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Amdahl’s Law in the Context of Heterogeneous Many-core
Systems – A Survey
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Abstract—For over 50 years, Amdahl’s Law has been the hallmark model for reasoning about performance bounds for homogeneous
parallel computing resources. As heterogeneous, many-core parallel resources continue to permeate into the modern server and
embedded domains, there has been growing interests in promulgating realistic extensions and assumptions in keeping with newer use
cases. This paper aims to provide a comprehensive review of the purviews and insights provided by the extensive body of work related
to Amdahl’s Law to date, focusing on computation speedup. We show that a significant portion of these studies has looked into
analyzing the scalability of the model considering both workload and system heterogeneity in real-world applications. The focus has
been to improve the definition and semantic power of the two key parameters in the original model: the parallel fraction (f ) and the
computation capability improvement index (n). More recently, researchers have shown normal-form and multi-fraction extensions that
can account for wider ranges of heterogeneity, validated on many-core systems running realistic workloads. Speedup models from
Amdahl’s Law onwards have seen a wide range of uses such as the optimization of system execution, and these uses are even more
important with the advent of the heterogeneous many-core era.
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1 INTRODUCTION

Parallelization has been an essential method for improving
the performance and energy efficiency of computation. On
performance, it is well known that the parallelization of
workloads may bring speedup [1]–[5]. On energy efficiency,
with the advent of such hardware techniques as dynamic
voltage and frequency scaling (DVFS), it is possible to trade
an increase of the number of processing units for a reduction
of energy consumption without affecting performance [6]–
[9].

The scaling of CMOS electronics has persisted for
decades, resulting in more and more hardware capabilities
being integrated onto single chips [10], [11]. For both
performance and energy efficiency reasons, systems of
relatively small physical size, i.e., those integrated onto
single chips, have in general moved towards multi-/many-
core processors (M/MCP) from single-core structures, with
the trend predicted to further develop [12]. In general,
M/MCP may be configured into homogeneous MCP
(HoMCP), where all of the cores are of the same type,
as seen in Intel Core-i and Xeon processors [13]–[16], or
heterogeneous MCP (HeMCP), where the cores are different,
as seen in ARM big.LITTLE [3]–[5], [17], [18]. HeMCP may
incorporate diverse architectures of processing units such as
CPU, GPU, DSP and embedded FPGA, as well as complex
cache memory and communication facilities [5], [19]–[21].
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An extensive body of work has been concentrated on
the modelling and analysis of the effects of computational
parallelization. The property of speedup is a popular topic
in these studies [1]–[5], [13], [19], [22]–[24], whilst energy
and power have not been neglected [3], [5], [25]–[30].
Various problems related to mapping parallelizable (mostly
software) workloads onto M/MCP hardware platforms
have also been intensely scrutinized. The energy efficient
load balancing, task migration and scheduling have been
the target of substantial investigations [5], [31]–[34].

This paper reviews the literature on workload paral-
lelization in the context of M/MCP speedup, particularly
those related to Amdahl-type speedup models such as
Amdahl [1], Gustafson [22] and Sun-Ni [2]. Non-Amdahl
style speedup models relating to the concept of parallelism
will also be comparatively studied [2], [13], [35], [36] and
new research on extending Amdahl’s Law to cover non-
zero and non-infinity parallelism will be highlighted [19],
[23], [24], [37], [38]. The review especially covers model
extensions dealing with HeMCP with different degrees of
heterogeneity [4], [5], [24], [38].

The main topic of this review is the property
of speedup and its relatiohship with system improve-
ments/enhancements in the sense of increasing the number
of processing units (cores). Energy/power models for these
kinds of systems related to speedup models and making
use of speedup and energy/power models for system
optimization will only be touched upon [15], [27], [30], [36],
[39] but not treated as main topics of discussion. Other
related topics such as the roofline modelling method [40],
modelling speedup caused by improvement techniques
not related to parallelization [30], and using Amdahl’s
Law to model the improvements of parameters other than
speedup [41] are likewise not discussed in detail. The
publications reviewed in this paper are classified in a table
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which highlights the topics covered by each publication
aiming to form a taxonomic view of the literature (Table 1,
Section 10).

A comprehensive survey of Amdahl’s Law and its
extensions can be found in [42]. The authors of [42] strive
to cover as many research titles as possible and discuss the
contributions of each work in as much detail as possible.
As a result, it is a good resource for finding related work
in this area of research. However, as is the case of many
survey papers, [42] skips over technical details. A reader
may struggle to build a complete mathematical picture of
model evolution without reading the cited publications.
Developments since 2013 are also inevitably missing from
that title.

Taking a different aim, in this work we focus on telling
the technical story logically, by including the fundamental
mathematics and their relevant explanations and derivation
processes. In doing so this paper attempts to build a picture
of how the models mathematically evolve and how each
stage of the development relates to other stages. This should
help a reader build a starting knowledge of the theories and
practices of the field without leaving the paper too often. As
a result, we do not have space to re-list the contributions of
each paper, which can usually be found in a paper’s abstract
and conclusion sections. On the other hand, at the end
of each section, the contributions of selected publications
which are on-topic for that section are highlighted. We
believe that these highlighted developments represent
important points in the story of model evolution in the
Amdahl’s Law space.

The rest of the paper is organized as follows. Section 2
sets the scene by describing Amdahl’s Law and Gustafson’s
model of speedup. Section 3 discusses model extensions
which concentrate on the effects of non-processing costs,
focusing on Li-Malek’s and Sun-Ni’s models. Section 4
focuses on the initial attempts at extending Amdahl’s
Law to cover system heterogeneity, with Hill-Marty’s
model in the highlight. Section 5 explores the reality of
heterogeneous multi-core systems and their differences from
Hill-Marty’s assumptions. Section 6 presents the normal-
form assumption of core heterogeneity and the resulting
speedup models. Section 7 explains the relationship and
differences between parallelism and parallel fraction, and
the limitations of Amdahl’s Law in studying workloads
with non-infinity parallelism. Section 8 describes efforts
on and results from extending Amdahl’s Law so that
heterogeneity in both workload parallelism and system
core arrangements are covered, culminating in the normal-
form multi-fraction speedup model. Section 9 discusses the
progression of speedup model development and highlights
the salient points in both the modelling and model usage.
Section 10 concludes the paper and presents a classification
table which taxonomizes the reviewed research.

In this paper, the mathematical forms including variable
names and formulas follow a consistent presentation
standard. Formulas that are derived, adopted, or adapted
from literature may have been transformed to conform with
this standard presentation.

2 AMDAHL’S LAW AND GUSTAFSON’S MODEL

The classical method for modelling the speedup of workload
processing caused by some measure of improving the
computation capabilities is known as Amdahl’s Law, which
developed from observations presented by G. Amdahl
in 1967 [1]. Amdahl did not provide a mathematical
formula for this law, which was later formulated based
on his verbal arguments. Given the context of this
paper, which is about the parallelization of workloads on
M/MCP systems, ”improvement of computation capabilities”
generally means the incorporation of multiple processing
units (to be called ”cores” in this paper) to improve the
speed of workload execution, unless otherwise noted. The
fundamental assumption of an Amdahl-type workload (also
known as ”program” or ”job” [4], [35] – we use ”workload”
in this paper) is that it can be divided into a fully sequential
(non-parallelizable, i.e., not affected by the improvement)
part and a fully parallel (infinitely parallelizable, i.e., fully
affected by the improvement) part, in the following way:

Tw = Ts + Tp, (1)

where Tw is the time consumed to execute the entire
workload, Ts is the time taken to execute the sequential
part and Tp is the time taken to execute the parallel part,
in all three cases on a single core (before improvement).
Amdahl’s Law proceeds to analyze the maximum speedup
that can be achieved by running such a workload on n
cores (after improvement), with n > 1 being an integer. The
most commonly seen form of Amdahl’s Law focuses on the
fraction of the workload execution time that is taken by the
parallel part:

f =
Tp
Tw

=
Tp

Ts + Tp
, (2)

where f (0 ≤ f ≤ 1) is variously known as ”parallel
fraction”, ”parallelization factor”, etc. In this paper we call
it the ”p-fraction” and use the variable name f exclusively
for it. The p-fraction pertains to execution time and not
numbers of instructions.

Speedup is defined as the ratio between the execution
speed after improvement (expanding to n cores) and the
original execution speed before improvement (running on
a single core). In other words, speedup as a result of
expanding to n cores is

S(n) =
T1
Tn

=
Ts + Tp

Ts +
Tp

n

, (3)

where T1 = Tw is the time taken to execute the entire
workload on one core, and Tn is the time taken to execute
the same workload on n cores. Speedup caused by an
improvement is therefore the time taken by the unimproved
system divided by the time taken by the improved system.
Improving by expanding to n cores causes the time taken by
the parallel part to shrink by n times, without affecting the
time taken by the sequential part. By combining (2) and (3),
Amdahl’s Law in terms of the p-fraction is obtained as
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S(n) =
1

(1− f) + f
n

. (4)

An alternative form of Amdahl’s Law (e.g. as found
in [13]) is related to the ratio between the parallel and
sequential parts of the workload:

β =
Tp
Ts

=
f

1− f
, (5)

where β (0 ≤ β ≤ ∞) is a real number describing how large
the parallel part is relative to the sequential part. Amdahl’s
Law, in terms of β, is then

S(n) =
(1 + β) · n
n+ β

. (6)

There are also other forms of Amdahl’s Law in the
literature, but they are all mathematically equivalent. This
paper uses the p-fraction form of Amdahl’s Law (4), which
is the most commonly seen form in the literature.

A more general understanding of Amdahl’s Law
decouples it from parallelization and the use of multiple
cores [4]. It can describe speedup from any improvement
on computational capabilities, e.g. the use of an accelerator
of some kind, or increasing the operating frequency of
the hardware [41], [43]. A workload is divided into an
infinitely improvable part and an non-improvable part, in
response to the particular improvement. The variable n
may be a real number [44], or even a function, describing
the degree of improvement to the computation capabilities.
In this context, it is best known as the ”computation
capability improvement index”. The relevant equations remain
unchanged and the meanings of f and β remain the same.

J. Gustafson presented a substantial modification to
Amdahl’s Law in 1988 [22]. It is argued that a fundamental
assumption of Amdahl’s Law, that a workload is a
job or program of fixed size, no matter whether the
computation facilities are improved or not, may be overly
restrictive. Gustafson’s model deals with the case where the
unimproved part of the workload stays the same, whilst
the improved part of the workload scales linearly with the
improvement. An example of such a case can be found
in modern data centres where the synchronized booting
up of computers takes roughly the same amount of time
regardless of the number of computers involved, but the
more computers there are, the more processing jobs will be
mapped onto them once they are up and running. Basically,
systems with more cores tend to be used to solve larger
problems.

Maximum speedup is then the ratio between the amount
of workload that can be executed on an improved (n-core)
system and the amount of workload that can be executed
on an unimproved (single core) system, if both are given the
same amount of execution time. In terms of the p-fraction,
Gustafson’s model is therefore

S(n) = (1− f) + n · f, (7)

which says that the unimproved (non-parallelizable) part is

unchanged whilst the improved (fully parallelizable) part
scales linearly with the rate of improvement n.

At a philosophical level, Amdahl’s Law, because of its
saturation of speedup if f 6= 1 even when n = ∞,
was used by some, including Amdahl himself, to argue in
favour of single processors [1]. In that context, Gustafson’s
model was intended as a counter-argument to show that
parallel processing was indeed highly relevant [22]. Viewed
from a more contemporary perspective, when there is no
longer any question on the relevance of parallelization, both
models are relevant according to the workload realities of
any particular scenario [4].

Summary: Amdahl’s intuitive reasoning [1] about the
speedup of computation because of hardware improve-
ments is formulated into Amdahl’s Law. Gustafson [22]
shows that speedup does not have to saturate if the
workload consists of a serial part of constant size and
a parallel part whose size scales with the hardware
improvement.

3 NON-PROCESSING ELEMENTS AND OVERHEADS

Both Amdahl’s Law and Gustafson’s model consider
processing only. And they are understood to estimate the
maximum speedup as ideal-case models, with any effects
from non-processing elements, especially overheads of all
kinds, not taken into consideration. However, for real-world
application, there has always been a need for representing
such issues as non-zero overheads, architectural and
workload diversity, and non-processing element influences.
Although it may be argued that the p-fraction may be
viewed as capable of including the effects of non-processing
activities such as communication and memory access to
some extent, the quantitative relationship is far from
straightforward. A single number parameter such as f
may become semantically too weak to properly represent
the complex effects of communications between different
parts of a workload and accessing memory which may
require synchronization and waiting in shared memory
architectures such as most modern off-the-shelf processors.

For instance, the ”memory wall” characterizes the effects
of the memory-processor performance gap on the entire
system. The less than ideal situation in memory latency
and bandwidth, among other factors, limits the processor’s
capability of accessing instructions and data. In this case, the
processor will stall waiting on memory in order to continue
computation. This issue becomes more complicated with
M/MCP and shared memory, but networks are not immune
either [45]–[48].

Communication overheads are the effects of commu-
nication on the total performance of M/MCP [49]–[51].
Synchronization overheads are the effects on performance
of the joining and handshaking of multiple processes and
data in M/MCP [49], [51], [52].

In general, many of these effects can be called overheads
as they impede the system’s capability of realizing the
maximum speedup predicted by Amdahl’s Law and
Gustafson’s model. Various attempts have been made to
extend these models to cover overheads.

In 1988, the same year in which Gustafson proposed
his speedup model in [22], X. Li and M. Malek
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specifically incorporated communication time in their
extension of Amdahl’s Law [53]. The parallel part of the
workload is regarded as having distinct computation and
communication times. The communication time is the time
required for the inter-core communication necessitated by
mapping a workload onto multiple cores. This is described
as

Tn = Ts +
Tp
n

+ Tc, (8)

where Tc is the additional communication time which
does not scale with parallelization, which is considered an
additional overhead on the parallel part. Speedup is then
described by

S(n) =
Ts + Tp

Ts +
Tp

n + Tc
=

1

(1− f) + f
n + Tc

Tw

, (9)

where Tc/Tw is known as the communication/computation
ratio (CC-ratio) of a particular workload in [53]. The CC-
ratio is zero when n = 1, as Tc = 0 on a single core.
This gives S(1) = 1 as all other speedup models. The
paper continues to expand into the realm of statistical
models. Eventually the relationship between the upper and
lower bounds of speedup and the statistical distributions of
all elements of inter-core communications was established
analytically.

This technique, using what may be regarded as a
penalty term in the denominator of Amdahl’s Law (the
CC-ratio in case of the Li-Malek model), has been used on
multiple occasions by different researchers, to cover additive
overheads of all types [54, (p.167)][23, (p.42)][48], [55], [56].
However, overheads may be caused by very complicated
effects of multiple factors, which leads this line of modelling
to become more and more sophisticated, expanding the
penalty term from a constant to various different functions.

From 1990 [2] onwards, Y. Sun, L. Ni and colleagues
produced a body of research leading to speedup models that
extend those of Amdahl and Gustafson by incorporating
the requirements for memory, communications and other
services [2], [57]–[59] by introducing an additional function
of n as well as other coefficients.

The fundamental assumption leading to Sun-Ni’s model
is that the speedup is memory-bounded, unlike for
Gustafson’s model where speedup is bounded by the
number of cores. Basically, with Gustafson’s model, a system
with more cores is used to solve larger problems and the
increase of problem size corresponds to the number of cores
n. However with Sun-Ni’s model, the size of these larger
problems would be limited by memory and not the number
of cores. In other words, as computing power increases,
the corresponding increase of problem size is constrained
by memory. This reasoning leads to the following speedup
model:

S(n) =
(1− f) + f · g(n)
(1− f) + f ·g(n)

n

, (10)

where g(n) is a function representing the memory bound of
problem size increase. This function also takes into account

the relationship between total required memory and the
number of cores n, as the amount of required memory is
assumed to depend on the number of cores n. A typical
example problem found in the literature in the context of
the memory bound function is matrix multiplication. The
memory requirement of multiplying two N × N matrices
is proportional to N2, and the amount of computation is
proportional to N3, which gives g(n) = n3/2, and following
(10) the memory-bounded speedup is

S(n) =
(1− f) + f · n3/2

(1− f) + f · n1/2
. (11)

The function g is more semantically powerful than a
number, and can incorporate the effects of both memory and
communications as well as such issues as the parallelism of
the workload itself [2], [35]. This last point will be discussed
further in a later section.

Adding a similar sort of penalty coefficient function
to the parallel part in the denominator of Amdahl’s
Law was also proposed for representing the effects of
synchronization [60].

With g(n) = 1, Sun-Ni’s model reduces to Amdahl’s
Law. In other words, g(n) = 1 indicates that workload does
not increase with n. With g(n) = n, Sun-Ni’s model reduces
to Gustafson’s model. In other words, with g(n) = n, the
required memory size is the same as the number of cores
and the workload can also be said to be core-bounded.
Both earlier models are therefore special cases of Sun-Ni’s
model [3].

Fig. 1 compares Amdahl’s Law and Gustafson’s and Sun-
Ni’s models. It can be observed that Amdahl’s Law saturates
as the number of cores n increases, Gustafson’s model
scales linearly with n and Sun-Ni’s model has super-linear
scaling, with n and 0 < f < 1, for g(n) = n3/2. Further
development of Sun-Ni’s model led to the incorporation of
more parameters to better represent different scenarios [58],
[59]. With certain forms of g, Sun-Ni type models may
show a reduction of speedup after n goes beyond some
optimal value. This represents the superlinear scaling of
overheads [60].

Summary: Overheads such as communication and
memory access costs are recognized as factors affecting the
speedup of the parallel part of the workload. Modelling
methods to represent such costs include adding a penalty
term to the denominator, as exemplified by the Li-Malek
model [53], and adding coefficient functions to the parallel
execution time in the Sun-Ni models [57], [59].

4 CORE HETEROGENEITY, FIRST ATTEMPTS

Amdahl’s Law has a very simple mathematical form, which
brings with limited representation power, because it has
only two parameters f and n with which differences in
system characteristics may be expressed. On the side of
workload characteristics, the limited semantic power of the
p-fraction in the form of a single number f makes it difficult
to represent the effects of non-processing factors such
as memory and communication requirements in speedup
models. Li-Malek [53] and Sun-Ni [2] deal with this problem
by using the CC-ratio and memory bound function g(n)
to modify Amdahl’s and Gustafson’s models. On the side
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Fig. 1: Speedup vs the number of cores for (a) Amdahl’s
Law, (b) Gustafson’s model and (c) Sun-Ni’s model with
g(n) = n3/2. Figure adapted from [7].

of system improvement, the simple integer n also suffers a
similar lack of semantic power when a system may consist
of cores of different types, which has become increasingly
common. Early attempts were made to address this issue by
extending Amdahl’s Law to cover simple cases of system
heterogeneity in the 1990s [61].

In 2008, M. Hill and M. Marty presented a method of
deriving speedup models for systems with certain types
of core heterogeneity [4]. They complement Amdahl’s Law,
which originally can be said to be focused on software, with
a corollary of a simple model of multi-core hardware chip.
The hardware assumption is centred around the concept of
a ”base core equivalent” (BCE), which may be understood
as a basic core capable of performing the workload in
question with a performance of 1 (unit performance). A
chip of given size and technology generation is assumed
to be able to contain at most n BCEs. Multiple BCEs

may also be organized together into a larger core, with
a higher sequential processing performance than a single
BCE. In other words, it is assumed to be possible to re-
organize r (1 ≤ r ≤ n) BCEs into one more powerful core,
with a performance of perf(r). The case of perf(r) ≥ r
is uninteresting because if that is the case, there is no
point organizing the chip into BCEs smaller than that
large core. However, for perf(r) < r, the Hill-Marty
heterogeneous multi-core models describe the trade-offs in
core organization with regard to workloads.

For instance, it was argued that doubling sequential
performance requires a quadrupling of silicon [12]. In this
case, perf(r) =

√
x, or needing to organize a large core out

of four BCEs for a doubling of performance. Cases like this
are covered by Hill-Marty’s models.

Hill and Marty stipulate that clustering multiple BCEs
into larger cores may result in two types of static
organizations, called symmetric and asymmetric. Symmetric
is defined as all cores on the chip being the same, i.e. of the
same size r (1 ≤ r ≤ n). For full chip area utilization, n
must be divisible by r. The asymmetric case has a single big
core of size r with the rest of the chip organized into n − r
single-BCE cores. This is shown in Fig. 2.
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Fig. 2: Hill-Marty M/MCP diversity. (a) Symmetric Multi-
Core Processor (SMCP) with 16 single-BCE cores, (b) SMCP
with 4 four-BCE cores, and (c) Asymmetric Multi-Core
Processor (AMCP) with one six-BCE core and 10 single-BCE
cores. Figure adapted from [4].

In the context of Hill-Marty HeMCP, speedup is relative
to the performance of a single BCE, which is 1. The speedup
achievable by executing a workload on a symmetric chip
with a core size of r follows Amdahl’s Law and is

Ss(n, r) =
1

1−f
perf(r) +

f ·r
perf(r)·n

. (12)

The workload is assumed to be Amdahl’s type, of fixed
size, with a sequential part and a fully parallelizable part.
The sequential part is executed on a single r-sized core
whose performance is perf(r) times that of a single BCE.
The parallel part is executed on all n/r cores with a total
performance of perf(r) · n/r.

For the asymmetric case, it is natural to expect that the
sequential part should be executed on the single larger core
of size r, and the parallel part will be executed on all cores.
This strategy is a form of ”favouring faster cores” scheduling,
and it assumes that the large core is faster than a BCE.
Otherwise there is no point in assembling a large core out
of multiple BCEs. The speedup is therefore

Sa(n, r) =
1

1−f
perf(r) +

f
perf(r)+n−r

. (13)

This is similar to (12) except that the parallel part is
executed at a performance of perf(r) on the single larger
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core and a performance of 1 on the n − r BCEs. If r = 1,
perf(r) = 1, these equations reduce to Amdahl’s Law (4).

Hill and Marty also propose that the HeMCP may have
a dynamic organization, with BCEs being combined into
larger r-sized cores which can also be disbanded back to
BCEs, both during run-time. This dynamic HeMCP regime,
when faced with an Amdahl’s type workload, works best
if the entire chip is combined into a single large core,
with r = n, to execute the sequential part, and disbanded
into n single-BCE cores to execute the parallel part, given
perf(r) < r for all r > 1. This scheme is shown in Fig. 3.

 

Sequential  

mode 

Parallel 

mode 

Fig. 3: Dynamic Multi-core chip with 16 one-BCE cores.
Figure adapted from [4].

The speedup achievable from such a dynamic HeMCP is

Sd =
1

1
perf(r) +

f
n

, (14)

with best speedup at r = n.
Hill-Marty’s model extends Amdahl’s Law, and by

inference potentially Gustafson’s and Sun-Ni’s models, into
system core heterogeneity and, similar to Sun-Ni’s and Li-
Malek’s efforts, improves the power of direct representation
of the speedup formulas by incorporating additional terms
and/or functions. The difference is that whilst Li, Malek,
Sun and Ni seek to improve the semantical power of the p-
fraction f to include non-core factors, Hill and Marty try to
enhance the semantical power of the computation capability
improvement index n to include core heterogeneity.

Further research has sought to strengthen the theoretical
understanding of the Hill-Marty model [42], [62], [63],
and to extend it to cover Gustafson’s [64] and Sun-Ni’s
type of workloads [60], [65]. Blem et al. conducted more
sophisticated research, based on the Hill-Marty symmetric,
asymmetric and dynamic taxonomy, to develop multi-
core speedup models as functions of first-order single-core
characteristics [66]. Overheads from such actions as memory
access, on-chip communications and synchronization
among cores have been a powerful motivation for extending
Hill-Marty’s model [55], [56], [67], [68], with such novel
architectures as networks on chip being included in the
consideration [69], [70]. The Hill-Marty model has also
been extended to cover other properties than speedup, for
example power dissipation [25].

Summary: Hill and Marty recognize the limitations
posed by one of the fundamental assumptions of Amdahl’s

Law, as used in the context of scaling with multiple cores,
that the hardware consists of multiples of processing units
of the same type. The Hill-Marty models [4], developed
to extend Amdahl’s Law to cover a few types of core
heterogeneity, inspire a large body of research in the
modelling of speedup, power, energy and other non-
functional properties of such heterogeneous systems.

5 HETEROGENEOUS MULTI-CORE REALITY

Hill and Marty’s speculation on HeMCP architecture has
not been borne out by commercial reality, and, a decade
later today, most current off-the-shelf HeMCP systems
have little in common with the Hill-Marty asymmetric
and dynamic structures [4]. FPGA [71] may be the
best current technology for implementing the closest
approximations to these architectures. However, setting
up a BCE, distributing the right number of copies of
this BCE across a chip, and organizing exact integer
multiples of a BCE’s area into a larger core are non-
trivial even for FPGA. It puts unnecessary restrictions on
chip configuration with possible wasting of interconnect,
memory and other microarchitecture elements. Run-time,
large-scale reconfiguration needed for making Hill-Marty
dynamic HeMCP useful is far from realistic even after
decades of focused academic research and industrial
development on FPGA reconfiguration [71].

As continued technology scaling [10], [11] causes ever
increasing M/MCP complexity, two types of M/MCPs
have emerged: homogeneous (HoMCP) and heterogeneous
(HeMCP) [4], [18], [62].

HoMCP systems incorporate multiple cores that are
essentially the same as one another, organized in the
symmetrical way in Hill-Marty’s models [4], [17], [18]. In
this type all the cores have identical performance and
instruction set architecture (ISA) [72], [73].

One example HoMCP architecture is found in GPUs
which are designed as special purpose processors for visual
processing [74]. Modern GPUs may incorporate hundreds
of cores, which are carbon copies of one another, in
order to achieve parallel processing by handling thousands
of threads simultaneously [75]. Classical Amdahl’s Law
and related models based on a simple core number n
are sufficient for HoMCP systems in general, as existing
HoMCP systems all have r = 1, i.e. their cores may be
viewed as BCEs.

In contrast, an HeMCP system incorporates a number of
different cores that may have different architectures. These
include full-blown latency oriented cores for sequential
processing, reduced-complexity cores for low-power modes,
massively parallel accelerators such as VPUs or GPUs, DSPs,
embedded FPGAs, media accelerators, and ASICs [19], [20].

The simplest style of HeMCP is an extension of Hill-
Marty’s asymmetric structure where the system includes
two types of different cores, but both types may have
multiple units beyond the relatively narrow scope of Hill-
Marty [4], [17], [18], [76]. In this case, not all the cores have
the same performance and may have a single ISA or more
than one ISA [72], [77]–[79]. This type of core heterogeneity
may provide an ability to manage the performance/power
trade-off or some other similar trade-off. For instance, the
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big.LITTLE technology from ARM is HeMCP incorporating
a cluster of ”big” cores for high performance and a cluster
of ”LITTLE” cores for low power consumption, likely with
the same ISA [76], [78].

M/MCP architectures may be implemented on single
chips (the Hill-Marty assumption) or form distributed
structures with multiple cores connected through com-
munications facilities such as networks [68]. In both
cases, HeMCP could include different types of CPUs
or CPU-GPU as shown in Fig. 4. The single-chip CPU-
GPU integration offers performance improvements [28],
[80]. Further advantages include reduced communication
overheads and costs, and specially designed shared memory
for avoiding explicit data copying [81]. They may also
deliver more power and energy efficient computing [28],
[80], [82].

Fig. 4: Architecture of a Central Processing Unit-Graphics
Processing Unit (CPU-GPU) chip. Figure from [83].

Recently, it has been claimed in the literature that
optimization targeting certain applications have resulted in
performance speedup from 25x to 100x or more utilizing
GPUs instead of CPUs [84]. The main reason of this
comes from the differences of the architecture of each.
CPUs and GPUs are designed in order to execute different
types of applications [85], [86]. These differences allows
CPUs to achieve better performance on latency-sensitive
applications which need to respond rapidly to specific
events and partially parallel applications [85]–[87]. On
the other hand, GPUs achieve better performance with
latency-tolerant but throughput-critical applications, and
the processor utilization may be high due to multi-
threading [88], [89], highly parallel applications and
independent applications [84]. There has been a rapid
increase of using GPUs for general-purpose processing
unrelated to graphics or video applications, in collaboration
with the CPUs with which they are either integrated on the
same chips or connected through close off-chip links [90].

In addition, other heterogeneous architectures combine
unconventional ”cores” such as custom logic, FPGA, and/or
pipelining (including hyperthreading) in the traditional
M/MCP in order to achieve superior energy efficiency
and performance improvements [44], [80], [86]. This
new paradigm considers the relationships between a
conventional processor and a varied set of unconventional
cores. It forecasts future architectures from scaling
developments predicted by the International Technology
Roadmap for Semiconductors (ITRS) [91]. All of this argues
for speedup and other models studying the execution of the
same workloads on an HeMCP with cores that differ from
one another not only performance-wise, but also ISA-wise.

None of these types of architectures are directly covered
by Hill-Marty’s models.

(a)
1 1 1 1 1 1 1 1

n cores

(b)
1 1 1 1 1 �(r)

(n – r) small cores 1 large core

n1 type 1 cores

�1�1 �1�1 �1�1 �1�1 �1�1 �1�1

(c)

n2 type 2 cores

�1�2 �1�2 �1�2 �1�2 �1�2

..
.

nX type x cores

�x

1

virtual
BCE

�x �x

Fig. 5: Normal form of HeMCP (c) compared to HoMCP (a)
and Hill-Marty’s assumption [4] on heterogeneity (b). The
numbers in the core boxes denote the equivalent number of
BCEs. Figure adapted from [5].

Summary: The Hill-Marty core heterogeneity assump-
tions are inappropriate for most modern heterogeneous
multi-core architectures.

6 NORMAL FORM OF CORE HETEROGENEITY

Since 2016 [3], M. Al-hayanni et al. have engaged in
extending Amdahl’s Law and Gustafson’s and Sun-Ni’s
models into HeMCPs with more general assumptions of
HeMCP architectures. The aim is to cover as many current
HeMCP architectures as possible directly. To that end, a
”normal form” of HeMCP has emerged [5].

By further expanding the computation capability
improvement index n by characterizing cores with a
vector, the normal form extends the direct representation
of M/MCP heterogeneity to include a number of different
types of cores, each having a number of members. The
fundamental assumption is that an HeMCP consists of x
clusters (types) of cores – within each type the cores are
identical (See Fig. 5(c)). The numbers of cores of the different
types are then defined as a vector n = (n1, n2, ..., nx), and
the total number of cores is denoted as n =

∑x
i=1 ni.

The performance of each core of type i is defined as αi,
relative to some BCE whose performance is regarded as 1,
similar to Hill-Marty [4], and the vector α = (α1, α2, ..., αx)
describes the performance of individual cores of all x types.
In other words, for all 1 < i < x, perf(i) = αi. The α
vector is therefore an extension of the perf(r) method in
Hill-Marty’s models. This is preferable to directly making
the improvement index n itself a real number, the technique
used to model hyperthreading speedup in [44]. Leaving n
as integers the cores remain countable.

The issue of workload distribution was not investigated
in earlier models. This is partly because for HoMCP the
parallel part of the workload is evenly distributed to all
cores by default. Hill and Marty, however, did not explore
this issue for even the asymmetric HeMCP, but effectively
assumed that the workload is distributed to all cores,
large and small, in such a way that they all complete
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their execution at the same time [4]. This convention has
been maintained without discussion by most other research
following Hill and Marty.

For the normal-form model, the authors of [5] made
no such assumption but investigated the quality and
impact of workload distribution. It is assumed, as usual,
that one of the cores is responsible for executing the
sequential part of the workload, and the parallel part of
the workload is distributed to all cores. The execution
time for the parallel part, and therefore the speedup,
depend on the distribution policy for the parallel workload.
In the normal-form model, the variable Nα denotes the
overall equivalent computation capability improvement
index, serving the purpose of n in the HoMCP models. Nα
describes the performance improvement of the parallel part
of the workload, given a particular normal-form HeMCP
architecture and a particular parallel workload distribution.

It is expected that legacy software (including system
software), made with HoMCP in mind, by default would
attempt to distribute any parallel workload equally among
available cores. This causes faster cores to wait for the
slowest core, as illustrated in Fig. 6(a) – a very inefficient
workload distribution [5], [60]. In this case, Nα is calculated
from the minimum of α:

Nα = N ·
x

min
i=1

αi, (15)

where N = n1 + n2 + ... + nx is the total number of cores
of all types. Equation (15) corresponds to the naı̈ve equal-
share distribution policy with no balancing. It says that with
an equal-sharing of the workload across all cores, the system
behaves as if it had n cores of the slowest type, in terms of
speedup. In the case of Fig. 6(a), by giving all three cores an
equal workload of 13, the system behaves in the same way
as one with three cores, each of which having α = α2 = 3.
The faster cores 1 and 3 have to wait after they’ve completed
their shares of workload.

time

α1 = 4

α2 = 3

α3 = 6

sequential parallel

(a)

time

α1 = 4

α2 = 3

α3 = 6

sequential parallel

(b)

13

13

1310

10

12

9

18

Ts Tp

Ts Tp

Fig. 6: Workload distribution examples following (a) equal-
share model and (b) balanced model. Figure adopted
from [5].

Fig. 6(b) shows the ideal case of parallel workload
distribution, with workloads assigned to cores in inverse
proportion to their α values [5], [60]. This method
theoretically may achieve zero waiting time, with all cores
finishing at the same time. Nα for this fully balanced
workload distribution is

Nα =

x∑
i=1

αini. (16)

This is what Hill-Marty’s asymmetric model assumes.
This ideal case almost never happens, as the α values are
real numbers and workloads generally cannot be divided
into infinitesimally small parts, and any dependency across
threads would cause the critical path to be irreducible
after some point [23, p. 42]. Some amount of waiting is
therefore almost inevitable, even if such system software
as load balancers may support the run-time redistribution
of partially executed threads across cores, through such
techniques as task (thread) migration.

Task migration is the transfer of partially executed tasks
from a core or cluster of cores to another core or cluster of
cores in M/MCP [31]–[34]. Task migration may be used to
migrate a task from heavily loaded cores to lightly loaded
or idle cores in M/MCP, in particular for HeMCP, in order
to balance the load across all cores. Thus, the utilization of
the cores are improved and core waiting minimized [31],
[34]. On the other hand, in spite of extensive research in
this area, experiments have shown that the load balancers
found in off-the-shelf commercial HeMCP systems, which
are designed to target the characteristics of their specific
HeMCPs, never achieve ideal workload distribution in the
sense of (16) and sometimes return even worse results than
equal-share distribution [5].

The normal-form model does not require one of the
existing core types in the system to be equal to one BCE,
but speedup is still relative to one BCE which is defined
as having a performance of 1, following the convention of
Hill-Marty. In other words, for an Amdahl’s type workload,
Tw = T1 = 1. Assuming one core of type s, 1 ≤ s ≤ x, is
used to run the sequential part, the execution time on all n
cores is

Tn =
1− f
αs

+
f

Nα
, (17)

where αs is the performance of one core of type s. The
speedup can then be calculated as

S(n) =
1

Tn
=

1
1−f
αs

+ f
Nα

. (18)

It can be seen that to maximize speedup, the sequential
part of the workload should be run on a core of the fastest
type, which has αfastest = maxxi=1 αi.

To derive the speedup for Gustafson and Sun-Ni types
of workloads, workload scaling according to the number of
cores, memory and/or communications capabilities needs
to be investigated. The normal-form modelling method
assumes a general form of workload scaling. Specifically,
the parallel part of the workload is assumed to be
scaled according to a function g(n), which has the same
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representation power for any effects of cores, memory
and/or communications as the scaling function g(n) in Sun-
Ni’s model (10).

The general equation of normal-form HeMCP speedup
models including for Amdahl, Gustafson and Sun-Ni types
of workloads is

S (n) =
(1− f) + f · g (n)

(1−f)
αs

+ f ·g(n)
Nα

. (19)

It can be seen that the homogeneous Amdah’s Law and
Gustafson’s and Sun-Ni’s models are special cases of the
normal-form model. They apply when only one core type
(one-BCE cores) exists, causing αs = 1 and Nα = n. The
role of Nα as the parallel workload computation capability
improvement index is now clear, as it may be regarded as
the equivalent number of one-BCE cores in an HeMCP.

Similar to Hill-Marty’s model, the normal-form model
has also been extended to cover more than speedup.
Power models especially have been developed for normal-
form core heterogeneity. Extensive experimentation on off-
the-shelf CPU-only and CPU-GPU-GPU systems covering
single-ISA and multi-ISA cases validate the normal-form
model’s real-world applicability [3], [5], [15].

Summary: The normal-form model [3] extends Am-
dahl’s Law and related models to cover more general types
of hardware heterogeneity applicable to current platform
technologies.

7 PARALLELISM or P-FRACTION?
In this section we deal with HoMCP, unless otherwise noted.

In parallel to researchers challenging Amdahl’s Law
about its assumption on hardware cores being all of the
same type (parameter n), others have also questioned its
assumption about the workload (parameter f ). Especially,
the assumed binary composition of sequential and parallel
parts has also been regarded as inadequate.

In 1997, A. Downey commented that the parameter β
in Equations (5) and (6) ”has little semantic content” [13].
This can be understood to also apply to the p-fraction
f . He proceeds to concentrate on the quantity known as
parallelism, and derive speedup models based on that
parameter, instead of the p-fraction.

Downey is far from the only researcher with this view, as
Sun and Ni also analyzed the importance of parallelism [2],
and Cassidy and Andreou commented that this binary
assumption of the workload is ”somewhat arbitrary” [37].
Others have been more adamant about the inadequacy of
Amdahl’s Law [92].

The focus of this dispute is the fundamental assumption
of Amdahl’s Law as described by Equation (1), which says
that a workload is assumed to consist of two distinct parts,
one of which absolutely cannot be parallelized and the other
has full (infinite) parallelizability.

First of all, infinite parallelizability is difficult to envisage
(hence semantically weak) for a workload of fixed size,
which Amdahl’s Law targets. The fundamental atomic
element of workloads is usually agreed to be the single
instruction. As a workload of fixed size does not expand
into an infinite number of instructions, because of the fixed

size assumption, it or any part of it should always have
non-infinite parallelizability. Secondly, the idea of trying
to approximate different degrees of parallelizability with a
weighted sum of non- and full-parallelizability may not be
regarded as attractive, and has practical limitations, as will
be explained later in this section.

Even if the fundamental ”a none-part plus an infinity-
part” assumption is accepted, we run into the problem
that the p-fraction f is regarded as difficult to determine
for workloads not designed on-purpose to fit specific
f values, such as synthetic benchmarks that allow the
intentional tuning of f [5], [15]. Even programmers would
have difficulty determining the f value of any code that
they themselves have generated. As a result the practical
usability of Amdahl’s Law and any other models that derive
from it may be negatively affected, even though beautiful
mathematical forms can be readily derived.

Parallelism, on the other hand, suffers from none of
these issues. The parallelism of a workload, denoted by the
variable name p in this paper, is defined as follows [35, p.
780] [2], [36]:

p =
T1
T∞

, (20)

where T1 is the time taken to execute the workload on one
core, and T∞ is the time taken to execute the workload
on an infinite number of cores. In other words, parallelism
is the maximum possible speedup of a workload through
increasing the number of cores available for its execution.

A narrower, more intuitive understanding is that p is the
number of concurrent threads a parallel workload has [2],
[35], [93]. This works with the assumption that each core can
execute one and only one thread exclusively at any time,
and parallelization means mapping individual concurrent
threads onto available cores, one thread per core. In this
context, the maximum speedup of a parallel workload is
indeed its number of concurrent threads. You can increase
n and the speedup would increase, until you hit n = p,
after which further increases of n would not improve
speedup because the workload simply runs out of threads
to parallelize and some cores may be starved of tasks. With
this intuition, the parallelism p of a workload acquires a
clear meaning as the workload’s inherent parallelizability.

In this view, an Amdahl’s type workload can be divided
into two parts: a sequential part, whose parallelism is ps =
1, and a parallel part, whose parallelism is pp =∞.

With Amdahl’s Law, a workload can be said to have
a static p-fraction, i.e. the entire workload as a whole
has a constant f which describes the workload’s overall
parallelizability, leading to a speedup estimation based
on the improvement index n. For parallelism, because
the number of concurrent threads is rarely a constant
throughout the entire workload, it is possible to consider
a workload’s average p and its variance as the static
parameters. Detailed speedup models may then become
more complex ending up with a family of speedup curves
for different cases [13].

Another way of studying speedup with regard to
parallelism is through two formulas known as the Work
Law and Span Law [35], [92], which deal with bounds. In
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this context, work is defined as the sum of the time taken
by every one of a workload’s instructions, which is the
same as the total time taken by executing a workload fully
sequentially on a single core. In other words, work is none
other than Tw (T1).

Let Tn be the shortest possible execution time for
running the workload on n cores. The Work Law is then

Tn ≥
T1
n
. (21)

For this simple version of the Work Law to hold, a set
of assumptions must be true. The workload is assumed
to contain an integer number of instructions, which are
its atomic elements. Each core executes one instruction in
one unit of time. As a result, n cores at most executes n
instructions per unit time. Therefore, to complete the entire
workload on n cores must take at least T1/n units of time.
It has been shown that it is possible to extend the model to
handle non-unit instruction times and other more complex
behaviours [35]. 
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Fig. 7: Dag describing a workload consisting of 20 atomic
elements.

A workload of this type may be described by a
directed acyclic graph (dag) [35], sometimes known as
the workload’s task graph [24], [94]. An example dag can
be seen in Fig. 7. Following the assumptions for the
simple Work Law in (21), the dag in Fig. 7 describes a
workload consisting of 20 instructions, with the vertices
representing the instructions and the directed arcs defining
the sequential order between pairs of instructions. For
instance, instructions 7© and 8© start after the completion
of instruction 3©, and in turn complete before instruction
12© starts. The work T1 of this dag is 20.

Speedup from the Work Law is

S(n) =
T1
Tn
≤ n. (22)

This simple version of the Work Law covers both
Amdahl’s and Gustafson’s models, but does not cover the
superlinearity observed in Sun-Ni’s model. This is because

the assumptions leading to the Work Law deals with core-
bounded speedup. It may be extended to deal with complex
issues, including memory and communications, that may
lead to superlinear speedup [92].

”Span” is another word for critical path length. A critical
path is the, or one of the, longest sequence(s) of consecutive
vertices in a task graph. Given the set of simple assumptions
mentioned in the preceding paragraphs, the span, in units
of time, is the greatest number of instructions that must
be executed sequentially in a workload. In other words,
span is none other than T∞, as the time taken to complete
a workload on an infinite number of cores is indeed the
workload’s longest sequence of consecutive instructions.
For the workload described by the task graph in Fig. 7, one
of the critical paths is 1©, 3©, 8©, 12©, 16©, 18©, and 20©, with
seven instructions. Thus this workload has a span of 7.

The Span Law says that a parallel processing machine
with n cores cannot run faster than one that has an infinite
number of cores, for any value of n. Hence

Tn ≥ T∞. (23)

Taking work T1 to span T∞ results in a workload’s
parallelism p = T1/T∞. For the example in Fig. 7 this is
20/7 ≈ 2.86. Apart from being the maximum speedup for
a workload obtainable from adding cores, parallelism can
also be understood as the average amount of work along
each step of the critical path. For instance, the steps in the
example described by Fig. 7 have parallelisms of 1, 3, 5, 5, 3,
2 and 1, which average out to about 2.86. It is also possible
to use a task dag to describe a workload at the granularity of
threads rather than instructions, by extending the notion of
task from individual instructions to cover multi-instruction
threads. The overall assumption that a task does not include
any internal parallelism (i.e. ptask = 1) must always be true
for this extension to be valid. In this extended case, vertices
represent threads, and the parallelism p is the number of
threads that can be run in parallel [2]. Threads may not all
take the same time to run, however, but this can easily be
worked into a dag representation. Although the quantities
of Work and Span will have more complex definitions which
must include potentially varied thread execution times, this
does not affect the qualitative validity of the Work and Span
Laws.

Compared with the difficulty of obtaining correct f
values for workloads, which tends to require post-design
or even run-time experimentation [15], [66], the parallelism
p is much more readily available to the programmer,
who should be able to generate a task graph during the
workload design process, which would contain information
about parallelism. Program code can also be annotated
or instrumented to help run-time extraction of the task
graph. Independent of the programmer, there are methods
of extracting the task graph or otherwise determine the
parallelism during workload execution [24], [36], [94].

The average p and its variances may be useful in
speedup analysis [13], but ”instantaneous parallelism” is more
useful for such endeavors as the efficient scheduling of
tasks [36], [44], [95]–[97]. The concept of instantaneous
parallelism is highlighted in [36]. A workload may display
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a particular parallelism p at any point of its execution, as the
number of parallel threads change.

The examples of task distribution shown in Fig. 6 can
now be reviewed in terms of parallelism. It can be seen
that the naı̈ve workload distribution in Fig. 6(a) results in
an overall smaller parallelism than the ideal distribution in
Fig. 6(b). This results in a larger span (if span is understood
in terms of execution time) for the former case.

Instantaneous parallelism may be used to analyze and
design scheduling policies. For instance, in Fig. 6(a), p starts
at 1, then becomes 3 after crossing Ts, then it reduces to
2 and eventually 1 as the faster cores stop processing. In
Fig. 6(b), however, p only has two phases, 1 and 3. The
greater instantaneous p in the second case is the cause
of its comparatively smaller span and higher speedup. In
other words, the quality of parallel workload distribution
is positively related to the parallelism achieved. The points
in the execution trace in Fig. 6(a) where the instantaneous
parallelism reduces from 3 to 2 and from 2 to 1 may be
identified as the result of non-optimal workload distribution
(scheduling).

Instantaneous parallelism may also be studied during
the original design of workloads. For instance, for the
workload with a task graph of the shape of the dag in Fig. 7,
functionally the designer may decide to move 9© to the
fourth step, and form a new step with 13© and 14© inserted
before the step of 15©, 16© and 17©. This does not affect the
logical correctness of the workload, but would reduce the
instantaneous parallelism of steps 4 and 5 from 5 to 4, and
lead to the addition of one more step causing the span of
the dag to grow from 7 to 8. The overall parallelism would
reduce from p ≈ 2.86 to p = 2.5. Fully sequentializing 5©,

6©, 10© and 11© would lead to an even bigger reduction of
instantaneous parallelism and increase of span. The costs
of such design changes are clearly described by changes
in the instantaneous (and overall) parallelism and span,
helping the designer to derive quantitative trade-offs with
any benefits.

The example in Fig. 7 may be used to clarify why
Amdahl’s Law is regarded as semantically weak in certain
cases. This dag has a maximum parallelism of 5. In no part of
the workload is it infinitely parallelizable. Only in two steps
out of seven is the workload non-parallelizable. The rest of
the workload has 1 < p < ∞, i.e. parallelism values of
neither 1 nor infinity. It is not immediately clear what single
f value can describe the entire workload satisfactorily.

Looking closer at the example by focusing on the first
two steps involving tasks 1©, 2©, 3© and 4© in Fig. 7, it can
be seen that the workload is non-parallelizable (p = 1) in
step 1 and has a parallelism of p = 3 in step 2.

The case of n = 1 can be trivially observed to conform
to Amdahl’s Law. For n = 2, the sequential part of the
workload, task 1©, executes on one core, then tasks 2© and

3© execute on n = 2 cores and 4© executes on one core,
with the entire workload taking a total time of T2 = 3. The
speedup achieved by using two cores is therefore

S(2) =
T1
T2

=
4

3
≈ 1.33. (24)

For Amdahl’s Law, we may calculate f from (2) as f =
Tp/T1 = 3/4 = 0.75. From (4), the speedup can be derived

as follows

S(2) =
1

(1− f) + f
n

=
1

0.25 + 0.75
2

= 1.6. (25)

In other words, the real speedup of the workload does
not tightly observe Amdahl’s Law for n = 2, but is smaller.
In fact it follows Li-Malek’s type of model with a penalty
term of 1 added to the denominator (See Equation (9)),
although in this case, the penalty term comes from non-ideal
load balancing because of the atomicity of a task and not
from inter-core communications. For n = 3, however, using
Amdahl’s Law the speedup can be calculated as S(3) = 2,
the same as the real speedup obtained from executing 1©
on one core and 2©, 3© and 4© on three cores because load
balancing is not a problem.

When the number of available cores grows to n > pp
(from n = 4 onwards in this case), the parallel part of
the workload, with a parallelism of pp, cannot be evenly
distributed to the n available cores, with some n − pp
cores starved of workload. The speedup is a constant
S(n) = S(pp) = S(3) = 2, for all n ≥ 3. The overall
parallelism of this workload is 2, which means that the
speedup achievable with an infinite number of cores is 2,
which is already achieved by having 3 cores. This core
starvation is not captured by Amdahl’s Law, which says
adding cores always improves speedup, so long as f is not
zero. Testing with n = 4 shows that whilst the real speedup
is 2, Amdahl’s Law returns a higher speedup estimate of
approximately 2.29. For n = ∞, Amdahl’s Law gives a
speedup of 4 for f = 0.75.

S(n)

n

1.0

2.0

3.0

1 2 3 4 5 6 7 8 9

Work Law
speedup

(22)

Amdahl's speedup (4)

Real speedup

n = pp

Fig. 8: Three different speedup estimations.
Fig. 8 illustrates this example discussion. Work Law

speedup formula (22) gives maximum speedup S(n) ≤ n,
the black line in the figure. Amdahl’s Law gives speedup
S(n) = 1/(0.25 + 0.75/x) according to (4), shown in blue
in the figure. The real upper limit of speedup, given pp = 3,
follows the curve in red in the figure. It can be seen that the
most precise speedup estimation, with the lowest speedup
values obtained, is below Amdahl’s Law before n = pp and
is constant after that. This type of starvation may appear
naturally suited for roofline modelling [40], however, the
following sections will show that Amdah’s Law may be
extended to cover such behaviour without resorting to
roofline models.

Compared to Amdahl’s Law, because Gustafson assumes
scalability of the workload in relation to n, which implies
pp ≥ n always, the problem of core starvation does not
apply to Gustafson’s model [22]. In other words, if you
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run larger parallel problems when you get more cores, you
would never run out of threads and end up with starved
cores, assuming ideal load balancing [5]. Sun-Ni’s model
can represent the effects of parallelism in the function g(n),
in addition to the effects of memory, on which the model is
primarily focused [2]. This will be discussed further in the
following section.

Summary: Another fundamental assumption of Am-
dahl’s Law, that the workload consists of two parts, one fully
sequential and the other fully parallel, has always attracted
criticism. Workload studies have progressed separately
along the lines of using the concept of parallelism rather
than the p-fraction when calculating speedup as a result of
parallelization leading to the Span Law and Work Law [35].
More intuitive methods such as roofline modelling [40]
directly represent behaviour that is not straightforward
under Amdahl-style assumptions.

8 PARALLELISM and P-FRACTIONS!
Amdahl’s Law, whose simple mathematical form results
from its somewhat simplistic assumptions, has remained a
popular tool for reasoning about speedup [5], [24], [42], [44],
[60], [98]. A number of researchers have attempted to resolve
the problems with regard to the workload parallelism p.

In 2012, S. Tang et al. presented a method for dealing
with multi-level parallelization [93] and T. Zidenberg et
al. presented the Multi-Amdahl method of optimizing
resources on a chip [19], both hinting the possible use of
multiple p-fractions. It was however Cassidy and Andreou
who presented in [37] the concrete form of what we will
call the multi-fraction model. This method has been used to
make Amdahl’s Law relevant in the context of workloads
with different degrees of parallelism during execution [23,
eq.(2.6)] [24].

The multi-fraction speedup model is based on the
vectorization of the p-fraction f into f = (f1, f2, ..., fn),
where for any 1 ≤ j ≤ n, fj is the fraction of workload that
is executed on j cores.

Using the task graph in Fig. 7 as an example, let us
assume simple task distribution, i.e. cores are scheduled
according to the instantaneous parallelism of the workload,
with one task per core at any time, to ease the discussion.
In step 2 of the dag there would be three cores executing
tasks 2©, 3© and 4© in parallel, and in the next step five
cores execute the tasks 5© to 9© in parallel. In the dag the
tasks are of the same size, this provides for better intuitive
description, but is not required by the method.

The method sums the tasks with the same parallelism p
under the respective fp and then normalizes the value by the
total number of tasks. In this example, two tasks have p =
j = 1, two tasks have p = j = 2, six tasks have p = j = 3
and ten tasks have p = j = 5, where j is the correct number
of cores used to deal with a corresponding instantaneous
p value. This gives f1 = 2/20 = 0.1, f2 = 2/20 = 0.1,
f3 = 6/20 = 0.3, f4 = 0, and f5 = 10/20 = 0.5. Note
that the sum of all fj values is 1, just like in Amdahl’s Law,
because of the normalization.

Assuming that the total time taken to execute the entire
workload sequentially on one core is T1 = 1 (i.e. BCE, to
simplify discussion without losing generality – in speedup

models the actual value of T1 does not matter as it gets
cancelled out), the time taken to execute the jth fraction of
the workload, 1 ≤ j ≤ n, on j cores is then fj/j, and the
total time to execute the entire workload with each fraction
on its corresponding number of cores (with p = j, according
to the simple task distribution assumption) is

Tn =

n∑
j=1

fj
j
. (26)

The multi-fraction extension of Amdahl’s Law, adapted
from [37, Equation (3)] is then

S(n) =
T1
Tn

=

 n∑
j=1

fj
j

−1 . (27)

Classical Amdahl’s Law (4) is a special case of (27)
with f1 = 1 − f and fn = f , with all other fj = 0,
∀1 < j < n. This is because when running an Amdahl’s type
workload on a system with n cores, the parallel part is fully
parallelizable onto all cores hence essentially f = f∞ = fn.

The sum of f should equal to 1 in order to represent the
entire workload:

n∑
j=1

fj = 1. (28)

For the example described by Fig. 7, the speedup is
therefore S(n ≥ 5) = 1/(f1/1+f2/2+f3/3+f4/4+f5/5) =
1/(0.1 + 0.05 + 0.1 + 0 + 0.1) = 1/0.35. This is indeed
the dag’s overall parallelism p = Tw/T∞ = 20/7 ≈ 2.86.
It makes sense that for a workload whose dag shows a
maximum parallelism of 5, running it on a maximum of five
cores already achieves the same speedup as running it on an
infinite number of cores. The issue of core starvation when
there are more cores than threads is therefore naturally
represented in the multi-fraction model of (27).

When the task graph is used on its own for reasoning
about speedup, with no special mention of hardware, it
is usually assumed that there are always cores available
to execute one task per core no matter how large the
workload’s instantaneous p is. In other words, p ≤ n.
However, if max p > n, i.e. the task graph allows
higher parallelism than there are cores available, the best
scheduling could only provide n cores at any time. The
fraction extraction needs to represent the effects of this
scheduling by appropriately ”stretching” the task times. For
instance, if the workload described by the task graph in
Fig. 7 is executed on a system with a maximum of four
available cores, instead of f5 = 10/20 = 0.5, we have
f5 = 0, f4 = 8/20, and f2 changing from 2/20 to 4/20,
if we push task 9© down a step and then execute tasks 13©
and 14© in an extra two-tasks-on-two-cores step. This would
add one step to the span. The speedup is reduced to 2.5 for
n = 4 from 2.86 for n ≥ 5.

An interesting consequence of the dependence of fj
values on n is that the multi-fraction model implicitly
supports workload scaling models such as Gustafson’s [22]
and Sun-Ni’s [2]. These classical workload scaling models
assume that f does not change but describe the scaling
of workload according to the improvement index (or core
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number) n with a separate parameter – the scaling function
g(n) – so that the scaled parallel part of the workload
becomes f · g(n). This scaling function is not required
for the multi-fraction model since the fj values already
can represent workloads that change with n, as they are
functions of the number of cores they correspond to, i.e.
fj = f(j). The only required extension is to allow the
workload task graph to change with the number of cores,
i.e. the system’s maximum parallelism to be no smaller than
the number of cores.

However, an important detail difference is that,
according to Gustafson and Sun-Ni, the workload scaling
may break condition (28). In fact, for n > 1, the sums of
their scaled workload fractions are always greater than 1.
Consequently, a re-normalization is needed to derive the
speedup, and (27) becomes

S(n) =

 n∑
j=1

fj

 ·
 n∑
j=1

fj
j

−1 . (29)

It can be verified that (29) transforms into Sun-Ni’s
model (10) by substituting f1 with 1−f and fn with f ·g(n),
and fj = 0,∀ 1 < j < n. For g(n) = n the model further
transforms into Gustafson’s (7), and for g(n) = 1 it becomes
classical Amdahl’s Law (4).

Other related models, for instance that extending
models similar to Sun-Ni’s over Hill-Marty asymmetric
heterogeneity [60], are also covered by the multi-fraction
model with similar arguments.

The method of adding a penalty term to the denominator
of Amdahl’s Law to represent overheads, exemplified by
Li-Malek’s model (9) [53] and used in other work [54,
p.167][23, p.42][55], [56], is also covered by the multi-
fraction model. The multi-fraction model allows the
more precise representation of qualitative and quantitative
overhead effects as these can usually be precisely
incorporated into task graph modifications: additional
tasks, lengthening existing tasks, synchronizing tasks, data
overheads, instruction overheads, etc. The simplest form
(9) essentially enlarges the sequential part with no change
to the parallel part. This can be represented in the
multi-fraction model by appropriately increasing f1 whilst
keeping the other fj values unchanged, then re-normalizing
where appropriate.

The method of extracting fj values from the task graph,
found in e.g. [24], produces normalized fj values by design.
The condition (28) holds in the resulting models without
requiring re-normalization. For simplicity, in the subsequent
text we use (27) and assume no need for re-normalization,
without losing generality.

In 2018, Yun et al. proposed a method to further extend
the multi-fraction speedup model to cover an enhanced
asymmetric core heterogeneity [24]. Their method assumes
that there are two types of cores in the system, each with a
different processing capability, and reduces the normal-form
model [5] to fit this assumption. This assumption is correct
for the ARM big.LITTLE system configuration consisting of
nL low power LITTLE cores and nb high performance big
cores.

They regard the LITTLE core as BCE (with performance
of 1), and the performance of a big core is represented

as relative to this BCE by αb. They also assume that the
scheduling always prioritizes high performance cores. The
resulting heterogeneous model is

S(nb, nL) =

[
nb∑
b=1

fb
αb · b

+

nL∑
L=1

fnb+L

αb · b+ L

]−1
. (30)

The degree of core heterogeneity covered by this model
is limited, in the sense that there are only two types of cores
and the scheduling favours the faster type.

Gupta et al. [30], [99] investigated the effects of
the performance of individual cores on speedup, in a
heterogeneous parallel processing context. These models
focus on the performance scaling of cores, via such
techniques as DVFS and performance optimization. In
this context, it is legitimate to assume that neither the
number of cores nor the task to core scheduling change
between the unscaled baseline and the scaled execution.
These considerations allow the direct use of time fractions
instead of going through workload fractions. On the subject
of system heterogeneity, they make two main extensions.
Firstly the implicit assumption that the sequential part of a
workload is executed on a single type of core is removed,
and the sequential part of the task is now assumed to be
executed on an arbitrary number of cores of arbitrary types,
fully sequentially (i.e. potentially involving core to core
handovers). Secondly the parallel part is assumed to consist
of multiple phases that must be executed sequentially, phase
by phase, with each phase being a parallelizable set of tasks.
The model for speedup by scaling core speeds can be found
in [30, Equation (5)]. In this multi-fraction model following
Cassidy and Andreou [37], the execution time of each
parallel phase is calculated according to a similar method to
that shown in Equation (15), which is generally correct for
all schemes of task to core allocation. The modelling does
not make assumptions on the parallelism of each parallel
phase or the number of cores available for each parallel
phase, but the assumption of sequential plus parallel phases
is fully within the descriptive power of dags of the type
found in Fig. 7.

A more general heterogeneity in multi-fraction approach
is also supported by the method known as Multi-
Amdahl [19]. This model links heterogeneity with the
allocation of some resource X , which can be divided into
n arbitrary sections, and each section xj is dedicated to
run a fraction of the workload fj , 1 ≤ j ≤ n. These
arbitrary sections are able to universally represent any
type of heterogeneity; however, the authors put a very
specific constraint on their model: these sections can only
be executed sequentially, so that the total execution time Tn
is:

Tn =

n∑
j=1

fj · e (xj) , (31)

where e (xj) is the so-called efficiency function (although the
name is somewhat misleading as larger values of e (xj)
cause longer execution times; in other words, this function
is reciprocal to the performance achieved by the resource
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xj). The model also explicitly states that the resources do
not overlap:

n∑
j=1

xj ≤ X. (32)

The Multi-Amdahl paper [19] does not explicitly specify
the equation for speedup but focuses directly on minimizing
Tn under the constraint (32), but since they define their
execution time in relation to a baseline T1 = 1, it is
straightforward to deduce that the speedup in their case is
calculated as:

S (n) =
T1
Tn

=

 n∑
j=1

fj · e (xj)

−1 . (33)

Despite the generality of Multi-Amdahl, its assumption
of sequentially executing hardware sections has been a
major criticism against the practicality of the model [42].

Rafiev et al. combined the multi-fraction model (27)
with the normal-form HeMCP assumption (Fig. 5) to better
cover core heterogeneity without restraining the model
by any specific scheduling priorities or core or execution
constraints [38].

The normal-form model of core heterogeneity makes
use of two vectors n = (n1, ..., nx) and α = (α1, ...αx)
to represent the number of each of x types of cores and
the core type’s relative performance with regard to a BCE.
In the present context, there is no need to highlight core-
type differences. Without clustering cores by type, each
core’s performance can be defined individually, leading
to a single vector α = (α1, ...αn) for n cores, n =
n1 + ... + nx. This individual-core view also facilitates
the representation of such fine-grain control possibilities as
per-core DVFS [8], [9], [100]. To derive speedup models
based on this type of normal-form HeMCP assumption,
models for scheduling options, which now have to deal
with core heterogeneity, also need to be explored. This
is because with heterogeneous core performances, some
scheme of core prioritizing, exemplified by but by no
means limited to ”favouring faster cores”, is natural in any
sensible scheduling policy. And this needs to be represented
properly in any reasonable model.

Similar to Gupta et al. [30], Rafiev et al. [38] generalized
the representation of scheduling policy beyond ”favouring
faster cores”. Intuitively, this may be done by enumerating
the cores in the order of their scheduling priority, if
these stay constant during the execution of a workload.
However, this is not enough as the priorities may change
depending on the number of parallel threads (instantaneous
parallelism p) which may change with a workload’s
progress. For instance, it may be desirable to use a single
high performance core for sequential execution when p = 1
and then in some cases change to all low power cores under
higher degrees of parallelism, when p > 1. The scheduling
priority passes from high performance to low power cores
in response to parallelism changes and a constant priority
per core list cannot be built. This type of scheduling is
especially relevant when trying to maximize performance
without exceeding some power budget [101]. Two methods

for generalizing scheduling models were described in [38]
to cover these kinds of characteristics.

In ”core-based generalization”, it is assumed that the
scheduling behaviour is determined by the instantaneous
parallelism p. As a result, for any 1 ≤ j ≤ n, a separate
vector αj = (αj1, ...αjj) is defined representing the BCE-
relative performances of exactly those j cores that execute
the fraction fj . The combined performance of these cores is

Aj =

j∑
i=1

αji, 1 ≤ j ≤ n. (34)

The core-based multi-fraction model extended to
normal-form core heterogeneity (called ”normal-form multi-
fraction model” in this paper) is then

S(n) =

 n∑
j=1

fj
Aj

−1 . (35)

The variable Aj has the same semantic meaning as Nα
in equations (15) to (19), i.e. the generalized computation
capability improvement index. It is a function of the
participating cores and their relative performances, and
hence of the scheduling decision. This brings the question of
whether the effect of load balancing should be considered in
the models. In other words, what happens when during the
fj phase, some k cores finish early (for example, if they are
faster cores)? According to the multi-fraction model (27), the
execution then switches to f(j−k). Therefore load balancing
is already captured by the multiple fj values [23], [24],
[93], and Aj always equals the sum of performances and
represent the improvement index over a BCE, as in (34).
This simplifies the model, but adds practical complexities
to the process of determining fj values. For an HeMCP, the
task graph needs to be analyzed and potentially modified
with regard to the system’s load balancing.

This can be dealt with using the ”configuration-based
generalization” [38]. This method includes the scheduling
policy details as a central part of the model, which is built
around the set {α1, ...αQ} of system configurations, where
Q ≥ 1 is the number of configurations. Each configuration
corresponds to a scheduling policy (i.e. a mapping of the
workload on up to n cores), and defines the vector of n
performance coefficients αj = (αj1, ..., αjn), where 1 ≤
j ≤ Q. If some cores are not used in a configuration, their
performances are set to 0. The combined performance of a
configuration is the sum of its n performance coefficients:

Aj =

n∑
i=1

αji, 1 ≤ j ≤ Q. (36)

With this configuration-centric modelling, the workload
fractions fj now correspond to the configurations rather
than cores. In other words, fj represents the fraction of
the workload that is executed in the jth configuration αj ,
1 ≤ j ≤ Q. The configuration-based normal-form multi-
fraction model then takes the following form:

S(n) =

 Q∑
j=1

fj
Aj

−1 . (37)



15

The equation (37) is closely connected with the Multi-
Amdahl model (33). Indeed, if we subdivide the resource X
into Q parts instead of n and define the efficiency function
as e (xj) = 1/Aj , the equation (33) transforms into (37).

The major difference, however, is that the constraint (32)
is not required: different configurations are allowed to reuse
the same cores or resources because their execution times
do not overlap. This even applies to classical Amdahl’s
Law where the core executing sequential fraction is also
involved in the parallel execution. The issue with Multi-
Amdahl approach can be solved by modifying (32) as:

xj ≤ X, (38)

or in other words, the fraction fj can use any amount of
system resources as long as it does not exceed the entire
system. This can also be applied to (36) in the following
form:

Aj ≤ Amax, (39)

where Amax is the maximum performance that can be
achieved by the system.

The core-based normal-form multi-fraction model of
(35) is a special case of (37). There is also a broader
understanding of what a configuration is, which extends
the semantic strength of this model to exceed a world view
of concurrent threads running on parallel cores.

In this general understanding, a workload is executed on
some machine, which has Q distinctive modes of operation.
Each mode Mj , 1 ≤ j ≤ Q, has a relative performance
Aj when executing the workload, compared to some base
equivalent performance, which has Abase = 1. The variable
fj denotes the probability of the workload being executed
in Mj . This probability understanding extends the fraction
assumption for deterministic systems to cover stochastic
behaviour, and agrees well with the re-normalization for
Gustafson’s and Sun-Ni’s models. The vector of mode
(configuration) performances A = (A1, ...AQ) is the
generalized computation capability improvement index,
and a vector of real numbers. Each of these real numbers
is the improvement, over that of the base equivalent
performance of Abase = 1, achieved by a particular mode
of the machine. Special cases are all covered by this
understanding, for instance fj = 0 if the workload cannot
be executed in, or is not scheduled to Mj .

This broader understanding of the normal-form multi-
fraction model returns to the broader understanding of the
original form of Amdahl’s Law (4), where the computation
capability improvement index n could be a real number,
which may not necessarily have anything to do with
parallel processing or multiple cores. Similarly, operating
modes do not have to achieve their computation capability
improvements through parallel processing or multiple
cores. Speedup is a result of improvement, and therefore
a function of the improvement index A. The model is
valid regardless of the specific method from which any
improvement derives. It is also valid for all possible
workload structures including the number of steps and the
degree of parallelism of each step, and the mapping of these

tasks to cores fitting arbitrary system core architectures. For
instance, the speedup obtained by scaling the sequential
performances of cores investigated in [30], [99] is fully
covered by this model.

Summary: Cassidy and Andreou, questioning the
original Amdahl binary division of workloads into
sequential and parallel parts, extend Amdahl’s Law into
the multi-fraction model [37]. The Multi-Amdahl research
results in a more general type of the multi-fraction
model [19]. The normal-form model is incorporated into
the multi-fraction framework, leading to the configuration-
based model [5] which applies to any type of system
improvement. This kind of modelling is shown to be useful
for deriving speedup from non-parallelization methods [30].

9 DISCUSSIONS

The attraction of Amdahl’s Law has been strong ever since
the original observation was made in [1]. The reason is not
difficult to understand. The concept of parallel processing
and computer platforms supporting it have seen rapid
developments in the half century since the publication of [1],
and Amdahl’s Law, with its simple form and intuitive
understandability, has more often than not been the first
formula for researchers and engineers to study when they
want to reason about speedup.

The simplistic assumptions on which Amdahl’s Law
depends have, naturally, been the focus of a large number
of model extensions, starting from Gustafson [22] and Sun-
Ni [2], [59]. The popularity of Amdahl’s Law means that
it formed the foundation of a large body of research with
people using it as the basis of their models, which target
different real-world systems. This has inevitably led to
similarities and re-inventing and re-iterating very similar
ideas or even the same ideas.

For instance, multiple contributions, including [23],
[48], [53]–[55], have suggested adding penalty terms to
the denominator of Amdahl’s Law to represent diverse
overheads that reduce the parallelism in many different
ways. Some of the researchers appear to have arrived at
this method independently of others. Others have proposed
to add a coefficient function to the parallel part of the
denominator of Amdahl’s Law, appearing to arrive at their
models independently [2], [60].

On occasion, Amdahl’s Law itself has been used without
it being mentioned as Amdahl’s Law [13].

Core heterogeneity is another issue tackled by multiple
researchers. In certain ways, Moncrieff et al. [61], published
in 1996, presented a more general model of core
heterogeneity than Hill-Marty’s models [4], which appeared
more than a decade later. And yet it was the latter
which directly inspired a large body of other research,
including [25], [55], [56], [62]–[70], and led towards the
development of forms of extension to cover HeMCP
realities [3], [5], [19].

The work on Multi-Amdahl [19], [20], [102] produced
models of extensive heterogeneity both in workload and
in platform hardware configurations. The speedup model
that may be derived from this method is a very small
distance away from the normal-form multi-fraction model
in Equation (37), as explained in Section 8. However,
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Classification of existing research (continued)
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Multi-Amdahl was tied to a Hill-Marty-like assumption of
microarchitecture and chip configuration, had restrictions
that are not necessary for M/MCP, and did not specifically
promote a speedup model. It was not immediately picked
up for HeMCP modelling [38], [42].

One of the most important questions for models is what
they shall be used for. One use of a speedup model is in the
optimization of system operations via design-time and run-
time management [8], [15], [30], [34], [36], [96], [99]–[101],
[103], [106], [107].

For practical applications, the task graph of a workload
may be extracted [36], [94], [104], and the p-fraction
of a workload can also be obtained using experimental
methods [15], [66]. The availability of these input variables
to speedup models through offline experiments, design-time
modelling and run-time monitoring allow the models to be
used for run-time control purposes [14], [15], [30], [36], [105].

Both generalization and specialization have happened in
model design and use with regard to various extensions of
Amdahl’s Law. Using vectors to replace the scalars found in
(4) has been one of the main ways of improving the coverage
of Amdahl’s Law [5], [93]. Others include adding terms in
the form of constant parameters or functions [53], [54] and
strengthening constants with functions [2]. Reduced forms
of general models with more limited scopes have also been
used in targeted cases to lessen the modelling effort and
improve the presentational clarity. For instance, a reduced
form of the normal-form speedup model was used in [24] to
specially target the ARM big.LITTLE architecture.

Given that a form of Amdahl’s Law has been derived
(37) that generalizes speedup modelling to cover wide
heterogeneity in workload, hardware and workload to
hardware mapping, a major challenge for researchers
and engineers who want to reason about speedup and
performance bounds in the HeMCP era is to find the most
user-friendly reduced-scope models to target their specific
needs. In this context, the general model of (37) may
serve as the foundation for deriving appropriate special-
purpose models for practical use. Its method of use, the
enumeration of all modes and all workload-mode mapping
probabilities, is methodologically straightforward but may
be practically challenging. This creates rich opportunities
for further research and the development of innovative
practical solutions. For instance, what easy-to-use functional
forms can be derived to relate Aj to practical factors (e.g.
effects associated with design and operational realities such
as network topology, communication synchronization, and
power budgeting) deemed important by system designers
reasoning about mode Mj?

Table 1 summarizes the surveyed research publications
highlighting the topics they cover.

10 CONCLUDING REMARKS

Starting from the observation made by Amdahl in 1967 [1],
researchers have come up with a series of extensions to
Amdahl’s Law in order to improve the semantic power
of both of its parameters, the p-fraction f [2], [24], [38],
[53], [93] and the computation capability improvement
index n [3]–[5], [24], [38], [94]. Through the vectorization
of both parameters, and by viewing them as variables and

functions rather than constants, the normal-form multi-
fraction models now represent wide scopes of heterogeneity
in workload parallelism, processor core architectures, and
scheduling decisions. The general form of the normal-form
multi-fraction model (37) has now gone back to basics
without specifically targeting multiple cores and parallel
processing.
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