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Abstract: In this paper we propose to extend Amdahl’s law for modelling multicores
with process variation using simple mathematical techniques. We consider three major
families of multicore processors – symmetric, asymmetric, and dynamic. We consider
a conservative operating mode for setting the target frequency (plain), and a more
optimised method (opt). Subsequently, we propose three separate corollaries to the
standard Amdahl’s Law to model the performance of different multicore configurations
with different modes of operation. We observe that most of the major trends published in
prior work or the ones that we observe through Monte Carlo simulations can be explained
by a simple hypothetical concept called an equivalent core. The crux of our approach is
to look at a set of equivalent cores with no variation that have the same performance
as the target system. It is much simpler and much more intuitive to reason in terms of
equivalent cores. Along with being an effective analytical tool, it can be used to speed up
a lot of heuristics, and can be exposed to higher level software for advanced scheduling
decisions. Lastly, we validate our models with experiments on a real system, and the
maximum error is limited to 8%.
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1 Introduction

It is getting increasingly difficult to accurately fabricate
transistors in the nanometer era. Because of the
inherent limits introduced by manufacturability and
the underlying device physics, designers are finding it
difficult to scale the resolution limit of their processes
to a couple of nanometers. Consequently, it is not
possible to accurately guarantee the dimensions of
transistors. This leads to variability in a transistor’s
power consumption and switching frequency. This

phenomenon is known as process variation (refer
to Borkar et al. (2003)). There are two direct
consequences of such limitations in the context of
traditional conservative designs namely increased power
consumption and reduced frequency (Sarangi et al.
(2008b)). Consequently, it is not possible to sustain
traditional gains in performance when we consider the
effect of process variation.

In this paper, we take a look at a seminal law in
computer architecture namely Amdahl’s Law, in the
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context of process variation. In 1967, Gene Amdahl
proposed a famous law (Amdahl (1967)) named after
him, which relates the speedup to the amount of
available parallelism and the number of processors.
Amdahl’s law gives an upper bound on the expected
speedup; however, it totally ignores some aspects of
multiprocessors such as interconnect bandwidth and
contention. Nevertheless, it has stood the test of time,
and can give designers and researchers a broad estimate
of the range of the expected speedup. It has proved
its worth as an analytical tool, as well as a generalised
predictive indicator for estimating trends in computer
architecture.

We observe in this paper that this seminal law needs
to be extended when we consider process variation.
The law implicitly assumes homogeneous cores. We
believe that it is rather difficult to succinctly model
the phenomenon of variable performance per core.
Consequently, we try to model the variable performance
per core by effectively expanding or contracting the set
of cores. We try to mathematically map a world with
process variation to a world without it. For example,
our model will help us make conclusions of the form – a
128 core machine with a 6% variation in the threshold
voltage has similar performance as a 100 core machine
with no variation.

We complicate this line of reasoning further. We
observe that due to process variation, the transistor
switching time varies across the length and breadth
of a die. In some areas it might be lower than the
nominal value, whereas in some other areas it might
be higher than the nominal value. Since we need to
ensure that a design is free of timing faults, a reduction
in the switching frequency due to variation will require
us to reduce the frequency. However, it is possible in
future processors to run the sequential part of a parallel
program in the faster areas of a die, and effectively
speed it up by running it at a faster frequency as
suggested by Miller et al. (2012). In this case, variation
is beneficial for the sequential part, whereas it is
detrimental for the parallel part. Our model explicitly
takes this optimisation into account. Secondly, prior
work on extending Amdahl’s law by Woo and Lee (2008);
Hill and Marty (2008) has looked at different kinds of
processors – symmetric, asymmetric, and dynamic. In
this paper, we also propose corollaries to the general law
for different processor configurations.

We provide a background of the problem in Section 2.
Subsequently, we propose our performance model, and
extensions to Amdahl’s law in Section 3, and show
some experimental results in Section 4. Lastly, we survey
related work in Section 5 and conclude in Section 6.

2 Background

2.1 Amdahl’s Law

Let the serial fraction of a parallel program be 1− p and
the parallel fraction be p. The speedup, S, is given by
Equation 1. This is the classical form of the Amdahl’s
Law.

S =
1

1− p+ p
n

(1)

We first propose a generalised version of Amdahl’s
law. Let us assume that the relative performance of
the sequential core is given by ηseq and the relative
performance of each parallel core is given by ηpar. We
then arrive at Equation 2.

S =
1

1−p
ηseq

+ p
n×ηpar

(2)

2.1.1 Corollaries of the Amdahl’s Law

Here, we list three corollaries proposed by Hill and
Marty for several futuristic processors ( Hill and Marty
(2008)). They start out by defining the term base core
equivalent(BCE), which refers to the die area occupied
by one core. They consider a setup with n simple cores
(1 core = 1 BCE). Let Perf(r) be the performance of a
core consisting of r BCEs relative to a core containing 1
BCE.

In the future, we will have chips with possibly
hundreds of cores. It might not be possible to
achieve large scale parallelism for most benchmarks.
Consequently, it might make sense to replace a group of
r cores with one larger core at the design stage itself. Hill
and Marty call this a symmetric configuration. Here one
core consists of r base core equivalents, and the resultant
speedup is given by Equation 3. The authors conclude
that for programs with a high sequential component, we
need to choose relatively higher values for r.

Ssymmetric(p, n, r) =
1

1−p
Perf(r) + pr

Perf(r)n

(3)

It is not necessary that all the cores have to be
of the same size. We can envision an asymmetric
architecture (Aater S. et al. (2010); Kumar et al. (2004)),
which has one large core and several smaller cores.
We can use the large core for speeding up critical
sections (Aater S. et al. (2010)). If the size of the large
core is equal to r BCEs (base core equivalents), then the
speedup is given by Equation 4.

Sasymmetric(p, n, r) =
1

1−p
Perf(r) + p

Perf(r)+n−r
(4)

Lastly, we need to consider the case of dynamic
multicore architectures (Gupta et al. (2010); Ipek et al.
(2007)), where r cores can be dynamically fused to form
a large sequential core, or can also work separately
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as independent parallel cores. There have been a
spate of recent proposals, which advocate this idea of
reconfigurability at the level of a core. In this case, the
sequential core has performance equal to Perf(r), and
each parallel core has a normalised performance of 1.
The speedup is given by Equation 5.

Sdynamic(p, n, r) =
1

1−p
Perf(r) + p

n

(5)

2.2 Process Variation

In this section, we explain the basics of process variation,
and show how it can be modelled mathematically. We
will explicitly use this mathematical model in Section 4
to create test cases.

2.2.1 Model

Process Variation is defined as the variability in
transistor dimensions and electrical characteristics due
to the inherent limits of manufacturability. These
parameters are typically, the threshold voltage(Vth) and
the channel length (Leff ). Both these parameters are
related to each other by a simple equation proposed by
Sarangi et al. (2008a). L0

eff and V 0
th refer to the nominal

values.

Leff = L0
eff

(
1 +

Vth − V 0
th

2V 0
th

)
(6)

Consequently, prior work has only considered the
variation in the threshold voltage, Vth.

There are two components of the threshold voltage
variation – systematic and random. Systematic variation
can happen because of lithographic aberrations or due
to optical diffraction. This type of variation is typically
modelled as a multivariate normal distribution. There
is a good amount of spatial correlation between values
of Vth in regions with close proximity. This correlation
is modelled as an approximately linear function of
the distance between two points, and it is mostly
independent of the direction(isotropic).

Along with the systematic component, there is a
random component of variation. This is caused by
fluctuations in dopant density and due to the jagged
nature of lines on silicon because of physical processes
such as etching. This is modelled as a normal distribution
at the gate level. Random variation is not known to show
any measurable amount of spatial correlation.

We can summarise the effect of both the components
using Equation 7.

Vth = V 0
th + ∆Vth−sys + ∆Vth−rnd (7)

2.2.2 Impact on Clock Frequency

In Section 2.2.1 we presented a model to compute
the spatial distribution of the threshold voltage, Vth.
However, to make the model useful to our analyses, we
need a method to convert a spatial map of Vth to a

spatial map representing the switching frequencies of
transistors. We can then use this map to find the peak
frequency of different cores in a large multicore die.

We start out by computing the access time of a typical
logic gate(Tg) as given by the Alpha power law (refer to
Sarangi et al. (2008a)). Here, V is the supply voltage,
and α is a constant (1.3).

Tg ∝
V (1 + Vth/V

0
th)

(V − Vth)α
(8)

Given, the fact that Vth/V is around 15%, we can
simplify this equation using Taylor expansion (see
Equation 9).

Tg ∝ V 1−α
(

1 +
Vth
V 0
th

+
αVth
V

)
(9)

Using results from Equation 7, we can split the gate
delay into three components.

Tg ∝ T0 + V 1−α
(

∆Vth−sys
V 0
th

+
α∆Vth−sys

V

)
︸ ︷︷ ︸

Tsys

+ V 1−α
(

∆Vth−rnd
V 0
th

+
α∆Vth−rnd

V

)
︸ ︷︷ ︸

Trnd

∝ T0 + Tsys + Trnd

(10)

T0 is the nominal value of the gate delay. Tsys and
Trnd are the systematic and random components of the
gate delay respectively. Since ∆Vth−sys and ∆Vth−rnd
are normally distributed with zero mean, Tsys and Trnd
are also normally distributed. Like prior work (Sarangi
et al. (2008a,b)), we assume that the systematic
component of Tg within a pipeline stage is constant. This
is due to the high degree of spatial correlation. Across
stages it is distributed as per the multivariate normal
distribution described in Section 2.2.1.

Now let us assume that a pipeline stage consists of κ
FO4 delays (delay of a representative transistor having
a fanout of four). In this case, the delay of a pipeline
stage, Tstage, is given by Equation 11.

Tstage =

κ∑
i=0

T ig = κ× T0 + κ× Tsys +

κ∑
i=0

T irnd

= κ× T0 + κ× Tsys + Tκrnd

(11)

Here, Tκrnd is the sum of κ instances of the random
variable Trnd. It has zero mean and its variance
is κ times the variance of Trnd. Since both Tsys
and Tκrnd are distributed normally, Tstage also has a
normal distribution. We can finally compute fstage
as 1/Tstage. Using some simplifying assumptions and
Taylor’s expansion, it is possible to prove that fstage is
also normally distributed with reasonable error bounds.
However, this is beyond the scope of the paper.
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We are thus in a position to generate samples of
the random variable Tstage and hence compute the
distribution of core frequencies across a large multicore
die. We will use this result to generate samples for
evaluation in Section 4.

In this paper, we do not consider advanced techniques
to mitigate variation such as body biasing and timing
speculation (Sarangi et al. (2008b)) because of the
resultant complexity and for lack of brevity. However, it
is possible to incorporate their effects by considering an
effective σ/µ of Vth variation after these techniques are
applied.

3 Variation Aware Amdahl’s Law

3.1 Performance Model

Let us denote the relative performance of a processor
consisting of r base core equivalents, and running at
frequency, f , as Perf(r, f). Note that the performance
is relative to 1 BCE running at the nominal frequency.
In some cases, we use the term Perf(r), which refers to
the relative performance at the nominal frequency. We
use two important empirical rules and two basic results
from textbooks in elementary computer architecture in
our analyses. They have been used by prior work in
extending Amdahl’s Law (see Hill and Marty (2008)).

The first of the rules is Pollack’s rule, which states
that performance is proportional to the square root of die
area (refer to Hill and Marty (2008)) (see Equation 12).
Here, α1 is the constant of proportionality.

The second is a rule regarding cache miss
rates (Hartstein et al. (2006); Gluhovsky and O’Krafka
(2005)). It says that the miss rate, mr, of a cache is
approximately inversely proportional to the square root
of the size of the cache. We further assume that the size
of the cache is proportional to the area of the processor.
We thus arrive at Equation 13. α2 is another constant of
proportionality.

Now, we look at two more basic results in
architecture. Equation 14 shows a simple relationship
between performance and IPC (instructions per cycle).
It says that the performance is IPC multiplied by the
clock frequency.

Lastly, in Equation 15, we show a relation between
CPI (clock cycles per instruction), the miss rate (mr),
and the miss penalty to main memory, mp. Note that
mp is the miss penalty at the nominal frequency, f0. It
is measured in terms of cycles. Since the miss penalty
to main memory is independent of the frequency of the
cpu, mp needs to be scaled for a different frequency by

a factor equal to f
f0

.

Secondly, note that α1, α2, mp, mr, and CPIideal are
constants.

Perf(r, f0) = α1

√
r (12)

mr =
α2√
r

(13)

Perf(r, f) = IPC(r, f)× f (14)

CPI(r, f) = CPIideal +mp ×
f

f0
×mr (15)

Using these four equations, we derive an equation
for the relative performance Perfrel(r, f) given by
Equation 16. In this case, our baseline system runs at the
nominal frequency and has a size equal to r BCEs. Let
us define Perfrel(r, f) = Perf(r, f)/Perf(r, f0). From
Equation 12, we deduce that Perf(r, f0) = α1

√
r. Let

us further define frel as f/f0, and let us consider that
α1 = α3 × f0. We have:

Perfrel(r, f)

= Perf(r, f)/Perf(r, f0)

=
f

CPI(r, f)× α1
√
r

=
f

(CPIideal +mpfrelmr)× α1
√
r

=
f

(CPI(r, f0)−mpmr +mpfrelmr)× α1
√
r

(Eqn 15)

=
f

( f0
Perf(r,f0)

+mpmr(frel − 1))× α1
√
r

=
f

( f0
α1

√
r

+mpmr(frel − 1))× α1
√
r

=
f

f0 +mpmr(frel − 1)× α1
√
r

=
f

f0 +mp(frel − 1) α2√
r
× α1

√
r

(by Equation 13)

=
f

f0 +mp(α3f0)α2(frel − 1)

=
frel

1 +mpα3α2(frel − 1)

(16)

Hence, we can conclude that the relative performance
Perfrel is a function of the relative frequency (frel), the
miss penalty (mp), and two constants of proportionality
– α2 and α3.

3.2 Amdahl’s Laws

When we consider a processor with process variation, the
frequency will vary randomly across the entire die. To
maximise performance, we need to maximise frequency.
Let us first look at parallel cores. If we set the frequency
of one parallel core to 3 GHz and the other to 4 GHz,
then the entire process will still effectively run at 3 GHz.
This is because most parallel programs try to equally
divide the work among the threads. If one thread is
running faster, then it will reach a synchronisation point
like a barrier sooner, and wait for the slower threads.
Consequently, to save power, it makes sense to run all the
parallel cores at the same frequency. This should be the
maximum frequency that the slowest core can support
without suffering from timing faults. We can denote this
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frequency as fmin. If a parallel core consists of multiple
BCEs, then we choose the minimum frequency that each
BCE can support.

Handling the sequential part of the execution is
slightly more tricky. The first or rather default option
is that we stick with fmin. We call this the plain
configuration. However, this is suboptimal. Secondly,
future processors are expected to have sophisticated
voltage-frequency scaling capabilities. Hence, we can
have a smarter scheme in which we run the sequential
portion of a program on the fastest set of cores as
suggested by Miller et al. (2012). During the execution
of the sequential part, we can increase the frequency
of the sequential core to the maximum that it can
support. If the sequential core contains r BCEs, then
we can run it at frequency, fr. Here, fr is the minimum
frequency of the r constituent BCEs. We call this the opt
configuration.

We now discuss the procedure to derive the
corollaries to the Amdahl’s Law for different types of
multiprocessors for the opt configuration. To get the
equations for the plain configuration, we just need to
replace all instances of fr by fmin. We omit this case
for the sake of brevity. Let us now look at the three
configurations considered in Section 2.1.1 and by Hill and
Marty (2008) – symmetric, asymmetric, dynamic. For
the symmetric case, we can choose to run the sequential
part of the execution(critical section) on the fastest
core. The fastest core can be determined after a chip
has been fabricated, and tested. Likewise for dynamic
multicores, we can choose to combine the r cores in
such a way that fr is maximised. Given the systematic
nature of variation, we expect the fastest r BCEs to be
possibly co-located. Unfortunately, it is hard to do such
optimisations for the case of an asymmetric multicore.
This is because it is not possible to know in advance,
which region of a chip will be the fastest. However, in
some cases especially if the prime cause of systematic
aberration is defects in the imaging process, it might
be possible to predict the faster regions of a die by
analysing the pattern of variation across different dies. In
this case, designers can appropriately modify the design
and place the asymmetric core such that its frequency is
maximised.

We can thus modify the corollaries to the Amdahl’s
Law presented in Section 2.1.1.

Ssymmetric(p, n, r) =
1

1−p
Perf(r,fr)

+ pr
n×Perf(r,fmin)

(17)

Sasymmetric(p, n, r)

=
1

1−p
Perf(r,fr)

+ p
Perf(r,fmin)+(n−r)×Perf(1,fmin)

(18)

Sdynamic(p, n, r) =
1

1−p
Perf(r,fr)

+ p
n×Perf(1,fmin)

(19)
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Figure 1 Sample frequency variation map

3.2.1 Approximating Perf(r, fr), Perf(r, fmin)

We observe that Perf(r, fr) = Perfrel(r, fr)×
Perf(r, f0). Here, Perfrel(r, fr) is dependent on the
variation map of a die. Figure 1 shows the variation
of peak frequency on a sample die. For the sequential
portion of the execution, we can choose a core in Region
1. Note that the transistors in Region 1 are the fastest in
the entire die. The physical core represented by Region
1 will run at the slowest peak frequency of any point in
that region. This is shown as Region 2 in the figure. This
frequency is denoted by fr in Section 3.2. Note that fr
is a function of the number of total BCEs, size of each
BCE, and the variation map. We define X (r, n) as:

X (r, n) = Perfrel(r, fr)

= Perf(r, fr)/Perf(r, f0) (20)

We shall see in Section 4.2 that X (r, n) is
approximately linear in r for a wide set of variation maps
and constants used by our model. We are in the process
of investigating the reasons for this behavior.

Likewise, we can define another function Y for
Perf(r, fmin).

Y(r, n) = Perfrel(r, fmin)

= Perf(r, fmin)/Perf(r, f0) (21)

fmin represents the minimum frequency. In other
words, fmin is the smallest peak frequency across all
the regions of the die. The slowest region in the die is
Region 3 as shown in Figure 1. The value of Y is mostly
independent of both n and r as observed empirically.
Hence, we can approximate Y(r, n) as just a constant Y,
which is dependent only on the frequency variation map.

3.3 Equivalent Configurations

We observe:
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Perf(r, fr) = X (r, n)× Perf(r, f0)

= X (r, n)× α1

√
(r) (by Equation 12)

= α1

√
rX (r, n)2

= Perf(rX (r, n)2, f0) (by Equation 12)

(22)

Similarly, we have:

Perf(r, fmin) = Perf(rY2, f0) (23)

Let us now try to map a world with variation to
a world without it. We wish to replace a processor
with variation by another processor, which does not
suffer from process variation and has the same speedup.
Let config denote any configuration (symmetric or
asymmetric or dynamic) with variation. Let config′

denote the same configuration without variation. We
want a mapping that satisfies Equation 24. S represents
speedup.

Sconfig(p, n, r) = Sconfig′(p, n
′, r′) (24)

With some algebraic manipulations we can derive the
values of n′ and r′ as shown in Table 1. We show the
derivation for the symmetric opt case in Equation 25.
The rest of the entries in Table 1 follow the same pattern.

With this mapping, we have thus arrived at a variant
of Amdahl’s Law without the effects of process variation.
None of the results are dependent on the parallel fraction
– p. We can derive some quick insights that can serve as
a sanity check.
Insight 1:
All three opt configurations have a larger number of
sequential BCEs as compared to plain. We thus expect
a good degree of sequential acceleration in the opt
configuration. Whereas, in the plain configuration, the
number of sequential BCEs are lesser than r. We thus
expect the sequential portion to get slowed down.

Insight 2:
As compared to the no-variation case, we expect
slowdowns in plain because of the reduction in the total
BCEs, n′ (∵ Y < 1).

There are several ways to interpret the results in
Table 1 and Equation 24.
Interpretation 1: (Area)
We can interpret the results as a contraction or
expansion in area and the total number of cores. For
example, in the symmetric plain case, we can assume
that every core with variation shrinks by a factor of
Y2 and the total number of cores stays the same. For
the dynamic opt case, we can assume that every core
increases in area by a factor of X (r, n)2, and the total
number of cores is equal to nY/X (r, n)2.
Interpretation 2: (Configuration)
We can assume that the area remains the same;

although, the configuration in terms of n and r changes.
For example, in the case of dynamic plain , r gets
multiplied by a factor of Y2, and n gets multiplied by a
factor of Y. This formulation can be utilised to explain
speedups as shown in Section 4.3.

4 Evaluation

4.1 Setup

We simulate a core with typical values of IPC, L2 miss
rates, and memory latency. We use an ideal IPC of 1,
memory latency of 200 cycles, and 0.25 percent global
L2 miss rate, and a nominal frequency of 3 GHz. Using
these values, we get a value of mpα2α3 in Equation 16
as 1

3 .

We generated sample variation maps in R using the
geoR package as described by Sarangi et al. (2008a)
and superimposed an example layout on it using the
approach mentioned in Sarangi et al. (2008b). A sample
variation map is shown in Figure 2. The σ/µ variation is
9% and the spatial correlation factor is 0.5. This means
that a value at a certain point is correlated with values in
a radius equal to half the width of the die. We generated
100 sample dies and consider the geometric mean of
performance using the method suggested by Sarangi
et al. (2008b).

The next step is to calculate the values of X (r, n) and
Y values such that they can be used in Equations 17,
18, and 19. From the variation map, we observe that
due to high spatial correlation, if we divide a die into a
large number of cores, then each core has a homogeneous
timing profile. However, if we divide a die into a smaller
number of cores, then each core has some degree of
heterogeneity. A core is expected to have at least 10-
20 functional units(FUs). Consequently, each FU has
a more or less homogeneous timing profile, and the
frequency of a core can be modelled as the minimum
frequency that a constituent FU can support. Thus Y
was found to be fairly independent of both n and r.
However, X , is a function of both n and r for a smaller
number of cores. Beyond 128 cores, it is dependent on
only r/n as the values tend to converge because of spatial
locality. Figure 3 plots the values of X and Y. We further
observe an approximate linear dependence between X
and r.

4.1.1 Variation of X and Y

Table 2 lists the different values of Xmax and Y for
different values of σ/µ for the threshold voltage, Vth. For
obvious reasons Xmin is equal to Y. Based on the results
in Figure 3, we can safely assume that X varies linearly
for different values of r with an insignificant amount of
error.
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Ssymmetric(p, n, r) =
1

1−p
Perf(r,fr)

+ pr
n×Perf(r,fmin)

=
1

1−p
Perf(rX (r,n)2,f0)

+ pr
nY×Perf(r,f0)

(Equations 22 and 23)

=
1

1−p
Perf(rX (r,n)2,f0)

+ prX (r,n)2

nX (r,n)YX (r,n)×Perf(r,f0)

=
1

1−p
Perf(rX (r,n)2,f0)

+ prX (r,n)2

nX (r,n)Y×Perf(rX (r,n)2,f0)

= Ssymmetric′(p, nX (r, n)Y, rX (r, n)2)

(25)

# Sequential # Total # Cores
BCEs BCEs

r′ n′ n′/r′

plain

symmetric rY2 nY2 n/r
asymmetric rY2 nY − rY + rY2 ((n-r)/Y +r)/r
dynamic rY2 nY n/rY

opt
symmetric rX (r, n)2 nX (r, n)Y nY/rX (r, n)
asymmetric rX (r, n)2 nY − rY + rX (r, n)2 nY/rX (r, n)2 - Y/X (r, n)2 + 1

−(X (r, n)− Y)
√
r - (X (r, n)− Y)/

√
rX (r, n)2

dynamic rX (r, n)2 nY nY/rX (r, n)2

Table 1 Effective number of BCEs for different configurations
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4.2 Performance Results

In Section 4.2.1, 4.2.2, and 4.2.3, we plot the speedups
of different schemes. In all our experiments we consider
a futuristic system with 256 base core equivalents (n =
256). We first plot the speedups across different values
of r for the no-var (no variation) configuration. We
subsequently plot the values for the opt and plain
configurations normalised to no-var. We plot the results
for three parallel fractions (p) – 0.75, 0.90, and 0.99.

The plots for no-var are similar to the results derived
by Hill and Marty (2008). We use the prefixes sym,
asym, and dyn, for symmetric, asymmetric, and dynamic
respectively.

4.2.1 Symmetric Cores

Figure 4 plots the speedups for different values of r, and
Figure 5 plots the ratios. Figure 4 is normalised to the
performance of 1 core (n = 1, r = 1).
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σ/µ% Xmax Y fr
f0

fmin

f0

1 1.017 0.996 1.026 0.995
2 1.028 0.987 1.042 0.980
3 1.039 0.977 1.059 0.966
4 1.049 0.967 1.076 0.952
5 1.061 0.958 1.094 0.938
6 1.073 0.949 1.112 0.925
7 1.084 0.940 1.131 0.912
8 1.096 0.931 1.151 0.900
9 1.108 0.922 1.171 0.889
10 1.121 0.914 1.193 0.876
11 1.134 0.905 1.215 0.864
12 1.147 0.897 1.238 0.853

Table 2 Different values of X and Y

Result 1 – plain
The plain configuration has a constant speedup ratio,
0.85, irrespective of r. This means that unless the
amount of process variation is reduced through either
timing speculation, body biasing, or changes in the
manufacturing process, the sym-plain configuration is
not the preferred option.

Result 2 – opt
The opt configuration has speedups as compared to no-
var for relatively small values of r (< 30). This means
that to take advantage of variation, we should not have
very large symmetric cores. The optimal number of cores
considering different values of p, should be between 10-20
for a system with 256 BCEs. To summarise, a symmetric
core should be roughly 5% of the core die area.

Result 3 – opt
For large values of p (> 0.90), the opt configuration
does not have any speedups. This is because the
speedups come from an accelerated sequential section.
Consequently, we can conclude that the symmetric
configuration is not the best choice for high values of
p. Operating systems should schedule applications with
moderate values of p on symmetric multicores in large
datacenter scale systems.

4.2.2 Asymmetric Cores

Figures 6 and 7 show the speedups for asymmetric
multicores across a range of values for the configuration
granularity, r. We take cognisance of the fact that
the baseline speedups for no-var are higher than the
symmetric case.

Result 4 – plain
As compared to the symmetric case, asymmetric
multicores show some degree of variability in the
performance for plain . Nonetheless there is always a
slowdown as compared to no-var . Since there is no
sequential acceleration, we get the best results with
the highest value of the parallel fraction – p. We will
further observe in Section 4.2.3, that dynamic multicores
are not very helpful in this case. Consequently, keeping
the complexity of dynamic cores in mind, we can
conclude that it is best to schedule embarrassingly
parallel benchmarks on asymmetric multicores for the
plain configuration.

Result 5 – opt
As compared to asym-plain, there are speedups over
asym-no-var in asym-opt till r is equal to about 50 for
p < 0.90. The asymmetric configuration is more resilient
to changes in r. This is because the loss of parallel cores
with increasing r is partially made up by the increasing
size of the sequential core. Since the sequential core runs
at a frequency, which is higher than nominal, the effects
cancel out.

Result 6 – opt
High values of p, imply lower values of r for optimal
speedups in the opt case. This is because we require
more cores for parallel acceleration for higher values of
p. Setting an r value between 20-40 BCEs can prove to
be useful for a wide range of benchmarks. This means
that the large asymmetric core should neither be very
big, nor should it be very small. It should occupy about
10% of the core die area. Researchers should focus on
designing cores of this size and ensure that they scale for
subsequent technology nodes. A similar conclusion was
derived by Eyerman and Eeckhout (2010) with albeit a
more complex analysis.
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4.2.3 Dynamic Cores

Figure 8 and 9 show the speedups for the dynamic
configuration. We observe fairly constant speedups in
Figure 8 across a wide range of values for r.

Result 7 – plain
Like the asymmetric multicore, plain has a fairly
constant speedup across a wide range of values for r. The
plain dynamic multicore is definitely more versatile, and
should be used when we cannot make any assumptions
about the target workload or when we do not have any
knowledge of the variation map.

Result 8 – opt
As compared to asymmetric multicores, the performance
does not degrade significantly with high values of r. It
nonetheless does degrade because by increasing r we are
losing the benefit of spatial locality, and consequently
it will be necessary to reduce the frequency to ensure
that there are no timing faults. Nevertheless, opt is
always better than plain. Secondly, the dynamic opt
configuration is very good for benchmarks with large
sequential portions. Hence, designers should focus on
designing dynamic multicores for a large range of r. For
smaller values of r, the dynamic core can be used for
sequential acceleration of parallel programs by leveraging
process variation information. For mostly sequential

programs, we would need a large value of r because
performance increases as

√
r.

4.3 Notion of Equivalent Cores
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In Section 4.2, we looked at some of the major
design decisions that need to be taken in the presence of
process variation. In this Section, we look at how we can
leverage the knowledge of equivalent cores(Equation 16
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and Table 1) to explain some trends. We plot the effective
number of total BCEs, n′, in Figure 10.

We observe that sym-plain is the worst configuration
because it has the least number of effective cores(217).
Sym-opt fares much better because it has a higher
number of effective cores. In fact, for very low values
of r, the effective number of cores are more than 256.
However, n′ rapidly reduces with r to 217. We see a
similar reducing trend in asym-plain. In comparison,
asym-opt is better because it has a higher value of n′

across a large range of r. In this case, as r increases
to high values, the number of parallel cores reduce, and
thus we do not get commensurate speedups. The most
versatile and effective configurations are dyn-opt and
dyn-plain. Please note that the number of effective cores
is equal for both dyn-opt and dyn-plain (Table 1). The
dyn configurations have 237 effective cores across all
values of r.

We can use the values of X and Y (see Table 2) to
explain the effectiveness of different schemes to mitigate
process variation. For example, some approaches such
as body biasing or supply voltage scaling (Sarangi
et al. (2008b)) change the voltage of the substrate or
the supply voltage to effect a change in the threshold
voltage. This reduces the amount of variation at the
cost of power. Let us say that we reduce the amount
of variation from 9% to 4% using a combination of
such techniques. We can quickly evaluate the consequent
change in performance by looking at the number of extra
equivalent cores we gain using the results in Table 1 and
Table 2.

The notion of equivalent cores mentioned in Table 1
is much more than a mere modelling tool. We believe
that it can be used by architects, and circuit designers
to port their results from systems with no variation
to systems with variation. We can use our modified
version of Amdahl’s law for predicting trends, explaining
results (as we do for Eyerman and Eeckhout (2010)),
and as mathematical models for multicore systems.
Furthermore, we can use the notion of equivalent cores to
abstract away the notion of physical cores. An operating
system or virtual machine can just see the number
of abstract cores and schedule a parallel application.
A lower level layer can dynamically split the tasks if
required and map them to actual physical cores.

4.4 Experiments with Real World Benchmarks

In this section, we try to validate our models with
experiments on real systems. For our experiments we
used a Dell R810 server. It had two 6-core Intel Xeon
(X5650) processors running at 2.65Ghz. The processors
had the hyperthreading mode enabled, and thus 24
threads were available to software. Each processor had
12 MB of L2 cache, and the system had 24 GB of main
memory. We used Ubuntu Linux v12.04, and the version
of the kernel was 3.2.42. We wrote all our benchmarks in
C, and used gcc (v. 4.6.3) to compile the benchmarks.

4.4.1 Nature of the Workload

We use a synthetic benchmark that has a sequential and
a parallel section. The sequential section repeatedly adds
a pair of 500x500 matrices in a for loop. The number
of iterations is equal to iterseq. This is a configurable
parameter. In the parallel section, each thread adds a
pair of matrices in parallel. The number of iterations
in the parallel section is equal to iterpar per thread.
iterpar and the number of threads running in parallel is
configurable. We try to minimise the effects of operating
system jitter in our baseline system by ensuring that
there are no other user processes in parallel, and by
setting the priority of the processes to real time.

We simulate two configurations – baseline and
equivalent. The baseline configuration assumes that
we have process variation. Secondly, the sequential
and parallel portions can possibly run at different
frequencies. The equivalent configuration assumes a
system without variation. Here, both the sequential and
parallel portions run at the same frequency. Table 1
shows the mapping between both the configurations
using the concept of an equivalent core. The aim of
this experiment is to show that using this concept of
equivalent cores, we have an equivalent configuration
whose performance is the same as the baseline
configuration.

To simulate the equivalent configuration, we run both
the sequential and parallel sections at a frequency equal
to f0. However, in this configuration, the number of cores
(c′ = n′/r′) might be different than the number of cores
in the baseline configuration(c = n/r). This will happen
when we are using any opt configuration. To incorporate
this change, we need to scale the number of iterations in
the parallel section by c/c′. Secondly, in both the plain
and opt configurations, the BCEs per core (r′) change.
We only evaluate the case of symmetric configurations
because asymmetric and dynamic multicore processors
have not been commercialised yet. In the symmetric
configuration, r′ = r × λ2. λ = Y for plain , and λ = X
for opt . In either case, the performance is expected
to change by a factor of λ (according to Equation 12).
Hence, to incorporate this change, we need to further
multiply the number of iterations of both the sequential
and parallel sections by a factor of 1/λ.

To simulate the baseline configuration, we need to
assume that the number of cores is equal to n/r. Since
r = 1 in this case, the number of cores is equal to n
(n = 24). The number of iterations in the sequential
and parallel sections are iterseq and iterpar respectively.
However, the frequencies of both the sections need to be
different. The frequency of the sequential section needs
to be equal to f0 × fmin for plain, and f0 × frel for opt
. Likewise, the frequency of the parallel section needs to
be equal to f0 × fmin for both plain and opt (according
to Equations 20, and 21).
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4.4.2 Results for the plain Configuration

Based on our discussion above, we set the appropriate
values of iterseq, iterpar, and the frequencies of the
different sections for both the baseline and equivalent
configurations.
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Figure 11 Error percentage versus Y for plain configuration

Figure 11 shows the results for the plain
configuration. We compute the relative error as
the difference in the execution time of both the
configurations divided by the execution time of the
baseline configuration. For the sequential section, the
error is mostly limited to 3%. Whereas, for the parallel
section the error varies from 0.5-5.5%.

4.4.3 Results for the opt Configuration

In a similar manner, we set the values of iterseq, iterpar,
and the frequencies of different sections for the opt
configuration. Figure 12 shows the error in the sequential
section as a function of X (r,n). We found the error
to be independent of Y. The error varies from 0-2.5%.
Figure 13 shows the error in the parallel section as a
function of Y and X (r,n). The error is contained within
1-6% for a majority of values. For low values of Y, and
high values of X , the error approaches 8%.

To summarise, the error for most of the configurations
is less than 5-6%. We believe that the results are
compelling because, the operating system jitter is
typically of the same order (also observed by De et al.
(2009); Petrini et al. (2003); Jones et al. (2003)). Hence,
we believe that it would not have been possible to obtain
significantly better results because of the inherent noise
in the system.

5 Related Work

The original paper (Amdahl (1967)) on Amdahl’s
law was published by Gene Amdahl in 1967. It
has subsequently appeared in most major computer
architecture textbooks. We focus on some recent
augmentations to the original formulation, which have
primarily looked at the law from the point of energy,

temperature, and performance. To the best of our
knowledge, researchers have not looked at Amdahl’s law
based formulations for chips with process variation as we
do in this paper.

Hill and Marty (2008) extended Amdahl’s law to
model multicores. They proposed a set of performance
equations for symmetric, asymmetric, and dynamic
multicores. We use their formulations as a basis for
our technique. Along with the basic equations, they
looked at a series of trends and made a set of design
recommendations. This work was extended by Yao et al.
(2009) to calculate the optimal configuration for different
types of multicores using analytical techniques. Eyerman
and Eeckhout (2010) explore Amdahl’s law exclusively
in the context of critical sections. As compared to other
papers, the authors argue against asymmetric multicores
since they don’t find them helpful in accelerating the
performance of barriers and critical sections. They favor
symmetric multicores.

Woo and Lee (2008); Cho and Melhem (2010)
extended the Hill and Marty model to take energy into
account. They proposed a formulation that considers
parameters dependent on the dynamic power and
leakage power. They use a different core for sequential
computation and a different set of cores for parallel
computations and sum up the power. Subsequently, they
model the power for this ensemble of cores, and propose
an additional optimisation framework in Cho and
Melhem (2010). Cassidy and Andreou (2012) propose a
more extensive optimisation framework based on similar
extensions to Amdahl’s law for both performance and
energy.

Huang et al. (2010) proposed a thermal extension
to Amdahl’s law. They added some temperature related
constraints and parameters to the Hill and Marty model.
They observed a sizeable loss in performance due to
thermal constraints. However, they were able to conclude
that a properly configured asymmetric multicore is the
best choice.

6 Conclusion and Future Directions

In this paper, we have tried to create a new formulation
of Amdahl’s law that takes process variation into
account. It tries to intuitively explain the broad trends in
processor performance by a novel mathematical widget
namely an equivalent core. The crux of our approach
is to replace a system with variation with a system
without variation by mapping the actual number of cores
to a set of equivalent cores. We subsequently reason on
only the set of equivalent cores. We observe that our
method of reasoning is potent enough to explain broad
trends in performance, previous results, and to evaluate
the soundness of different design methodologies and
architectures. We further use our model to comment on
different architectural design styles and their suitability
for running a multitude of parallel programs.
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Figure 12 Error percentage versus X (r, n) in the
sequential section – opt configuration

Figure 13 Error percentage versus X (r, n) and Y in
the parallel section – opt configuration

Skeptics might argue that our model is simplistic
and needs a non-trivial number of parameters for tuning
it to get exact values. However, we have empirically
observed that the conclusions we derive and the methods
we suggest are fairly independent of the exact choice
of parameters. Secondly, generic laws like Amdahl’s
Law have always been used for zeroth order design
decisions, and for guiding research at a high level. We
believe that our method of reducing a real system to
a hypothetical system with equivalent cores belongs to
the same class of solutions. This is a small step in the
journey to mathematically model complex architectures
of the future.
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