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Abstract

Designing and tuning access methods (AMs) has always been more of a black art than arigorous discipline, with
performance assessments being mostly reduced to presenting aggregate runtime or I/O numbers. This paper presents
andb, a comprehensive graphical design tool for AMs that are constructed on top of the Generalized Search Tree
abstraction. At the core of andb lies an an analysis framework for AMs that defines performance metrics that are
more useful than traditional summary numbersand thereby allow the AM designer to detect and isolate deficienciesin
an AM design. Amdb complementsthe analysis framework with visualization and debugging functionality, allowing
the AM designer to investigate the source of those deficiencies that were brought to light with the help of the
performance metrics. Several AM design projects undertaken at U.C.Berkeley have confirmed the usefulness of the
analysis framework and its integration with visualization facilities in amdb. The analysis process that produces the
performance metrics is fully automated and takes a workload—a tree and a set of queries—as input; the metrics
characterize the performance of each query as well as that of the tree structure. Central to the framework is the use
of the optimal behavior—which can be approximated relatively efficiently—as a point of reference against which the
actual observed performance is compared. The framework applies to most balanced tree-structured AMs and is not

restricted to particular types of of data or queries.

1 Introduction

Despitethelarge and growing number of access methods (AMss) that have been produced by the research community—
and also despite their increasing importance, considering the explosion of data users find worth querying—the design
and tuning of AMs has aways been more of ablack art than arigorousdiscipline. Traditionally, performance analyses
focus on summaries of observed performance, such as aggregate runtime or page access numbers, or on performance
metrics that express data-specific properties of index pages (e.g., spatial overlap between the pages of an R-tree [9]).
The drawback of aggregate numbers is that they do not provide any insight into the causes of observed performance.
Asaresult, itishard to quantify the contribution of individua designideas or explain performance differences between
competing AM designs, if those deviatein more than one design aspect. Also, aggregate numbersdo not alow AMsto

be assessed on their own, because competing AM designs are heeded to put the numbersinto perspective. In contrast,
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data-specific performance metrics offer some insight into the causes of observed performance, but they require the
designer to understand their correlation with the optimization objective, i.e., the minimization of aggregate runtime or
page access numbers. Since such an understanding isagoal of the analysis process, any apriori assumptions are often
incorrect and misleading. If the corrélation of the data-specific performance metric with the optimization objectiveis
not perfectly clear, using such a performance metric to guide AM design is problematic.

In this paper we present arrdb, a comprehensive support tool for the AM anaysis process. At the core of andb is
an analysis framework that defines performance metricsthat are superior both to aggregate numbers and data-specific
performance metrics. It isintegrated with acollection of modulesin an interactive, easy-to-use graphical environment.
Those modules are: a visualization component for the tree structure and its contents (the latter user-extensible, so it
can be adapted to a specific application domain); afacility for interactive execution of tree searches and updates as well
as breakpoints and single-stepping through those commands, similar to functionality found in programming language
debuggers; browsers for viewing performance numbers derived from the analysis framework. The saient features of

andb and itsanalysisframework are:

Universally Applicable The analysisframework and most of the andb visualization facilities are independent of the
semantics of the data and queries of the application domain, which makes them universally applicable to any
AM design that isbased on the Generalized Search Tree (GiST) abstraction [10]. The analysisframework treats
the workload—atree and a set of queries—as an input parameter, alowing the designer to tune an AM for that

particular workload.

Better Performance Metrics The anaysis framework defines performance metrics that reflect performance loss,
measured in I/Os and derived from a comparison of observed performance with the performance of aworkload-
optimal tree. This tree minimizes the total number of 1/Os for the input workload and can be approximated
relatively efficiently. The advantage of these performance metricsin comparison to aggregate 1/O measurements
isthat they reflect the potentia for performance improvement, allowing an AM design to be assessed on itsown.
The loss metrics are further broken down to reflect the performance-relevant characteristics of the tree, which
gives the designer a clearer understanding of the effects of individual design ideas or the differences between

two competing AM designs.

Fully Automated Analysis The fully automated analysis process executes the user-supplied set of queries, gathers

tracing data, uses that to approximate an optimal tree and computes the performance metrics.

Visualization Integration The analysis framework is integrated into amdb to the extent that the metrics as well as
tracing information gathered during workl oad execution are visualized using the data-independent tree structure
visualization facilities. This integration is particularly helpful, because it lets the designer investigate poorly
performing parts of thetree and queries. The analysisframework and the visualization toolsare complementary:
the performance metrics highlight the sources of poor performance, thereby focusing the designer’s attention.
The visuadization tools are then used to investigate those parts of the tree or those queries which have been

flagged by the performance metrics.



Designing AMsisacresative processthat antdb supportswithan analysisframework that pointsout specific sources
of performance degradation and visualization tools for investigating them. The experience we have gathered so far
with andb justifies our claims about its usefulness. in two AM design projects undertaken at U.C. Berkeley, anmdb
was instrumental in quickly locating performance problemsin existing AM designs and verifying that the remedies to
those problems worked as intended.

The rest of the paper is structured as follows. Section 2 briefly introduces Gi ST, which lays the foundation for an
understanding of the breakdown of the performance metrics. Section 3 gives an overview of andb and describes the
analysis framework and itsintended usage, which isillustrated in Section 4 with two examples of AM design projects
that made use of andb. Section 5 discussesthe analysis framework in detail, along with illustrative examples, among
them atest for unindexability. Section 6 discusses related work and Section 7 contains the conclusion and an outline

of futurework.

2 Generalized Search Trees

A GiST isabalanced tree which provides “template’ algorithms for navigating the tree structure and modifying the
tree structure through node splits and deletes. Like al other (secondary) index trees, the GiST stores (key, RID) pairs
in the leaves; the RIDs (record identifiers) point to the corresponding records on the data pages. Internal nodes contain
(predicate, child page pointer) pairs; the predicate evaluatesto true for any of the keys contained in or reachable from
the associated child page. This capturesthe essence of atree-based index structure: ahierarchy of predicates, in which
each predicate holdstruefor al keys stored under it in the hierarchy. A Bt -tree[5] isawell known example with those
properties: the entries in internal nodes represent ranges which bound values of keys in the leaves of the respective
subtrees. Another example isthe R-tree [9], which contains bounding rectangles as predicates in the interna nodes.
The predicates in theinternal nodes of a search tree will subsequently be referred to as subtree predicates (SPs).

Apart from these structural requirements, a Gi ST does not impose any restrictionson thekey data stored withinthe
tree or their organization within and across nodes. In particular, the key space need not be ordered, thereby alowing
multidimensional data. Moreover, the nodes of a single level need not partition or even cover the entire key space,
mesaning that (a) overlapping SPs of entries at the same tree level are allowed and (b) the union of &l SPs can have
“holes’” when compared to the entire key space. The leaves, however, partition the set of stored RIDs, so that exactly
oneleaf entry pointsto a given data record.*

A GIiST supports the standard index operations. SEARCH, which takes a predicate and returns all leaf entries
satisfying that predicate; INSERT, which adds a (key, RID) pair to the tree; and DELETE, which removes such a pair
from the tree. It implements these operations with the help of a set of extension methods supplied by the access
method developer. The GiST can be speciaized to one of a number of particular access methods by providing a set
of extension methods specific to that access method. These extension methods encapsulate the exact behavior of the

search operation as well as the organization of keys withinthe tree.

1This structural requirement excludes R -trees [22] from conforming to the GiST structure.



We now provide a sketch of the implementation of the operations and how they use the extension methods. For a

more detailed description, together with examples of B-tree and R-tree extension methods, see the original paper [10].

SEARCH Inordertofindall leaf entriessatisfyingthe search predicate, werecursively descend all subtreesfor whichthe
parent entry’s predicate is consistent with the search predicate (employing the user-supplied extension method

consistent()).

INSERT Givenanew (key, RID) pair, wemust find aleaf toinsertit on. Notethat because GiSTs alow overlapping SPs,
there may be more than one leaf where the key could be inserted. A user-supplied extension method penalty()
compares akey and predicate and computes a domain-specific penaty for inserting the key within the subtree
whose bounds are given by the predicate. Using this extension method, we traverse a single path from root to

leaf, following branches with the lowest insertion penalty.

If theleaf overflows and must be split, a extension method, pickSplit(), isinvoked to determine how to distribute

the keys between two leaves. If, as aresult, the parent aso overflows, the splittingis carried out bottom-up.

If the leaf’'s ancestors' predicates do not include the new key, they must be expanded, so that the path from the
root to the leaf reflects the new key. The expansion is done with a extension method union(), which takes two
predicates, one of which isthe new key, and returnstheir union. Like node splitting, expansion of predicatesin

parent entriesiscarried out bottom-up until we find an ancestor nodewhose predicate does not require expansion.

DeLETE Inordertofindtheleaf containingthekey wewant to delete, we again traverse multiplesubtrees asin SEARCH.
Once the legf is located and the key isfound on it, we remove the (key, RID) pair and, if possible, shrink the
ancestors’ SPs.

Although the GiST abstraction prescribes algorithm for searching and inserting, the AM designer still has full

control over the performance-relevant structural characteristics of the AM. These structural characteristics are:

Clustering The clustering of the indexed data at the leaf level and of the SPs at the interna levels determines the
amount of extra data that a query needs to access in order to retrieve its result set. An AM design controlsthe

clustering through the pickSplit() and penalty() extension methods.

Page Utilization The page utilization determines the number of pages that the indexed data and the SPs occupy and
therefore also influences the number of pages that a query needs to visit. Similar to the clustering, the page

utilizationis controlled by the pickSplit() and penalty() extension methods.

Subtree Predicates While the size and shape of the indexed data is part of the input,? the size and shape of the SPs
are parameters of the design and considerably influence performance. A SP's task isto describe, or cover, that
part of the data space whichis present at theleaf level of itsassociated subtree (i.e., the perfect SPwould smply

enumerate all the data items contained in the leaves of its subtree; of course, thisis problematic with regard to

20ne could argue that the size of the indexed data can be changed by applying compression in the index. We will ignore this possibility by
assuming that asimilar form of compression can be applied to the dataas a pre-processing stage.
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Figure1: Amdb User Interface

the size of the SPs). We speak of SP excess coverage if the SP covers more of the data space than is needed in
order to represent the data contained in the subtree. If a SP exhibits excess coverage, it may cause queries to

visit more than the minimum number of pages determined by the clustering and page utilization.

3 A Tour of Andb

This section describes antdb’svisualization and debugging features (which are presented in greater detail in[21]) and
gives an overview of the analysis framework and itsintended usage.

Andb supportsaccess methods devel oped using thepublicdomain| i bgi st package which implementsthe GiST
abstraction. Amdb and | i bgi st arewritten in Java and C++ and are portabl e across many versions of UNIX aswell
as Microsoft Windows NT. The packages can be downloaded fromht t p: / / gi st . cs. ber kel ey. edu/ .

3.1 Visualization Functionality

Understanding flaws in an AM design requires ingpecting the corresponding tree; thus, andb provides interactive
graphical views of the entire tree, paths and subtrees within the tree, and contents of nodes within the tree. These are
the global view, tree view, and node view, respectively (Fig 1). These views not only help visuaize the tree structure
and its contents, but aso help visualize profiling data and performance metrics by associating them with nodes in the
tree (discussed in detail in Section 3.4). Findly, they provide navigation features, which enables designers to drill
down to the source of a deficiency.

The highest-level, global view provides a manageable aggregate view of the entire index (Fig 1: 1). This
representation factors out much of the tree structure by mapping it onto a triangle with an adjustable baseline and
height. The purpose of thisview is to project a user-selected tree statistic or performance metric onto this abstract



display and depict the variation of the statistics across thetotal tree. The user can choose both a color map (or palette,
Fig 1. 2) and a statistic; the global view assigns colors to the statistical values and renders the nodes accordingly.
Nodes are visually concatenated and merged if necessary with other nodes on the same level. Thus, the pixel density
of nodesincreases geometrically with thelevel. The user can aso perform an approximate drill-down into an area of
interest by clicking on it. Subsequently, a path from the root node to a nodein the neighborhood of the specified point
will be shown in the tree view, alower-level view which shows more detail.

The tree view shows the structure of the search tree (Fig 1: 3). It offers an intuitive point-and-click interface for
browsing the tree while improving on conventional tree navigation interfaces which become cumbersome for high
fanout trees. In thisview, the tree's nodes are represented by boxes and labeled with a unique number for reference.
Each nodeisenclosed in ascrollableand stretchabl e contai ner which displaysitsdirect siblings. Thiscontainer (Fig 1:
4) dlowsusersto focus on nodes of interest while bounding the amount of detail displayed. Any node can be expanded
or contracted by clicking on it. When anodeis expanded, the container holding its children isdisplayed below it with
aline linking the two; when contracted, the entire subtree below the node is removed. Like the global view, the tree
view represents a user-selected tree statistic or performance metric by coloring the nodes. With these features, a user
can simultaneously focus on several paths and subtrees of interest without being overwhelmed by the width of the
search tree.

After drillingdown from the global view and tree view, the user can investigate the contents of specific nodes using
andb’snode view (Fig 1: 5). Sincetree nodes contain arbitrary user-defined predicates, the access method designer
must provide a modul e that displays the node given its contents. Currently, amdb contains a suite of modules which
visualize two-dimensional projectionsof spatial data. The node view a so dlowsthe user to ssimulate asplit (by calling
the pickSplit() extension function) and visualize the results by separating the items with contrasting colors. In addition

to user-defined datavisualization, andb providesatextua description of the keys, their sizes, and associated pointers.

3.2 Debugging Functionality

The behavior of an AM can be difficult to understand without being able to observe its mechanics. Previously, only
standard programming language debugging tools were available for examining | i bgi st AMs. Because these tools
are designed for analyzing low level actions, such as asingleline of source code, they are too cumbersome for gaining
an understanding of how search and update operations behave and interact with the tree.

Andb allowsadesigner to single-step through tree search and update commands. Those commands generate events
for various node-oriented actions, such as node split, node traversal, etc., which permits users to step from event to
event. Since manual stepping can becometedious, it aso supports breakpoints. Breakpointscan be defined on generic
events, e. g., node update, or can be tied to a specific tree node, e.g., update of node 227. When a breakpoint event
is encountered, execution is suspended, and the user has an option to single-step through events or continue until the
next breakpoint. Additionally, anmdb allowsbatch execution of commands via scripts so users can conveniently restore
State.



3.3 Overview of the Analysis Framewor k

The goa of theanalysisframework isto explain the observed performance of an AM running auser-supplied workload.
The single ultimate performance number is the total execution time of the entire workload. This total depends on
the number and nature of page accesses, the buffering policy and the CPU time spent examining pages. We will for
now concentrate on explaining observed page accesses and ignore the other components of the performance equation.
Section 5.4 addresses these issues.

The introduction mentioned the deficiencies of the current practice of reporting performance with aggregate 1/0
numbers or data-specific metrics. To be effective and universaly applicable, an analysis framework should have three

properties:

1. The performance metrics should be data-independent and not be tailored to the semantics of a particular
application domain, so that the anaysis framework is applicable in the full generality of the GiST AM design

framework.

2. The performance metrics must give an indication of the quality of measured AM performance in terms of the

optimization objective, i.e., minimization of 1/0s.
3. The metrics should give the designer an understanding of the causes of observed performance.

In order to ensure data-independence of the framework, the workload—atree and a set of queries—is an input
parameter of the analysis and the metrics characterize the performance of an AM specifically in the context of that
workload. Also, the performance metrics directly characterize the observed performance of the workload execution,
namely the page accesses. They are not stated in terms of data or query semantics, and are therefore data-independent.

Instead of simply reporting the number of observed page accesses, a more meaningful performance metric isthe
difference between the number of page accesses in the actua tree and the optimal tree; we cal this difference the
performanceloss. Theoptimal treeis defined as minimizingthetotal number of page accesses over theentireworkl oad.
Knowing the magnitude of performance loss is a clear indication of the quality of an AM, expressed in the units of
the optimization objective, 1/0s. Moreover, the performance |oss shows the potential for performance improvement,
which cannot necessarily bediscovered even when comparing two competing AM designsusing traditiona performance
metrics. We can compute a query performance loss, which expresses the difference in the number of 1/Os of a query
executed against the actual tree and the workload-optimal tree® Similarly, we can compute a node performance loss,
which expresses a node's contribution to query or aggregate workload performance loss. Furthermore, we can aso
compute implementation metrics in order to characterize aspects of the AM implementation. The extension methods
pickSplit() and penalty() directly control the tree structure and performance loss metrics for these functions should
express to what extent they are responsible for the structural deterioration that causes performance loss. Due to
space constraints, we are unable to describe the implementation metrics in this paper and will ignore them in further

discussions. Please refer to the technical report [14] for details.

SHaving knowledge of the execution profile of the workload, in particular the result sets of the queries, allows usto approximate the optimal tree
relatively accurately. The details of how the metrics are computed are presented in Section 5.
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Figure 2: Decomposition of observed 1/Os on a per-query and per-node basis.

Given a particular performance loss, we can further subdivide it to reflect the fundamental performance-rel evant
properties of GiST-based AMs, namely clustering, page utilization and excess coverage loss. Clustering loss specifies
thepart of performance | ossthat can be attributed to the difference between workl oad-optimal and achieved (leaf-level )
clustering in the index tree; utilization loss specifies the part that is attributable to node utilization deviating from a
target utilization; excess coverage |oss specifies the part that is due to accesses to leaf nodes that contain no relevant
datato a query. All of these subdivisionsof performance loss are also specified in I/Os—possibly fractions of 1/0s;
They are summarized in Figure 2. Such a breakdown of performance loss is more useful than aggregate numbers,
because it helps the designer understand the nature of the loss and thereby provides more insight into the causes of
observed performance. The breskdown of the node metrics in particular helps the designer identify anomalies in the

tree structure. The examplesin Section 4 will illustrate this point.

34 Usingthe Andb Analysis Framework

Touseandb inorder to analyze an AM design, the designer constructs an index tree and decides on a set of queriesto
run against that tree. Together, these two items congtitute the target workload. Taking thisworkload as input, andb
then runs the analysis that produces the performance metrics described in the previous section. The analysis process
consists of running the queries against theindex tree, gathering tracing datasuch astraversal paths, and approximating
an optimal tree based on the tracing data. Given this optimal tree approximation, andb computes the performance
metrics for each query and the aggregate workload. These are broken down further into per-node |oss metrics, which
are aso computed for each query and the aggregate workload. A detailed description of the tracing data, the nature of
the optimal tree and the computation of the performance metrics are given in Section 5.

The performance |oss metrics express 1/0s, not particular application-specific properties of thetree at hand or the
AM design; the metrics can therefore only serve as an indication of, not an explanation for performance deficiencies.
The explanation of performance deficiencies and a subsequent improvement of the AM design need to be done by the
AM designer, based on an understanding of the semanti cs of theapplication domain. Gaining such an understandingisa
creative process, whichishelped by theandb visualization facilitiesand their integration with the analysisframework:
the performance metrics “flag” those parts of the tree and those queries that perform badly; the visuaization facilities

then let the designer navigate those index nodes and queries and investigate the reasons for their above-average

4Why thisis restricted to leaf-level clustering is explainedin Section 5.



performance loss. Aside from the user-extensible data visualizations, andb aso gives the designer access to a very
comprehensive set of workload statistics, including per-query aggregate page access numbers, full traversal paths, the
amount and specific location of data retrieved, etc. The performance metrics themselves are very voluminous—there
are three loss metrics for each query and each node of the tree-which makes it necessary to find good visualizations
for them.

The node metrics are visualized by coloring nodes in the global and tree view, so that ill-behaved parts of the tree
can be identified easily without having to browse through each node’'s metrics individually. The navigation and data
visualization features of these views let the developer navigate those parts of the tree structure and examine the data
contained therein. The global and tree views are a so used to visualize the per-query loss metrics and trace dataon a
per-node basis (for example, traversal paths can be visualized very effectively through node coloring). This tracing
datain combination with the visualizations give the devel oper a very detailed view of the behavior of each query and
areinstrumenta in understanding poorly performing queries.

Before designing an AM for a particular workload, it is actualy instructive to determine whether that workload is
possibly unindexable, i.e., whether no index structure will be able to outperform a sequentia scan on that workload.
Theandb analysis process produces dl the data necessary to perform such atest; the detailsare given in Appendix A.

The next section describes two andb-assisted AM design projects in which the andb performance metrics were
used to assess the merits or demerits of an AM design. In these examples, total 1/0Os or execution times were

inconclusive or, a worst, misleading.

4 Sample Applications of Andb

Since the time amdb was implemented and made available to the public, two AM design projects undertaken at U.C.
Berkeley made use of thistool. We will describe each oneinturnin order toillustrate how andb was used to help the

design process. In both of these projects, designers were able to use antb to achieve significant improvements.

4.1 Content-Based Image Retrieval

AnAM design project was undertaken in the context of acontent-based image searching, Blobworld[1]. TheBlobworld
system addresses content-based querying by breaking the images into “blobs’ of homogeneous characteristics, and
searching for images by specifying the characteristics of the blobsin the desired images. A full Blobworld query must
perform computationally complex comparisons of the high-dimensional feature vectors of theblobsin theimages. For
the purpose of indexing thisdata set, the dimensionality of thefeature vectorswasreduced from 218 to five dimensions
by doing asingular value decomposition. The data set was then bulk-loaded into an R-tree using the STR partitioning
algorithm [16]. The details of thisAM design project are described in [23].

Using andb, the designers found that while clustering and utilization were good (i.e., the corresponding losses
were 3 and 1 percent of the total number of about 200,000 I/Os for the entire workload), excess coverage contributed
avery large percentage to the total 1/0 count (about 31 percent). The tree visualization of the excess coverage loss

statistics actually showed nodes with particularly high loss. Visudizing the data in those nodes helped the designers



come up with ideas for a more accurate encoding of the space covered by the feature vectors. More specificaly, the
data visualizations showed nodes with a large fraction of empty “corner” space; the remedy for thisisto encode the
SPs as polygonsinstead of simple hyperrectanglesin order to “cut avay” empty corners.

One particular design idea for SPs was to combine two hyperrectangles instead of just a single one, as in the
standard R-tree. Running the benchmark workload in anmdb quickly showed that, as implemented (rectangles were
chosen from a set of randomly constructed bounding rectangles), this design resulted in a small total performance
degradation in comparison to the original R-tree. Looking at andb’s metrics made it clear that this design decreased
excess coverage lossat thelesf level, butincreased 1/Osat theinterna levels. Thereasonisthat at internal levels, having
two hyperrectangles was not an effective way of excluding “empty” corners;® the combination of two hyperrectangles
therefore ended up being no more di scriminating than just asingleone, but used up more space. Thisparticular example
illustratesthe val ue of the performance breakdown: had only aggregate I/O numbers been available, thevarying effects
on the leaf and internal levels would not have been visible, making it harder to draw the same conclusion. In this
example, the integration of the available metrics with the visualization tools was also very important, because it
facilitated examining those nodes with high excess coverage loss and drawing conclusions about the shape of the SPs.

Similarly, theandb analysi sal so established that another desi gn alternative—convex minimum-bounding polygons—
causes amost no excess coverage lossand istherefore closeto optimal for the given workload. Taking thisinto account,
the designers then focused on finding an approximation to this fairly CPU-intensive design, rather than searching for
ayet more accurate SP design. In thiscase, theandb performance metrics clarified that no substantial improvements

could be gained from investigating more accurate SPs.

4.2 Multidimensional Point AM for Window Queries

As part of the graduate database class at U.C. Berkeley (CS286, Spring 1999), the students were required to design an
improved AM for a particular synthetic multidimensional point dataset (containing 8-dimensional data arranged into
200 clusters of 100 pointseach). The workload consisted of 10,000 range queries centered on randomly chosen data
points. The starting point was the performance achieved with an R*-tree, which the students needed to improve.

A confirmation of the efficacy of amdb and the analysis framework in particular was that many of the design
groups managed to improved performance to a great extent (some by a full 50 percent), although none of the students
had perviuosly worked on spatia point AMs (in fact, any AMs at al) and each group only spent about aweek on the
assignment. We believe that without andb, such results would not have been possible.

All groups started their design process by looking at the breakdown instead of just the total numbers of aggregate
I/0s and proceeded to address one or more of the performance factors which proved to be problematic. At the leaf
level, theinitial total number of 26,600 1/Os broke down into roughly 5,400 I/Osdue to clustering loss, 1,800 1/0Os due
to utilizationloss, 9,050 1/Os due to excess coverage loss and 10,350 optimal 1/Os.

One of the design ideas that the students came up with was to relax the utilization restrictions in the R*-tree split

algorithm (which alows at most a40/60 imbalance). The purpose wasto to allow anode split to separate two clusters

5This might be an effect of the particular algorithm used to construct the SPs, but that is not the point here.
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cleanly instead of forcingit to divide up individual clusters between two nodes to satisfy utilization restrictions. This
resulted in a substantial performance improvement, reducing the total number of leaf I/Osto 19800. Aside from
clustering and excess coverage l0ss, it also reduced the utilization loss component, which was unexpected, because
splits were allowed to be less balanced.® The breskdown of the aggregate 1/0 number therefore clarified the effects
of this design idea and in this particular case alowed the design group to conclude that further work on rectifying
an assumed utilization problem was not necessary. Another design group had a contrary experience; their SP design
resulted in a total reduction of 4,000 leaf 1/0s. The breakdown showed that the cause for this was a reduction of
excess coverage loss by about 5,000 I/Os, mitigated by an increase of utilization loss by about 1,000 1/Os. Again, the
breakdown conveyed more useful information that just the aggregate number and gave a more insightful assessment
of the effects of this particular design idea.

Generdly speaking, all groups stated in their reports that the performance metrics were essentia in finding
which aspects of the AM needed improvement. In addition, some groups complained that the multidimensiona
data visualization supplied with andb (which consists of a simple projection on the first two dimensions) was not
sufficiently powerful. Thisillustrates our earlier point about the complementary nature of andb’s data-independent
performance metrics and data-specific visualizations, namely that the latter is necessary for gaining an intuition of the

nature of the problem, whereas the former tells the designer which particular subtrees or queries to investigate.

5 Detailsof the Analysis Framework

Thefollowing subsection discusses the optimal tree and how to construct it. Section 5.2 derivesthe query performance
metrics, first for theleaf level, then for internal levels, and presents exampl es of analyses conducted with these metrics.
Section 5.3 derives node metrics based on the query metrics. Various examples throughout this section illustrate the
performance metrics.

The presentation of the metrics in this section is purposely informal and relies mainly on examples; we felt this
would improve readability. The input variables and metrics are defined and summarized in Table 1 and Table 2,
respectively. Variables with subscript ¢ are query-specific and variables with subscript p are page-specific. Use these
as references when reading through the equations. Also note that the performance metrics are a compl ete partitioning

of the I/Os observed for the workload; an 1/0 or fraction thereof is not attributed to more than one loss category.

5.1 Construction of the Optimal Tree
The optimal tree is defined by the following characteristics:
no excess coverage, which eiminates page accesses dueto overly general SPs;

target page utilization, which would ideally be 100%, but thisis unattainable in practice. For that reason, the AM

designer can specify a desired target page utilization, which serves as apoint of comparison for nodes withinthe

6The possible reason for thisis that it separatesclustersinto their own nodes; in this particular data set, if anode contains more than one cluster,
it will beforced to split at some point.

11



Q set of queries ¢ in workload
L set of leaf nodesin tree

1 set of interna nodesin tree
C' [bytes] page capacity

R, [bytes] size of result set

Lg set of accessed pagesin optimal clustering
L, set of accessed leavesin actual tree
L, set of relevant leaves in actua tree (leaves that contain items of ¢'sresult set)
up [%0] utilization
ug [%0] average utilization seen by query, u, = ZpEL; up [ Lg|
1, set of accessed internal nodesin tree
I% set of accessed internal nodes on pathsto L,
I internal “leaves’ of traversal paths, I, = {plp € I, \ I} A —(child(p) € I, U L,) }
Qp set of queriesthat access p
b set of queriesfor which p isrelevant leaf
q optimal ratio of accessed toretrieved data, r, = [Lg| * C % u:/ R,

R, , [bytes] sizeof fraction of ¢'sresult set found on p

© , [bytes]  optimal amount of accessed data, @9 , = 7 * R,

Q) [bytes] optimal amount of accessed data aggregated over workload, (), = qu% rq* Ry g
Table 1. Input Variables (Profiling Data, Tree Statistics and Derived Variables)
tree structure. The value we often used in practice was the average workload page utilization. We will see that
the absolute level of the target page utilization does not affect the significance of the performance metrics.

optimal clustering, which minimizesthetotal number of “relevant” page accesses (at theleaf level, thoseare accesses

to pages containing items of the result set of a query, see Table 1) for the entire workload.

CL, clustering loss CLg = ug/ue| Ly | — |Lg]
EL’? leaf-level excess coverage loss EL’? = |Lg| — L]
UL, leaf-level utilizationloss ULy = | Lgl(1— ug/ue)
0 ifpe I%
EL; . internal-level excess coveragelossonpage KL, , =< 1 ifpel,
' p ' up /Uy cherwise
ELY internal -level excess coverage loss ELy = Zpelq\% EL, ,

1-ELL, ifpel\1,

UL internal-level utilization loss on page p ULy 4 = { 1—u/u; otherwise

UL internal-level utilizationloss ULy =3 ,er, UL,

I remainder of internal-level accesses I = ZPU; up /Uy

CL, clustering loss CL, = qu%(up - Qp ,/CO)/u

EL% leaf-level excess coverage loss EL% =1Q,\ Q)]

ULP leaf-level utilizationloss ULP :ZqEQpl—up/ut

EL, internal-level excess coverage loss EL, =|{qlpe .}

UL, internal-level utilizationloss UL, :Z{quppoIé}l—up/ut
s remainder of internal-level accesses Q) :E{quplpﬂ;} up /Uy

Table 2: Performance Metrics
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Figure3: Traversa Paths and Optimal Clustering for Example Query

A tree with these properties will execute the investigated workload with the minima number of page accesses.
Thistreeisonly atheoretical construct, sinceit is generally impossibleto create reasonably-sized SPs with no excess
coverage. Nevertheless, it is possible to approximate this tree well enough to be able to infer the page access pattern
of theworkload queries.

To congtruct the optimal leaf level, we partition the indexed data items so that the total number of leaf accessesis
minimized over theworkload” and the partitionsize isequal to the target page capacity. Thistask can be converted into
ahypergraph partitioning problem by modelling the workload as a hypergraph (each indexed dataitem isanodewith a
weight that isequal toitssize in bytes; each query, identified by itsresult set, isahyperedge). Hypergraph partitioning
isprovably NP-hard [8], but existing approximation algorithmswork reasonably well in practice (Section 5.5 discusses
theimplementation, in particular the hypergraph partitioning, in more detail).

To construct the optimal internal levels, we need to create reasonably-sized SPs with no excess coverage, whichis
generaly not possible. Nevertheless, it is still possibleto report utilization and excess coverage |oss metrics for those.

Figure 3 serves as a running exampl e throughout the rest of this section. It shows the traversal tree of a query (its
traversal paths in the index, which form a subtree of the index) that retrieves five data items, for which it needs to
access four leaves in the actual tree and two leaves in the optimal tree. The page capacity is four items (to keep the
example ssimple, data items and SPs are assumed to have the same size) and the target utilizationis 75%. Occupied

dots are shaded, and the pages in the actual tree are enumerated for reference.

5.2 Query Performance Metrics

The per-query performance metrics express performance loss due to suboptimal clustering, page utilizationand SPsin
theindex. At theleaf level, these numbers are derived by comparing the page access pattern in the actual tree withthe
corresponding pattern in the optimal tree. At theinternal level, the corresponding optimal structureisnot available for
comparison, but we can till derive areduced set of the metrics, namely excess coverage and utilizationloss. The next

two subsections in turn describe how the loss metrics are derived for the leaf level and theinternal levels.

“Note that clustering to minimize the number of leaf accesses over the entire workload will generally not minimize the number of leaf accesses
for each query individually. The minimum number of leaf accesses for a single query is the size of its result set divided by the page size. This
usually cannot be achieved for the entire workload, because the individual queries’ clustering requirements are contradictory.
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5.2.1 Leaf-Leve Performance Metrics

For each query, theperformancelossat theleaf level—actua minusoptimal |eaf accesses—isdividedup intoutilization,

excess coverage and clustering loss. More formally:
|Lgl = |Lg| + EL, + UL, 4+ CLy.

In the example, the query experiences a performance loss of two leaf accesses when compared against the optimal
tree. We show how to compute the losses for thisexample.

Excess coverage loss When accessing a leaf during query execution that does not contain any items of the result
set, the leaf access is due to excess coverage in the leaf’s SP. Even if those pages are underutilized do they not count
toward utilization loss, because packing them more densely would not [ower the total number of |eaf accesses (unless
retrieved datawere added, but then the accesss woul d not count as excess coverage to begin with). For the same reason,
the access cannot count as clustering loss, because the feature of that node relevant to the query isits SP, not its page
utilization or clustering. In the example in Figure 3, leaf 0 is accessed but contains no matching items, and therefore

the access counts as excess coverage 10ss.

Utilization loss Deviation from the target utilization in the remaining leaves is summed up as utilization loss. In
the example, leaf 2 has a utilization of 50%, which is 2/3 of the target utilization of 75%, resulting in a loss of
1-0.5/0.75 = 1/3. Theidea behind this accounting is that if the pages had been packed more densely, part of the
accesses could have been avoided. Note that a page utilizationin excess of the target utilization counts as a negative
performance loss, i.e., a performance gain.

Clugtering loss Clustering loss is the difference between the conceptually “tightly packed” leaves in the index and
the corresponding leaves in the optimal tree. The accessed leaves in theindex become “tightly packed” by subtracting
the utilization loss. In the example, the result set is spread over three leaves, or 8/3 tightly packed leaves. The

difference between that and the two leaf accesses in the optimal treeis2/3, the clustering | oss.

To summarize the leaf-level metrics established for the example query: excess coveragelossis 1 1/O, utilizationloss
is1/31/Osand clusteringloss2/31/0s. Thesumis2 1/Os, which isthetota performanceloss that the example query

experiences at the leaf level.

5.2.2 Internal-L eve Performance

Althoughit isnot possibleto construct the optimal internal levels for the workload in a manner similar to thelesf level,
the characteristics of the accessed internal nodes in the actua tree still allow us to derive two of the three metrics,
namely excess coverage loss and utilization loss. The remaining internal-node accesses cannot be subdivided any
further. Moreformally:

|| =1} + EL, + UL},
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Excess coverageloss Similar to the leaf-level metric, accesses to internal nodes without any matching entries are
counted as excess coverage loss. In addition, we aso count internal pages that do not lead to any leaves containing
retrieved data; these internal pages are accessed due to excess coverage of SPsin the subtree. In the example, page 6
does not carry any matching SPs and its access isfully counted as excess coverage loss. Page 4 has amatching SP, but
it only matches because of excess coverage in page 0's SP, so we count its utilization, 2/3 of the target utilization, as
excess coverage. Theremaining 1/3 are counted as utilizationloss, because, unlikethe leaves of the traversal tree, the

property of relevance of these nodesis not their SP but the SPs of their children, i. e, the data contained in this node.

Utilization loss Similar to the corresponding leaf-level metric, the sum of the deviations from the target utilization
isthe utilization loss, excluding from consideration leaf nodes of the traversal path of the query. In the example, only

page 4 causes the query to experience utilizationloss a theinterna levelsin the amount of 1/3 1/Os.

To summarize the preceding observations. of the 4 page accesses to interna nodes, 5/3 are caused by excess

coverage and 1/3 by underutilization. The remaining 2 accesses to nodes 5 and 7 cannot be subdivided any further.

5.3 Node Performance Metrics

The per-node loss numbers are derived from the per-query 1oss numbers and show which parts of the tree contributeto
performance deterioration. More specificaly, these metrics show how anode's utilization and clustering properties as
well asits SP affect workload performance. Generadly, we sum up the per-query 1oss metrics across the nodesto arrive
at per-node metrics. Similar to per-query metrics, we subdivide the accumulated performance loss of aleaf pageinto

excess coverage, utilization and clustering loss. Moreformally:
Qo =Qp+ EL, + UL, +CLy,pe L.

At the interna levels, we can only identify excess coverage and utilization loss; the remaining accesses cannot be

subdivided any further. More formally:
Qp| = Q)+ EL, + UL, pel
Figure 3 will again be used as our running example.

Excess coverageloss A node's excess coverage loss is simply the number of times the node was accessed but no
matching data was found. This does not take into account accesses to internal nodes that are caused solely by excess
coverage in the children’s SP, which are a so classified as excess coverage loss. In this particular case it is the shared
responsibility of the children, and it needs to be apportioned to them in some way. It is not clear how that should be

done, so thistype of excess coverage loss s presently not accounted for in the node performance metrics.®

8|n the experiments conducted so far, those accesses played an insignficant role in comparison to the workload total. Note that the term Qp dso
includes excess coverageloss created by child nodesthat cannot be apportioned to the child nodesthemselves.
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In the example, we have pages 0 and 6 with excess coverage loss of 1 1/0 each. The excess coverage |oss of page
0 should also include the data accessed in page 4, but apportitioning this excess coverage loss to the children is not
generally possible, as explained in the preceding paragraph.

Utilizationloss A node'sutilizationlossisthe product of itstraversal count (minusthose accesses caused by excess
coverage) and its deviation from target utilization. In the example, pages 2 and 4 both have a utilization of 50%, a
deviation of 1/3 from the 75% target utilization.® If each of these were traversed 100 times across the entire workload,

each one would contribute 33% accesses to the entire workload performance.

Clugteringloss  Each query’sclusteringlossneedsto bedistributed according to how much each accessed, non-empty
leaf contributesto total clustering loss. We use as the guiding principle the qudity of the clustering in a node for the
particular query in question. The quality of clustering can be expressed as the ratio of accessed to retrieved data,
and the optimal clustering establishes a benchmark ratio against which the accessed leaves in the actua tree will be
measured.’® In the example, the query accesses 2 leaves in the optimal treeto retrieve 5 dataitems, which fill up 5/3
pages, resulting in a benchmark ratio of 1.2. At leaf 3, the example query accesses 1 page worth of datain order to
retrieve 1/3rd of the page, athough according to the benchmark ratio it should only have accessed 1/3 * 1.2 = 40%
of a page. The difference of 60% is the clustering loss that the node contributes to this query. The corresponding
numbers for pages 1 and 2 are —0.2 and 4/15. The sum across these leaves is 2/3, which isthetotal clustering loss
for the query established in Section 5.2.1. The total per-node clustering loss is simply the sum of the per-node |osses

over the queries.

5.3.1 Examplel: Comparison of R- and R*-Trees

This example illustrates how to make an initial performance assessment with the help of the per-query and per-node
metrics. We compare R- and R*-trees for range queries over 8-dimensional point data; we purposely chose to compare
two well-known data structures, because knowing how they work will make the results of the analysis easier to follow.

The data set used in the experiment consists of 40000 8-dimensiona points, with each dimension limited to the
interval [0, 100), arranged into clusters of 100 points each. The clusters are box-shaped and have a diameter of 10;
the center points of the clusters are distributed randomly. The trees were produced by bulk-loading 20000 randomly
selected dataitems and individually inserting the remaining 20000. This ensures that the split and insertion strategies
are reflected in the resulting trees. Bulk-loading was done using the STR technique [16], which partitions the data
points into iso-oriented tiles. We ran 20000 sgquare range queries over the trees, each with a side length of 12. The
center points of the queries were randomly sdlected items from the data set, so that every query intersected with a

cluster. On average, each query retrieved 20.6 items.

9Conversely, if the target utilization is 45%, those pages would have recorded a utilization gain. Since utilization metrics record deviation from
aconstant, changing this constant does not affect performance difference between any two nodes.
OMore formally: the pagesin L}, cause aloss of C'L that needs to be distributed according to how much each pagein L;, contributes. Given
Ly, wedefine abenchmark overheadratiorq = |Lg| * C' * u; / Rq. Giventhat ratio, we expect to accessrq * g, 0N each pagep if clusteringin
the actual tree were as efficient asin the optimal tree. Thedifference uy, * C' — rq x Ry, iSp’s contribution to query ¢'s clustering loss.

16



The aggregate results of thisanalysis are summarized in Table 3. We only report leaf-level performance numbers,
since for thistype of workload, R- and R*-trees are relatively short and the upper levels can be buffered. Section 5.4

talks more about how to account for buffering.

R*-tree [1/Os] R-tree[1/Og]
actual tree, total 72,044 97,414
optimal clustering 23,262 23,224
utilization loss 4,650 3,906
excess coverage loss 16,895 30,171
clustering loss 27,237 40,113
sum 72,044 97,414

Table 3: Comparison of leaf-level performancein R- and R*-trees

The performance numbers indicate that R*-trees outperform R-trees, which iswhat is expected, but that there'sis
gtill room for improvement.

Low utilization losses indicate that underutilizationis not a problem. The target utilization was set to 80% and the
average workload utilizationsare close to that number (74.28% for the R*-tree and 75.75% for the R-tree).

Comparing clustering losses with those in theinitial bulk-loaded tree confirms that theinitia clustering is deterio-
rated by splitsand insertions, although only to a moderate extent in the case of R*-trees. This can be deduced from the
clustering overhead, which is the ratio of optimal accesses plus clustering loss to optimal accesses. For the R*-tree,
thisratiois (23262 + 27237) /23262 = 2.17 and for theinitial bulk-loadedtreeitis (10412 + 8903),/10412 = 1.86. A
possible reason for the relatively high clustering loss in the bulk-loaded tree isthat by creating equi-distant partitions
along each dimension, the STR agorithm cuts through clusters that exist in the data; since the queries are centered on
the data points, breaking up clusters will also cause more page accesses.

Using andb, we can see that in both cases the clustering loss is not spread evenly across the entire leaf level, but
mostly confined to afew hot spots (thisis shown in the global view, which isdescribed in Section 3; we omit a screen
shot of thisparticular scenario here for brevity). The differenceisthat for the R-tree, these hot spots are more frequent
and more stretched out.

Looking at per-node excess coverage loss in both trees, we can see that thisis roughly co-located with clustering
loss. This seems to suggest that the SP design works well for the clustering requirements of the workload, because
we do not experience excess coverage loss where clustering loss is low. Intuitively, this is what we expect for
mi nimum-bounding rectangl es, because good clusters for thisworkload are rectangular, which resultsin tightly-fitting
MBRs.

5.3.2 Example2: Comparison of SPsfor Nearest-Neighbor Searches on Multidimensional Points

This example illustrates how to evaluate and compare different SP designs independently of the remaining AM
design aspects. We compare three different SP designs for a popular type of workload, nearest-neighbor queries on
multidimensional point data. The three types of SPs are: minimum bounding rectangles, as employed in R*-trees[3];
minimum bounding spheres, as employed in SS-trees [24]; a combination of the two, whichis used in SR-trees[12].

The latter two AMs were specifically designed for the type of workload that underlies our comparison.
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The data set used in the experiment consists of 40000 8-dim points, with each dimension limited to the interval
[0, 100), arranged into (uniformly distributed) clusters of 100 points each. The clusters are box-shaped and have
a diameter of 10. The query set consists of 20000 nearest-neighbor queries, each centered on a randomly selected
(without replacement) data point and retrieving 20 items. In order to eliminate the effects of page utilization and
clustering, we built the R*-, SS- and SR-trees by bulk-loading the leaf level, so that only their internal levels differ.
Leaves Internal Total
R* 15061 51486 66547

SR 15003 61699 76702
SS 134094 173350 307444

Table 4: Comparison of SPs of R*-, SS- and SR-trees

The measured excess coverage losses for the entire workload are shown in Table 4. Essentially, R*- and SR-tree
SPs cause about the same amount of excess coverage |0ss, whereas the spheres of the SS-tree have about 10 times as
much excess coverage loss. The reason is that the point setsin the leaves form clusters for which the MBRs have an
aspect ratio that significantly deviatesfrom 1. The corresponding spheres, which have asimilar diameter asthe MBRs,
suffer from amuch higher volume. The higher excess coverage |oss of the SR-treein comparison to the R*-treeisdue
to the increased storage requirements of their SPs, which decreases the fanout of internal nodes. Reducing the fanout
leads to an increase in the number of nodes, which aso increases the number of traversals caused by excess coverage.

The bad performance of spherical SPs in this example may well be an artifact of bulk-loading, which produces
clustersthat are often skinny along one or more dimensions. If the clusters would have a spherical shape, the result of
the comparison might even favor spherical SPs. Intuitively, though, spherical SPs are less robust regarding the shape
of the clusters, because, unlike rectangles, they have the same extent in al dimensions.

Thisexampleillustratesthe val ue of the excess coverage metric and theimportance of separating individual aspects
of an AM design. Another performance study that compares sphere and rectangle SPs [12] comes to a conclusion
contrary to ours, namely that spheres result in smaller-diameter SPs, because three separate e ements of AM designs
were eva uated together: by comparing insertion-loaded SR- and R*-trees, the insertion and split strategies a so come

into play and mask the performance effects of the SP design.

5.4 Other Performance Factors

Intheanaysisframework presented so far we completely ignored anumber of componentsof the performance equation
(CPU time, buffering, and comparison with approximations). We will now address these componentsindividually and

also comment on the useful ness of approximation numbers as the basis for our comparisons.

CPU Time Although CPU time can play an important role in the overall performance of an AM, we excluded it
from the analysis framework. Since CPU time is not amenable to the same type of analysis as page accesses, it is
unclear how to construct amodel of optimal CPU time behavior. Another drawback of CPU timeisthat it depends on
the quality of the implementation and the particular hardware platform on which the analysisisrun. Thisimpliesthat

these metrics are less general than page access-related metrics. Since CPU time can play an important role in overall
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execution cost, we suggest that an AM designer weigh it judicioudly against the page access metrics of our framework
when deciding which aspects of the AM implementation need to be improved.

Buffering Buffering has been shown to reduce the number of 1/Osfor AM queries[15] and its presence—a standard
festure in all commericial DBMS—uwill therefore change observed workload performance. We will outline severa
ways of taking buffering into account in the context of our analysis framework. A popular buffering technique for
tree-structured AMsisto pin thefirst few level s of thetree ([ 15] mentionsthat in their experiments, thistechniquenever
performed worse than LRU replacement). Modifying the analysis metrics to take thisinto account is straightforward:
the observed page accesses to those upper levels can simply be subtracted. For other buffering techniques, we can
estimate an average hit rate and reduce the performance metrics uniformly by that rate. Either way, buffering can be
dealt with separately and need not be integrated into our framework. Notethat in order to integrate arealistic view of
buffering intotheframework, it isnot sufficient to simulate abuffer pool/replacement strategy against a serial execution

of thequeries. In readl DBMSs, queries are typically executed concurrently and index accessis most likely interleaved.

Comparison with Approximation Numbers The performance metrics use the optimal tree as apoint of reference.
Unfortunately, in practice we can only approximate the optimal tree, which questions the usefulness of reported
performance numbers. First, note that in the optimal tree, only clustering is approximated. Page utilization and SPs
are stipulated to be perfect, and therefore the corresponding numbers accurately reflect the true performance loss.
However, since no boundson clustering quality are known for the heuristic a gorithm we use for optimal clustering, the
reported clustering loss numbers are only with regard to a“good” clustering rather than the optimum. Nevertheless,
those numbers are still useful information for the AM designer: if the reported clustering lossis positiv, clustering in
the actual tree cannot be optimal and should therefore be atarget for performance improvement. The number of cases
in which negative clustering loss will be reported depends on the effective quality of the clustering algorithms. With
the algorithm currently in use, we have not seen a single workload for which substantial negative clustering loss was
reported.

55 Implementation

During the execution of the workload, andb collects profiling data for each query individualy, consisting of query
result sets (references to retrieved items), visited pages, the number of bytes retrieved per page, etc. The burden this
puts on the workload execution is proportiona to the cost of the execution itself, i.e., profiling a single page access
or item retrieval incurs a small, constant cost, and is negligible. For example, 2500 nearest-neighbor queries on
5000 2-dimensional pointstook 12.3 seconds without profiling and 13.06 seconds with profiling on a Dell Dimension
Workstation 333MHz Intel Pentium 11 processor. The size of the stored profiling dataand performance metrics depends
on anumber of factors, such as the size of the result sets, tree size and excess coverage present in the tree, so it cannot
be stated as a simple percentage of the tree size. Informally speaking, the sizes are fairly moderate. For example,
the profile sizes for the workloads used in the unindexahility testsin Section A range from 1.4MB (for 5000 queries
retrieving 21 of 10000 16-dimensional points) to 40MB (for 20000 queries retrieving 120 of 40000 16-dimensiona
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points).

Hypergraph partitioning is used to construct the optimal leaf level used for the query and node analysis, the
optimal tree used for the implementation analysis and the optimal split used for the pickSplit() analysis. This task
is performed by the public domain package hMet i s from the University of Minnesota [11]. HMeti s employs
heuristics to approximate the optimal partitioning (which itself is NP-hard). Although designed primarily with VLSI
applications in mind, we nevertheless found it to produce high-quality partitionings. As an example, we compared
an R-tree bulk-loaded with 2-dimensional, Hilbert-val ue-sorted points with the equivaent hivet i s-partitioned leaf
level. The latter even dightly improved the clustering of the Hilbert-sorted leaf level (one has to keep in mind that
even a perfectly square grid partitioning might be suboptimal for a given set of queries, because the queries might
prefer adifferent grid origin or a different aspect ratio). We aso found cases where thehMet i s-produced clustering
was inferior to space-partitioned [16], bulk-loaded lesf levels, but the performance difference was minuscule and the
two clusterings were practically identical. Using hypergraph partitioning to arrive a a clustering of the data items
requires that each data item be covered by a sufficiently large number of queries, and furthermore that the queries
themselves are sufficiently diverse (where establishing “sufficiently” is an area of future work). For the experimental
results presented earlier, we tried to be conservative and executed half as many queries as there were dataitems. The

gueries themselves were centered on uniformly selected dataitems so that even coverage was ensured.

6 Redated Work

6.1 Index Performance

Pagel, et a. [18] study index clustering in a manner very similar to that of our analysis framework, also using an
idealized goal of an optimal clustering to establish lower bounds on page accesses. They focus on window queries
over multidimensiona datasets, and apply simulated annealing to find an approximation to the optimal clustering. In
their complexity anaysis, they use a graph model for clustering that is not unlike our use of hypergraph partitioning.

Theliteratureisrifewith performance studiesof variousindex structures, especially for multidimensional querying.
Gaede and Guinther survey over 50 different multidimensional index structures[7], most of which wereintroduced with
aperformance study to demonstratetheir efficacy. [7] aso surveysanumber of comparative studiesof multidimensional
indexes, and attemptsto unify the resultsinto a partia ordering of quality; thisis complicated by the variance in the
workloadsthat the studies examine.

Most of the studies in the literature do not analyze performance results beyond comparing the number of page
accesses on a given workload. Some studies provide analyses or intuitions of varying complexity to justify the page
access measurements, often with domain- and workl oad-specific arguments. Asan example, [3] explains (and visualy
illustrates) the efficacy of their node split technique with arguments about the virtues of square bounding boxes, which
are not clearly trandatable to other data domains, or to workloads of queries with high aspect ratio.

Thereisalso abody of work on describing or predicting multidimensional index performance using forma models

([6, 18] are two examples). These papers provide insight into the performance of different indexing techniques on
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various synthetic workloads of queries and data. They often make rather strict assumptions about the workloads they
model (e.g., many study only square queries). These models shed light on the challenges of multidimensiona indexing
in generd, but are not necessarily helpful to a user studying a particular workload of queries and data. Mapping from

a user'sworkload to one of these modelsis not generally possible.

6.2 Index Visualization and Animation

Toour knowledge, andb isthefirst tool of itskindto allow index devel opersto debug and anal yzetheir impl ementations.
Naturally, its various visuaization and debugging components have precedents in the literature. Andb significantly
extends many of these approaches, and unifies them into a single framework for index devel opers.

There are anumber of toolsfor visualizing and animating search tree data structuresand al gorithms; acompendium
of references is maintained on the World-WideWeb. 1 Most of thesetool sfocus on displaying tree structures, typically
ina“nodes and arrows” visualization. Thisisuseful only for pedagogical purposes, since such diagrams do not scale
to the size of database indexes.

Brabec and Samet provide a suite of Java applets for a variety of 2-dimensional spatial database search trees,
including R-trees and a host of quad-tree variants [4]. The visuaizations focus on a geographic, 2-dimensional view
of the data domain, akin to amdb’s “node view” but spanning all nodes of one or more levels. Users may observe
SPs and data items during insertion, deletion and splitting, with alarge but fixed set of split algorithms. Some simple
domain-specific statistics are displayed per level. Again, the focus of these tools seems to be pedagogic; the authors
note that the visuaizations do not scale to the fanouts typica in most trees. DEVise [17] is a genera -purpose data
exploration and visualization system, which has been demonstrated to be effective in helping R-tree development and
debugging. Asinthework of Brabec and Samet, DEVise was used in this scenario to visualize a 2-dimensional space
containing data points and bounding rectangles. DEVise itself provides no facility for animating index algorithms or

characterizing performance.

7 Conclusion

This paper presents an analysis framework for tree-structured balanced AMs that can be used to evaluate the page
access performance of user-defined query workloads. The framework is independent of the particular type of datato
index or the nature of the queries. It only requires as input the data and tracing information gathered during query
execution. The performance metricsit produces reflect actua performance loss, obtained by comparing the observed
performance against that of an assumed optimal tree structure. The loss numbers are further decomposed to reflect the
three fundamental structural performance factors. clustering, page utilization and the subtree predicates.

The AM design tool andb incorporates the analysis framework as well as other features that support the design of
GiST-compliant AMs. Andb letsthe user single-step throughindividua index operationsand set breakpointson events

of interest. The visualization features allow navigation and inspection of the tree structure and the data contained in

L hitp://www.cs.hope.edu/ alganim/ccaalccaa.html
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tree nodes. Thelatter is user-extensible, so that the visualizationisnot tied to afixed set of datatypes. To facilitatethe
analysis process, antdb gathersthe required tracing informati on during workload execution and displays the computed
performance metrics both visually and textually.

In andb, the framework is combined with tree and data visuaization and animation functionality to create a
powerful design tool for access methods. The analysis process begins with the inspection of performance metrics to
locate sources of deficiencies. Unlike data-dependent measures, these metrics objectively reflect access method per-
formance. The visualization and animation functionality then enable users to investigate those sources of performance
loss and gain an understanding of how domain-specific properties affect performance. Based on this understanding,
the designer incorporatesimprovementsinto the design and repeats the analysis process to evaluate their efficacy. This
methodol ogy was employed in several projectsat U.C. Berkeley, inwhich andb was an indisposabletool that allowed
effective fine-tuning of AMs, showing significant improvementsin a short amount of time.

There are severa questions we want to investigate in more detail in the future. Section 5 mentions that for the
hypergraph partitioning to produce “good” clusters—those that reflect semantic proximity of the data items—the
gueriesin the workload must not only be representative, but aso cover the entire data set to a sufficient degree. What
therequired number and shape of queriesin aworkload should be needsto be established moreclearly. Wealso planon
extending the analysis framework to other, more exotic tree-structured access methods (such as non-bal anced trees or
key-transforming trees, such as Rt -trees) and hash-based access methods. The main challengewill be the construction
of optima structures for these AMs. Furthermore, we want to add functionality to andb that allows it to compute
user-defined metrics for queries, nodes and the split and insertion strategies. The metrics would express properties of
the data and their organization within the tree that the designer believes to affect performance (for example, “small
minimum-bounding rectangle overlap in R-trees results in good performance”’). Comparing the user-defined metrics
with those produced by our framework letsthe designer verify the accuracy of hisintuition and forceshimto reviseit,

if necessary.
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A Unindexability Test

As part of constructing the optimal leaf level, we can perform a simple test that will tell us if a workload is not
indexable,'? even if it were possible to construct an optimal treefor it. Thistest isnot limited to GiST-compliant AMs,
but appliesto all index structuresthat store indexed data on fixed-size pages.

Thetest can be stated as follows: If in the optimal tree the aggregate number of leaf access for the entire workload
takes longer than sequentially scanning the leaf level for each query, the workl oad should be considered unindexable.
The aggregate number of leaf accesses in the optimal treeisalower bound on thetotal number of page accesses for the
entireworkload, because minimally each query needsto access itsresult set. If thislower bound takes|onger to execute
than a sequentia scan of the leaf level for each query, no actually constructed tree can be expected to outperform
sequential scans. Since index accesses usually result in random accesses, arelatively small number of leaf accesses
will take as long as a sequential scan of the entirelevel. The exact ratio of sequential to random accesses depends on
the disk drives and the OS overhead, and we will assume aratio of 14:1 as a conversion ratio representative of current

technology.’® Note that this test cannot be reversed: failing this criterion does not necessarily mean that a workload

12This test assumesthat total executiontime of the workload under consideration is dominated by page access cost.
13yUsing Seagate Barracuda ultra-wide SCSI-2 drives, [19] measures a throughput of ca. 9MB/s under Windows NT. The average seek time and
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isindexable, because it might not be possible in practice to come close enough to the optimal clustering and SPs to
achieve performance that will on average be better than a sequentia scan. Also note that this test does not constitute
aproof of unindexability, since in practice we can only approximate the optimal leaf-level clustering. Rather, the test
should be seen as a strong hint, which becomes particularly compelling if oneis unable to improve on the generated
clustering by hand.

To illustrate the usefulness of the test, we look at two different kinds of workloads: nearest-neighbor queries on
both uniformand clustered synthetic point data of moderate dimensionality (16 and 32). Such datasets are very popular
for performance studies of access methods for high-dimensional data such as feature vectors ([2] is one example). The
datasets we use for the analysis contain 10000 points each (experiments with 20000 and 40000 points give identical
results for appropriately scaled result set sizes). When applying the unindexability test, the average result set size of
the workload queriesisimportant: if the average result set contains fewer items than the number of leaf pages divided
by the conversion ratio, unindexability cannot be established. For the 16-dimensional data set, with with atarget page
capacity of around 40 pointsand 250 leaves, the threshold result set size is 18 points, or 0.18% of the data set. There
isaso acorresponding upper bound for the result set size, beyond which unindexability is ensured: aresult set sizein
excess of the size of the data set divided by the conversion ratio. For the preceding example, thisupper thresholdis at
around 7% of the data set.

Figure 4 plots the leaf accesses as a function of the result set size for the example data sets. To establish
unindexability, it is sufficient for a workload to access more than 7% of the leaves. For the uniform 16-dimensional
workload, this threshold is reached when result set sizes exceed about 0.3% of the data set size, a surprisingly small
number. For the uniform 32-dimensiona workload, the situation is a little better, because doubling the number of
dimensions aso doublesthe storage size. Note, though, that the threshold result set size does not double as well. In
contrast to uniformly distributed data sets, unindexability cannot be established for corresponding workloadsinvolving
clustered data sets, even for much larger result set sizes.

Unindexability of uniformly-distributed high-dimensional point dataisconfirmed by arecently publishedtheoretical
analysis of nearest-neighbor queries [20], which notes that for thistype of data, increasing the dimension decreases
the distance between the nearset and the farthest points. Thisimpliesthat agiven pointis more likely to be a*“nearest
neighbor” for any query point in higher dimensions than in lower dimensions. As a result, a given point can be
co-retrieved with alarger variety of points, making it more difficult to co-locate with all co-retrieved points. Note that
our unindexability test is able to reach the same conclusion without knowledge of the data domain or the particular
indexing problem. It can therefore be used as an automated first step in the AM design process.

Even if unindexability cannot be established, it is still instructive to ook at the ratio of the number of workload
leaf accesses in the optimal clustering to the number of pages needed to store the result sets. This ratio, which we will
call the workload-optimal access overhead, isa measure of the inter-query “tension” in the workload: the higher this

overhead, the more extra data must be accessed, even if the index achieves optimal clustering and is able to construct

rotational delay for this drive are 7.1ms and 4.17ms, respectively. For 8KB transfers, thisresults in aratio of 14 sequentia 1/Os for each random
1/0. In the past years, raw drive throughput has increased faster than seek times and rotational delay have decreased, so the conversionratio islikely
toincreasein the future.
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Figure 4: Unindexability Test: 16- and 32-dimensiond uniformly distributed and clustered data

SPs without excess coverage. For example, the optimal access overhead of B-tree workloadsis never worse than 2,
and that of 2-dimensional uniform point data is 1.5 on average for 20-item result sets. On the other hand, that of
16-dimensional uniform point data is 12.2 and for 32 dimensions the corresponding ratio is 16.3. A correspondingly
defined query-optimal access overhead can be used to find “atypical” queriesin aworkload, for which the overhead
deviates noticeably from the average.
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