a tree T; plus the cost of some swap for that tree,

which is represented by the swapmin value at the root of its edge-ordered topology

tree. Associated with that swapmin value will be both the external and internal

indices of the endpoints of the edges in the swap pair (e,f). Using the internal

indices of these endpoints, we can search down in the topology tree to the leaves,

using constant time per level, and setting temporary parent pointers. Then we may

proceed as in the proof of Lemma 3.3. We first remove from the topology tree each

node that is the proper ancestor of one of the nodes representing these endpoints.

For each such node we keep track of the external indices of its boundary vertices of

the corresponding cluster. We then proceed to rebuild the topology tree from the

bottom-up, as described in the proof of Lemma 3.3.

Testing whether two clusters at some level are adjacent can be done by determining

if two of their boundary vertices are adjacent. If one cluster WI corresponds to the

37

root of some tree, and we wish to locate a neighboring cluster W" whose node is in

some other tree, we can do the following. We know the edge (w', w") through which

the two clusters are adjacent, and thus know a boundary vertex w" of cluster W". We

search back up through the topology tree, using the temporary parent pointers, to

find the lowest cluster that contains both w' and w". This corresponds to the lowest

node on the path up that has a child whose corresponding cluster has a boundary

vertex w". The internal index of w" can then be used to search down the tree to find

W". We note that this searching up and down the tree will involve only a constant

amount of work per level, over all levels, since every time a search is performed we

need not search over a previously searched path again, but merely save pointers to

the relevant nodes.

Theorem 6.1. The k smallest spanning trees of a weighted undirected planar graph

can be found in O(n +k{log nn time and O(n + k(log n)') space.

Proof. The time claim in the theorem follows from Lemma 3.1 and the discussion

at the end of section 4. The space follows from Lemma 3.1 and the observation that

a constant number of nodes are changed in the edge-ordered topology tree for each

update, and that the edge-ordering trees at a node can be updated by introducing

O(logn) new nodes. 0

Note that for values of k < n, n + k(logk)3 would seem to be better than n +

k(logn)'. However, k(logn)' < n for k < n((logn)', and for n((logn)' S k S n,

logk is 6(logn).

7. Ambivalent data structures II: 2-edge-connectivity information

In this section we adapt the data structure from section 2 to give a data structure

for updating and querying 2-edge-connectivity information the case of general graphs.

We first give two simple characterizations of 2-edge-connectivity and 2-edge-connected

38

components. We then discuss the set of "complete paths" I which are a partition of a

subset of the spanning tree, and "partial paths", from which the complete paths are

formed. We show how to generate these paths for a cluster, when the paths of the

children are known. We motivate how complete paths are used in answering a query.

We next define "pseudo-covering edges", which allow us to define an ambivalent

data structure. We discuss the additional information stored at a node in the 2

dimensional topology tree, and show how to generate it given the information of the

children. We then give a summary of the update structure, including the specification

of information associated with a basic cluster. We then describe how to perform

queries and updates. Finally, we establish the resource bounds of our approach.

Let G be an undirected graph. Graph G is 2-edge-connected if there is no edge

whose removal disconnects G. An edge whose removal disconnects G is called a bridge.

The 2-edge-connected components of G are the subgraphs that result when all bridges

are removed. We first present two propositions that characterize 2-edge-connectivity

and 2-edge-connected components. Let T be a spanning tree of graph G. For each

edge e in T, let cover(e) = 1 if there is a nontree edge j such that e is on the path

in T between the endpoints of j, and let cover(e) = 0 otherwise.

Proposition 7.1. Graph Gis 2-edge-connected if and only if cover(e) = 1 for each

edge e in T.

Proof. Suppose that cover(e) = 0 for some edge e. Then removing this edge parti

tions G into two nonempty subgraphs. Thus G is not 2-edge-connected.

Suppose that G is not 2-edge-conneeted. Then there is some edge e whose removal

separates the graph. But then there is no non tree edge f such that e is on the path

in T between the endpoints of f. Thus cover(e) = O. D

Proposition 7.2. Vertices Vi and v" are in the same 2-edge-connected component if

39

and only if there is no edge e on the path from Vi to VII in T with cover{e) = O.

Proof. Delete every edge e with cover(e) = O. Each remaining edge will be on a

cycle induced in T by a nontree edge. The resulting components are thus the 2-edge

connected components of G. Vertices v' and VII are not in the same 2-edge-connected

component if and only if there was an edge e on the path from v' to v" in T with

cover(e) = O. 0

We seek to build a data structure in which we can maintain cover values easily.

We partition the edges of the tree into two sets, and maintain the cover information

about each set differently. We use the topology tree and 2-dimensional topology tree

to organize this information. The first set of edges consists of each tree edge both of

whose endpoints are in the same basic cluster, and whose cover value can be inferred

just by examining information associated with this basic cluster. The second set

consists of all other tree edges. It is relatively easy to maintain information about

the first set, so we shall concentrate for the moment on the second set of tree edges.

We next define partial and complete paths. Let the boundary tree be the smallest

subtree of the spanning tree that contains all the boundary vertices of the clusters.

The edges of the boundary tree are the edges in the second set. We define a partition

of these edges into paths, which we call complete paths, based on the multi-level

partition. The complete paths are built up from what we call partial paths, in a

manner that we now describe. There will be a partial path associated with each

cluster that is of tree degree either 1 or 2, and there will be a partial path associated

with each cluster that is the union of two clusters of odd tree degree. For any multi

level partition with more than one level, we have the following. No basic vertex cluster

will have a complete path associated with it. A basic vertex cluster of tree degree 1

will have a partial path containing the path of zero length beginning and ending at

its single boundary vertex. A basic vertex cluster of tree degree 2 will have a partial

40

path consisting of the path in the tree between its two boundary vertices. As stated

before, a basic vertex cluster of tree degree 3 will have no partial path associated with

it.

When two vertex sets Vi' and Vi" are unioned, the partial paths are handled as

follows. IT Vi, is of tree degree 1 or 2 and Vi" is of tree degree 2, then the resulting

vertex cluster will have a partial path that is the concatenation of the partial paths

of Vi, and Vi .. and the tree edge between them. IT Vi, is of tree degree 1 and "'iu is

of tree degree 3, then the resulting vertex cluster will have the following two paths

associated with it. First, it will have a complete path that is the concatenation of the

partial path of "'i' and the tree edge between the two clusters. Second, it will have a

partial path consisting of the single vertex of "'i". If Vi, is of tree degree 1 and Vjll

is of tree degree 1, then the resulting vertex cluster will have a complete path that is

the concatenation of the partial paths of Vj, and "'i" and the tree edge between them.

Note that a vertex cluster will have a complete path if and only if it is the union

of two clusters of odd tree degree. For any complete path generated when clusters

of tree degree 1 and 3 are unioned together, let the single vertex in the cluster of

tree degree 3 be called the top of the path. We say that complete path pI dominates

complete path P if and only if the top of path P is contained in Pl.

Consider the restricted multi-level partition shown in Figure 2. The complete

paths are shown in Figure 6. The complete path between vertices 12 and 13 will

associated with ~ 3 , the complete path between 8 and 10 will associated with V28 ,

the complete path between 4 and 7 will associated with ~ 2 , and the complete path

between 1 and 14 will associated with V37• Each of the complete paths except the

last has a top, and these are 12, 10
1

and 4 respectively. The complete path from 1 to

14 dominates each of the other paths. Examples of partial paths are the following.

The partial path for Vis consists of the single vertex 11, the partial path for V16 is

41

the path from 2 to 3, the partial path for both V2s and V31 is the path from 1 to 3,

the partial path for V32 consists of the single vertex 4, and the partial path for V3S is

the path from 1 to 4.

We describe how complete paths are used in answering a same-2-edge-component

query. When a same-2-edge-component query on vertices Vi and v" is made, the path

in the spanning tree between v' and V" is considered in the following way. Note that

this path will consist of three subpaths, the first and third subpaths containing only

edges not in the boundary tree, while second subpath will contain only edges from

the boundary tree. First, information associated with the basic clusters containing Vi

and V" will be examined to see if there is a bridge on the first or third subpath. If

no bridge is found on these subpaths, then information associated with the complete

paths containing edges on the path from Vi to v" will be examined.

We maintain ambivalent information for Vi as follows. Let P be the partial path

of Vj. For boundary vertex w of Vj and cluster v;. at the same level, a nontree edge f

with one endpoint in each of Vj and v;. is a pseudo-covering edge for tree edge e if e

is in P and e is on the path in T from w to the endpoint of f in Vj. Pseudo-covering

edge f actually covers e if w is on the path in T between the endpoints of f. For

each boundary vertex w of Vj and cluster v;. at the same level, we shall maintain a

best pseudo-covering edge in the following sense. If some edge with endpoints in Vi

and v;. covers the edge on P incident on w, then there is such an edge that covers a

longest subpath of P ending at w.

Consider the graph in Figure 1, with a restricted multi-level partition in Figure 2.

For cluster VIS and boundary vertex 6, edge 17 is a pseudo-covering edge, and also a

best pseudo-covering edge (since it is the only one). However, edge 17 does not cover

any edges in VIS' For cluster 1127 and boundary vertex 5, edge 17 is a pseudo-covering

edge. However edge 17 is not a best pseudo-covering edge for V27 and boundary vertex

42

5, since it covers zero edges in the partial path of VZ7 up to vertex 5, while edge 14 is

a pseudo-covering edge for V27 and vertex 5 that covers two edges in the partial path

of VZ7 up to vertex 5.

We next discuss carefully the additional information that will be maintained in

the nodes of the 2-dimensional topology tree. This includes pointers to partial and

complete paths associated with the node, the number of edges in the partial paths,

the number of edges from the top of a complete path to the first bridge (if any) in

that path, and best pseudo-covering edges.

We first discuss the length of various paths. Note that by distance we mean the

number of edges in a path in the spanning tree. For the remainder of this section,

we shall use the term distance in this way. Let Vi be a vertex cluster of tree degree

1 or 2. Let length(j) be tbe length of the partial path in Vj. We store length(j) at

the node Vi x Vj in the 2-dimensional topology tree. If 11; is a basic vertex cluster,

then any value iength(j) can be determined by inspection of Vj. If Vi is not a basic

vertex cluster, then any value length(j) can be computed in constant time given the

lengths of the partial paths of the children in the topology tree.

We next discuss the pseudo-covering edges. Let Vi and 11;. be two distinct clusters

at the same level, with Vi of tree degree 1 or 2. Let w be a boundary vertex of Vj, and

let Pj be a partial path that contains w as an endpoint. Let u be a vertex in Vj. Recall

from the previous section the definition of proj (j, U), which is the nearest vertex in

the tree that is on Pj. (Here we use a slight extension of the definition from the last

section, in that now we allow Vi to be also of tree degree 1.) For each boundary vertex

w of Vi, let maxcover(j, T, w) be the maximum distance from w to proj(j, u) such that

there is a nontree edge (u, v) with u in Vi and v in 1J;.. (If there is no edge with one

endpoint in each of Vi and 1J;., let maxcoveT(j, T,w) be -00.) A best pseudo-covering

edge is a pseudo-covering edge that realizes a particular maxcoveT(j, T, w) value. The

43

values maxcove.r(j, r, w) for any particular value of j and r are stored in node Vj x \I;

of the 2-dimensional topology tree.

If Vi and \I;- are basic vertex clusters, then maxcove.r(j,r,w) can be computed

for any particular j, all boundary vertices w of 11;, and all r, by inspection of Vj.

Then maxcove.r(j, r, w) is the maximum distance d(w,proj(j, u)), taken over all edges

(u,v) with u in Vi, and v in Vr. If Vi and \I;- are not basic vertex clusters, then

maxcove.r(j,T,w) can be computed in constant time given the le.ngth values for all

children of Vi in the topology tree, and the maxcove.r values for all children of Vi X v;.

in the 2-dimensional topology tree. We specify this computation in detail. If the

node for Vj in the topology tree has a single child 11;" then maxcove.r(j,T,w) is the

maximum of maxcove.r(j', T', w) taken over the one or two clusters \1;-, that form \1;-.

Otherwise, Vi is formed from two clusters Vj, and Vj'" and we assume without loss of

generality that w is in Vj,. If one of 11;, and Vi" is of tree degree 3, then the partial

path of Vi is trivial and thus maxcove.r(j,T,w) is -00. Suppose that neither Vj, nor

Vj" are of tree degree 3. Let w' be the boundary vertex of 11;, adjacent to Vjll, and

let wI! be the boundary vertex of Vjll adjacent to Vj,. Then maxcove.r(j,r,w) is the

maximum taken over the one or two clusters v;., that form Vr of maxcove.r(j', r l
, w)

and maxcove.r(jll, r' ,Wll) + 1 + length()'). Note that it is easy to keep track of an

edge that yields each particular maxcove.r(j, r, w) value. (This is needed when we

consider deleting a tree edge.)

We next discuss partial and complete paths. Let Vj be a vertex cluster of tree

degree 1 or 2. Let P P(j) be a pointer to a partial path (if any) in Vj. We maintain

partial paths (and also complete paths) in the following form. Each such path is rep

resented by balanced tree in which the leaves from left to right represent consecutive

edges on the path. Associated with each node in the tree is a value some.cov, such

that cove.r(e.) = 1 for edge e. on the path between boundary vertices if and only if

44

cov(x) = 1 for some node x on the path from the root to the leaf representing edge e.

In addition there is a value allcov, such that allcov(x) is 1 if and only if cov(x) = 1

or allcov(y) = 1 for each child y of x. To save time when we concatenate paths or

update values, we share common subtrees wherever possible. The pointer PP(j) is

maintained in node Vj x 1.-j of the 2-dimensional topology tree.

We describe how to set up partial paths. If Vj is a basic vertex cluster, then the

partial path can be set up by inspection of Vj. If Vi is not a basic vertex cluster, and

has just one child in the topology tree, then its partial path is the same as its child.

If Vj is the union of two clusters Vj, and Vj'" and also not the set of all vertices, then

its partial path is formed by concatenating the relevant partial paths of children,

as discussed previously. The tree edge between Vi, and Vi" is initially assumed to

have a cover value of O. Certain somecov values are adjusted to reflect the effect

of the best pseudo-covering edges between Vi, and Yj". For example, suppose l.-},

Vj, and Vj" are all of tree degree 2. Let w' be the boundary vertex of Vj, adjacent

to a vertex in Vj", let w ll the boundary vertex of Vj" adjacent to w', and suppose

maxcover(j',j",w') ¥ -00. Then we modify the somecov values to reflect the fact

that a subpath of length maxcover(j', jlf, w') + 1, starting in ltj, and ending at w" is

covered. This can be done by searching in the tree structure for the partial path to

find the extreme edges in the subpath. A set of O(log n) nodes in the tree cover all

and only the edges in the subpath, and the somecov values of these nodes should be

set to 1. The allcov values of these nodes and their ancestors should also be adjusted.

A similar operation would be performed with respect to maxcover(j",j', w"). The

other cases in which not both Vi, and Vi" are of tree degree 2 are handled similarly.

We next discuss complete paths. Let ltj be a vertex cluster. Let CpU) be a

pointer to a complete path in Vj. Suppose Vj is a cluster that is the union of a cluster

Vj , of tree degree 1 and a cluster Vi" of tree degree 3. Then the single vertex of "'i"

45

is the top of the complete path at Vi. Let toptobr(j) be the distance from the top of

the complete path to the first bridge (if any) in the complete path. This can be found

by searching in the tree structure for the complete path. There will be a bridge in

the complete path if and only if the allcov value of the root of the tree structure is

O. Search down from the root, always taking the child representing a subpath closer

to :r when there are two children and both have allcov value equal to O. Note that if

both Vi, and Vi" are of tree degree I, then Vi is the set of all vertices, and there is no

top of the complete path.

We choose z = rm1
/

21. An update data structure Q will consist of a topology tree

for a spanning tree T, a 2-dirnensional topology tree, and representations of basic ver

tex clusters. Each node in the topology tree will have the index of the corresponding

cluster and a pointer to the node's parent. Each node in the 2-dimensional topology

tree will have the indices of the corresponding clusters, along with the following. If the

node is of type Vi x Vi, it will have length, PP, CP, and toptobr values. If the node

is of type Vi x l!,., it will have maxcover values. The representation of a basic vertex

cluster Vi will consist of a list of vertices, a list of edges with both endpoints in the

cluster (both tree and nontree edges), and for every other cluster Vrl a list of nontree

edges with one endpoint in each of Vi and l!,., and the associated maxcover(j,r,w)

values. In addition, we keep information that will help to determine if there is a

bridge between two vertices in Vj, as discussed below.

We can find the cover values for edges not in the boundary tree as follows. Gener

ate a reduced cluster for the basic cluster as follows. The vertex set will be the same in

the reduced cluster as in the basic cluster. Any edge (tree or nontree) with both end

points in the basic cluster will be in the reduced cluster. For any nontree edge (u, v)

with u in the basic cluster and v not in it, and proj(j, u) =f:. U , edge (u, proj(j, u)) will

be in the reduced cluster. We then find the biconnected components of the reduced

46

cluster. Any tree edge that is in a biconnected component consisting of more than

one edge will have nonzero cover value. To represent this information, we maintain

the following. For each vertex u, keep the distance d(u,proj(j,u)), and also keep

the distance disttobr(u) to the bridge nearest to u on the path from u to proj(j,u).

(Let disttobr(u) be 00 if there is no bridge between u and proj(j, u).) For each y on

a partial path in a basic cluster, keep the distance to both endpoints of the partial

path, keep a data structure to find the lowest corrunon ancestor [HT], [SV] of any two

vertices u such that proj(j, u) = y.

We are now ready to discuss how a same-2-edge-component(v', v") query is han

dled. Let v' and V
U be in basic clusters V' and V", respectively. If V' = V" and

proj(j',v') = proj(j/,v"), we do the following. Let y = proj(j/,v') = proj(j',v").

Find the lowest common ancestor z of v' and v" in the tree rooted at y. It fol

lows that v' and v" are in the same bridge-component if and only if disttobr(v') :2::

d(v',y) - d(z,y) and disttoiJr(v") ~ d(v",y) - d(z,y).

Next suppose V/ =I V" or proj(j', v') i- proj(j/l, v"). If disttobr(v') < d(v',proj(j', v'))

or disttobr(vU) < d(vU,proj(j", v")), then Vi and V
U are not in the same bridge

component. Otherwise, we identify the set of complete paths containing edges in

the path from proj(j', Vi} to proj(j", v"). We examine these paths as we search up

through the topology tree. At the top of each complete path in the sequence except

the highest one, we shall use the toptobr value to test if a bridge comes in the relevant

portion of the complete path. If no bridge is found from such testing, then we shall

search the highest path to see if a bridge appears in the relevant portion.

We shall now present the identification and the search of the complete paths

in detail. Initially set W/ to be V/, W" to be V", vert/ to proj(j/,v'), vert" to

proj(j", VII), dist' to 0 and distil to O. While vert' and vert" are not on the same

partial or complete path, do the following. First handle W' as follows. Let U/ be the

47

parent of W' in the topology tree. If W' is an only child of U', then reset W' to U'.

Otherwise, if the other child of U' contains vertices that are beneath vertices of W'

on a complete path, then reset W' to U'. Otherwise, if the other child of U' has tree

degree 2, then add to dist' the quantity 1 plus the length of the partial path of the

other child, and reset W' to U'. Otherwise, if the other child of U' has tree degree

3, then do the following. Add 1 to dist'. If the toptobr value of the complete path

at U' is less than dist', then there is a bridge between v' and v", and we exit the

procedure with this information. Otherwise, reset dist' to be 0, W' to U', and vert'

to be the single vertex of the child of the cluster U' of tree degree 3, This completes

the discussion of the other child having tree degree 3. If the other child of U' has tree

degree 1, then reset W' to U'. This completes the handling of W'. Perform similar

operations with respect to W", dist" and vert". This completes the description of

the while loop. If no bridge is found during the execution of the while loop, then

do the following. Note that W' will now equal W". If vert' and vert" are not on

a complete path for W' = W", then they are on the same partial path. Search up

through the topology tree to find the complete path that contains this partial path.

Then search this path between vert' and vert", using the allcov values. If allcov is 1

for each portion of the complete path between vert'and vert", then there is no bridge

between v' and v".

We consider our graph in Figure 1, using the restricted multi·level partition of

Figure 2, with its associated complete paths, as shown in Figure 6. There is only one

bridge in the graph, edge (3,4). The value toptobr value is 0 for each of the complete

paths from 4 to 7, 8 to 10, and 12 to 14. Recall that each basic vertex cluster is a

single vertex. The query same-2-edge-component(6,8) will determine that there are

no bridges from 8 to 10 on that complete path, that there are no bridges from 6 to

4 on the corresponding complete path, and there are no bridges from 4 to 10 on the

48

topmost complete path. Thus 6 and 8 are in the same 2.edge-connected component.

The query same-2-edge-component(2, 7) would examine the complete path from 7 to

2, and then the portion of the topmost complete path from 2 to 4, identifying a bridge.

We next discuss how to insert or delete an edge. H a tree edge is deleted, then we

identify a nontree edge that causes the cover value of the edge to be nonzero. (We

are assuming for simplicity that the graph remains connected, but this assumption

is actually not necessary. We could use "phony" edges to keep the graph connected,

and whenever we insert an edge that renders a phony edge useless, delete that phony

edge.) If the tree edge has a nonzero cover by virtue of information available in the

description of some cluster, then it is easy to identify the appropriate nontree edge.

Otherwise, we search the topology tree to find the first covering edge that covered

the tree edge we wish to delete. After making whatever changes are necessary to

handle the change in the tree, we make the required structural changes to basic

clusters, the topology tree, and the 2-dimensional topology tree, as discussed at the

end of section 2. For each basic cluster that changes, a new description of the cluster

must be computed. As the topology tree and 2·dimensional topology tree are being

constructed bottom-up, modify the information in the length, maXCDver, PP, CP

and toptobr fields.

We discuss a little more how partial paths are handled, since subtrees in the tree

structures representing these paths are shared, and there are thus no parent pointers.

Each vertex in a partial path will be identified by its distance from the end of the

path. Each internal node of the balanced tree representing the path will contain a

count of the number of edges in the subpath represented by that node. Thus a vertex

in a path can be located in the tree using this positional information.

Theorem 7.3. Let G be a graph with n vertices and m edges at the current time.

The update data structure Q can be set up in O(m) time and space. Structure Q

49

can be updated in O(y'm) time and accommodates same-2-edge-component queries

in O(log n) time.

Proof. Given a spanning tree T for Gal basic vertex clusters can be found in Oem)

using an algodthm in IFl]. Similar to that in [FlL a restricted multi· level parti

tion, a topology tree. and a 2-dimensional topology tree can be found in O(m) time.

Generating all other values can be done in time proportional to the number of them.

We next discuss the resources needed to update Q. The size of a description of a

basic vertex cluster is O(Jm), and at most a constant number of basic vertex clusters

are changed by any update operation. The time to generate the new information

associated with a new cluster is D(Vffi), if we are given the description of the cluster(s)

from which it is formed. The number of nodes examined and created in generating the

new 2-dimensional topology tree is O(Jffi), by an argument similar to one in {Fl]. The

time to compute each value in a newly created node of the 2-dimensional topology

tree is constant, if these values are computed bottom-up. For the nearest bridge

values, O(logn) complete or partial paths can have their nearest bridges change. The

new values can be found in O(logn) time each. Thus the total time to update Q is

O(y'm). 0

8. Dynamic 2-edge-connectivity in embedded planar graphs

In this section we sketch our ambivalent data structures for maintaining 2-edge

connectivity in an embedded planar graph. We first discuss which portions of section

7 are used. We next describe how to adapt the modified paths from section 6. We

then discuss how to generate augmented edge-ordering trees of a node, given the

information of its children. We follow this with a summary of the update structure,

along with a short description of how query and update are performed. Finally, we

analyze the performance of our structure.

50

We shall use the edge-ordered topology tree as III section 3 as a basis for our

data structure for maintaining 2-edge-connectivity information in embedded planar

graphs. We shall thus use boundary sets and newly interior sets. In addition, we shall

use the partial and complete paths as in section 7. Note that in some sense things are

easier, since basic clusters contain only single vertices. Thus every edge in the path

between any two vertices is contained in some complete path.

We shall maintain partial and complete paths as in section 7. We shall keep track

of the lengths of these paths, and represent them as balanced trees. As before, the

balanced trees will share subtrees, and shall have cov and allcov fields as before. For

each Vi other than the set of all vertices that has a complete path, there will be a

toptobr value. Also as in section 7, there will be a field in each node of the balanced

tree that allow one to find a vertex at any given distance down the path from either

of the endpoints.

As in section 6 we shall maintain a modified path m(P) for each partial path, but

will maintain different information in the corresponding edge-ordering tree. Between

two consecutive vertices x and y of m(P) we shall have an edge with a value bcinit.

The value bcinit will be 0 if x and y represent different vertices, and 1 otherwise.

Each leaf in an edge-ordering tree will contain the bcinit values of the path edges to

the left and right of the path vertex corresponding to the leaf. In each node of the

edge-ordering tree there will be a field project. This will either be null or the name

of a vertex on the partial path. For an edge in the boundary set with endpoint u,

proj(u) will be the first non-null project value on the path from the root to the leaf

representing the edge in the edge-ordering tree. We also maintain a field distproj in

each node such that the sum of the distproj values of nodes on a path from the root

to down to a node containing a non-null project value, where all ancestors have null

project values, is the distance on the partial path from proj(u) to one end of the

51

partial path.

We note some special cases. Consider a cluster Vj of tree degree 1. We shall

always assume that it has two boundary sets. If it is a basic cluster, then its partial

path P will be trivial. In this case we partition its incident nontree edges between the

two boundary sets arbitrarily (but consistent with the embedding), and let all edges

in m(P) will have a bcinit value of 1. If Vj is not a basic cluster, then it will have a

nontrivial partial path, and clearly will have two boundary sets.

Consider the handling of edge.ordering trees when two clusters Vj, and Vj" are

unioned to give cluster Vj. Suppose Vii is of tree degree 1, and Vi" is of tree degree

3. Append the tree edge between Vj, and Vj" onto the partial path of Vi" giving the

complete path P for Vj. Identify the edge (if any) in the boundary set(s) of Vi' whose

endpoint u is such that proj(u) is as far as possible from Vjll on P. Adjust the cov

and allcov values of O(log n) nodes in the balanced tree for the path to reflect the fact

that an edge covers all path edges from proj(u) to the top. Merge the edge-ordering

trees of the two boundary sets of Vjl into one tree. Take the resulting edge-ordering

tree and make it the edge-ordering tree for one side of Vj, with the other side having

an empty tree. Set the project field of the root of the first edge-ordering tree to the

single vertex of Vjll.

Next suppose Vjl is of tree degree 1 or 2, and Vi" is of tree degree 2. Merge

their partial paths together, along with the tree edge connecting them. Split and

concatenate boundary sets as before. For each newly interior set, identify the best

edge as far as covering edges in P. Note that if there is a separator newly interior

set, then there can be two such edges, one on either end of the set. The position

of the corresponding proj(u) vertices in P can be determined by using the distproj

information in the edge-ordering trees. Set cov and allcov values in the balanced tree

for P to reflect the effect of these best covering edges.

52

Finally, suppose "i' and ltjll are both of tree degree 1. This is similar to the last

case, except that the path P formed will be a complete path.

The update structure will consist of a pointer to an edge-ordered topology tree.

Note that subtrees of the edge-ordering trees at various nodes in the edge-ordered

topology tree will be shared. The query same-2-edge-component(Vi, v") is handled

the same as in the final portion of the query discussed in section 7. Identify the set

of complete paths containing edges in the path from Vi to v". Examine these paths

in the same manner as in section 7.

We next discuss how to modify the update structure when an update occurs. We

perform the appropriate restructuring operations on the edge-ordered topology tree,

as discussed in section 3. When a node in this tree is deleted, decrease the reference

count of any child of the node, and delete any node whose reference count goes to O.

For any node that is deleted, decrease the count of any node that is a root of one of

its associated edge-ordering trees. When a node in the edge-ordered topology tree is

created, form the edge-ordering trees associated with it, as discussed previously.

Theorem 8.1. A 2-edge-connectivity update structure of an embedded planar graph

can be queried in O(logn) time and updated in O((logn)3) time to show the result

of an edge or vertex insertion or deletion. The data structure will use O(n) space.

Proof. By Lemma 3.2, the edge-ordered topology tree can be updated to show the

effect of an edge or vertex insertion or deletion in O((logn)3) time. Maintaining the

additional fields in the various nodes of the 2-edge-connectivity update structure will

take constant time per operation performed in updating the edge-ordered topology

tree. Thus the total time is as claimed. The space bound follows from Lemma 3.1.

o

53

References

[BFPRT] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time

bounds for selection. J. Comput. Syst. Sci., 7:448-461, 1972.

[BW] H. Booth and J. Westbrook. Linear algorithms for analysis of minimum

spanning and shortest path trees in planar graphs. Technical Report TR

763, Yale University, Department of Computer Science, February 1990.

[BH] R. N. Burns and C. E. Haff. A ranking problem in graphs. In Proceed

ings of the 5th Southeast Conference on Combinatorics, Graph Theory and

Computing 19, pages 461--470,1974.

[CFM] P. M. Camerini, L. Fratta, and F. Maffioli. The k shortest spanning trees of

a graph. Technical Report Int. Rep. 73-10, IEE-LGE Politecnico di Milano,

Italy, 1974.

[eT] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J.

on Computing, 5:310-313, 1976.

[CH] F. Chin and D. Houck. Algorithms for updating minimum spanning trees.

J. Compo Sys. Sci., 16:333-344, 1978.

[E] D. Eppstein. Finding the k smallest spanning trees. manuscript, 1990.

[EITTWY] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook,

and M. Yung. Maintenance of a minimum spanning forest in a dynamic

planar graph. In Proceedings of the 1st ACM-SIAM Symposium on Discrete

Algorithms, pages 1-11, 1990.

[ES] S. Even and Y. Shiloach. An on-line edge deletion prohlem. J.ACM, 28:1-4,

1981.

[F1] G. N. Frederickson. Data structures for on-line updating of minimum span

ning trees, with applications. SIAM J. on Computing, 14:781-798, 1985.

[F2] G. N. Frederickson. An optimal algorithm for selection in a min-heap.

Information and Computation, to appear.

54

[IT) M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im

proved network optimization algorithms. J. ACM, 34:596-615, 1987.

[G] H. N. Gabow. Two algorithms for generating weighted spanning trees in

order. SIAM J. on Computing, 6:139-150, 1977.

[GGST] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan. Efficient al

gorithms for minimum spanning trees on directed and undirected graphs.

Combinatorica, 6:109-122, 1986.

[GIl Z. Galil and G. F. Italiano. Fully dynamic algorithms for edge-connectivity

problems. In Proc. 29nd ACM Symposium on Theory of Computing, 1991.

[Hy] F. Harary. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1969.

[HT] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common

ancestors. SIAM J. on Computing, 13:338-355, 1984.

[HIl] Dov Hare!. On line maintenance of the connected components of dynamic

graphs. manuscript, 1982.

[HI2] Dov Harel. private communication, 1983.

[KIM] N. Katoh, T. Ibaraki, and H. Mine. An algorithm for finding k minimum

spanning trees. SIAM J. on Computing, 10:247-255, 1981.

[Ll] E. L. Lawler. A procedure for computing the k best solutions to discrete

optimization problems and its application to the shortest path problem.

Management Sci., 18:401-405, 1972.

[L2] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,

Rinehart and Winston, New York, 1976.

{M] K. G. Murty. An algorithm for ranking all the assignments in order of

increasing cost. Operations Research, 16:682-687, 1968.

[SV] B. Schieber and U. Vishkin. On finding lowest common ancestors: simpli

fication and parallelization. SIAM J. on Computing, 17:1253-1262, 1988.

[SP] P. M. Spira and A. Pan. On finding and updating spanning trees and

shortest paths. SIAM J. Computing, 4:375-380, 1975.

55

[Tl] R. E. Tarjan. Applications of path compression on balanced trees. J.ACM
l

26:690-715, 1979.

[T2] R. E. Tarjan. Sensitivity analysis of minimum spanning trees and shortest

path trees. Info. Proc. Lett., 14:30-33, 1982.

[WT] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and bicon

nected components on-line. Technical Report CS-TR-228-89, Princeton

University, Department of Computer Science, October 1989.

[Yj J. Y. Yen. Finding the k shortest loopless paths in a network. Management

Science, 17:712-716 l 1971.

56

1

Figure 1. A weighted undirected graph with its
minimum spanning tree in bold.

3

13

14

33

36

37

Figure 2. A restricted multi-level partition of the
vertices in a spanning lI'ee.

Figure 3. The topology tree corresponding to the
restricted multi-level partition in Figure 2.

Figure 4. The first four levels of inclusion/exclusion,
with spanning tree costs indicated.

92

95

Figure 5. The min-heap induced by inclusion/exclusion.

Figure 6. Complete paths for the restricted
multi-level partition in Figure 2.

	Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees
	Report Number:
	

	tmp.1307986960.pdf.GjBlS

