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ABSTRACT 

Amemiya's generalized least squares method for the estimation of simultaneous equation models with 

qualitative or limited dependent variables is known to be efficient relative to many popular two-stage estima­

tors. This note points out that test statistics for overidentification restrictions can be obtained as by-products 
of Amemiya's generalized least squares procedure. Amemiya's procedure is shown to be a minimum chi­

square method. The Amemiya procedure is valuable both for efficient estimation and for model evaluation 

of such models. 
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1. Introduction 

Amemiya (1978, 1979) introduced a general method for the estimation of structural equation parameters 

from estimated reduced form parameters in simultaneous equation models. Amemiya (1978, 1979, 1983), 

Lee (1981) and Newey (1987) have shown that the Amemiya generalized least squares (AGLS) procedure 

provides estimators that are more efficient relative to many popular two-stage estimators in simultaneous 

equation models with qualitative or' limited dependent variables. Amemiya's estimation method has been 

applied, for example, in Lee (1982) for the estimation of a simultaneous equation health and wage model, 

among others. 

Lee (1982) and Newey (1987) have pointed out that for the estimation of a system of equations, 

Amemiya's estimation procedure is closely related to the classical minimum distance methods [Neyman 

(1949), Taylor (1953) and Ferguson (1958)].1 In general, Amemiya's procedure has some common features 

with existing minimum distance estimation procedures, but they are different. This is so, in particular, for 

single-equation estimation.2 In the econometric literature, minimum distance methods have been introduced 

in Malinvaud (1970) and Rothenberg (1973) for the system estimation of classical simultaneous equation 

models. With frequency data, they are well-known alternative estimation procedures to the method of maxi-

mum likelihood for the estimation of qualitative response models [see, e.g., Amemiya (1981) and Hsiao (1984) 

for surveys]. For the estimation of panel data models, they provide a systematic way for the estimation of 

constrained parameters [Chamberlain (1982)]. The classical minimum distance methods are also known as 

the minimum chi-square methods. The minimized distance function is asymptotically chi-square distributed 

and can be used as a goodness-of-fit test statistic [see, e.g., Neyman (1949) and Chamberlain (1982)]. 

* I appreciate having financial support from the National Science Foundation under grant SES-9010516 

for my research. 
1 For a brief survey of several classical minimum distance methods, see Hsiao (1984). 

2 This may explain why Amemiya (1978,1979) did not name his method as a minimum distance method. 
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In this note, we point out that the AGJ:.S procedure provides not only relatively efficient estimates but, as 

a by-product, its minimized distance function provides a convenient statistic for the test of overidentification 

restrictions. Therefore, Amemiya's GLS method is also a minimum chi-square method. AGLS provides a 

systematic estimation and specification test procedure for simultaneous equation models with qualitative or 

limited dependent variables. Such features of the procedure will be valuable for empirical researchers. 
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2. Amemiya's GLS and Minimum Di~tance Estimation 

Amemiya (1978, 1979) introduced a general method for the estimation of a simultaneous equation probit 

model and a simultaneous equation tobit model. Some slight generalizations to other models can be found 

in Lee (1981). Amemiya's method is a systematic procedure for the estimation of structural parameters 

from estimated reduced form parameters. In many parametric or semiparametric models with qualitative 

or limited dependent variables, reduced form equations can be estimated by some conventional procedures. 

With the estimated reduced form parameters, structural parameters can then be derived from Amemiya's 

procedure. As an illustration, consider the following system of equations model: 

y. = y. B + xr + f, (2.1) 

where y. is a 1 X G row vector of (latent) endogenous variables, x is a 1 x K vector of exogenous variables 

and f is a vector of disturbances. The observed sample y is generated by a complicated transformation of y" 

[see, e.g., Lee (1981, p. 347)]. Equation (2.1) implies the following reduced form equations: 

y. = xII + u, (2.2) 

where II = r(I - B)-I, and x = f(I - B)-I. Amemiya's method is a two stage procedure. In the first stage, 

the reduced form parameters are estimated. Each equation in (2.2) can be estimated by some conventional 

method such as the pro bit likelihood method or the tobit likelihood method, depending on the nature of the 

dependent variable and the distributional assumption of the disturbances. Without parametric distributional 

assumptions, various semi parametric methods are also available for the estimation of such equations. The 

second stage is to estimate the structural equations of (2.1). Consider the first structural equation 

(2.3) 

where Y(l) is a subvector of endogenous variables other than yi in y., and Xl is a subvector of exogenous 

variables of x included in the equation. Let J1 and J2 be selection matrices such that Y(l) = y. J1 and 

Xl = xJ2 . It follows from (2.2) and (2.3) that 

yi = y" hPl + XJ211 + f1 

= X(IIJ1P1 + h,1) + U1, 
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where U1 = uJ1i31 + (1. Let 71"1 denote the first column of ll. Comparing (2.2) with (2.4), we have 

(2.5) 

Let IT be the first stage estimate of ll. Amemiya's generalized least squares (AGLS) method is to apply a 

generalized least squares (GLS) procedure to estimate the equation: 

(2.6) 

where 

Suppose that "fiif.1 !!. N(O, fh) and 01 is a consistent estimate oUl1 .3 The AGLS estimator 9 of 0 = (i3L 'YD' 

is derived from 

(2.7) 

Instead of single equation estimation, the Amemiya procedure can be generalized to the estimation of systems 

of equations by stacking up the G equations which are similar to (2.6).4 Under some general regularity 

conditions, Amemiya (1978, 1979) has shown that the estimators are consistent and asymptotically normal. 

Furthermore, the AGLS estimators are sysmptotically efficient relative to many conventional two stage probit 

and tobit estimators [see also Lee (1981), Amemiya (1983) and Newey (1987)]. 

The minimum distance methods in Taylor (1953), Ferguson (1958), Malinvaud (1970) and Chamberlain 

(1982), among others, are methods for imposing restrictions in estimation. Let I' be a q-dimensional vector 

of parameters which depend on a p-dimensional vector 0 of unknown parameters: 

l'=g(O), (2.8) 

where 9 is a known function and p :$ g. Suppose that I' can be consistently estimated by P and "fii(P-I') !!. 

N(O, \II), where 'If is a positive definite matrix. Let ~ be a consistent estimate of \II. A minimum distance 

estimator of 0 is 9, derived from 

min[jl- g(O)l'~-l[jl- g(O)]. 
6 

(2.9) 

3 The construction of 01 , in general, may require some initial consistent estimates of i31 which can, for 

example, be derived by the application of the ordinary least square procedure to (2.6). 

4 A systematic estimation procedure has been used in Lee (1982) for an empirical study. 
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The asymptotic properties such as consistency and asymptotic normality of 0 have been developed in the 

literature [see, e.g., Ferguson (1958) or Chamberlain (1982)]. It is also known [see, e.g., Neyman (1949) or 

Chamberlain (1982)] that 

(2.1O) 

which provides a goodness-of-fit test statistic for the restrictions. Comparing (2.7) and (2.9), the AGLS 

procedure and the minimum distance procedure have some common features. However, the formulation 

(2.7) is, in general, not exactly the minimum distance formulation in (2.9).5In the subsequent section we will 

show that n(,(-l - iIJd31 - J2/1)'Ol(,(-1 - iIJ1i31 - J21't) is asymptotically chi-square distributed with the 

number of overidentification restrictions as the degrees of freedom of the statistic. Amemiya's procedure is 

therefore also a miminum chi-square method. 

5 For system estimation, the AGLS procedure is more directly related to some classical minimum chi­
square formulations [see Lee (1982) and Newey (1987)]. 
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3. A Generalized Minimum Chi-squ~e Method and Overidentification Tests 

The AGLS procedure and the minimum distance method can be regarded as special cases of a more 

general minimum distance method. Let f( 7r, 0) be a continuously twice differentiable function from R" x RP 

to Rq, where p $ q. Suppose that 11- is a consistent estimate of the k-dimensional vector 7ro with an asymptotic 

normal distribution, specifically, .;n( 11- - 7ro) ~ N(O, E). By the 6-method, 

(3.1) 

where 

. (3.2) 

Supposing 0 is a consistent estimate of fl, a generalized minimum distance method for the estimation of 0 is 

min f'( 11-,0)0- 1 f( 11-,0), 
8ee 

(3.3) 

where e is the parameter space of O. Let 8 be the estimator derived from (3.3). We will show that 8 is 

asymptotically normally distributed and nf'( 11-,8)0-1 f( 11-,8) is asymptotically chi-square distributed with 

q - p degrees of freedom. 

To justify the asymptotic results, we assume the following regularity conditions: 

Assumption 1. f( 7ro, ( 0 ) = 0; 11- L 7ro , and .;n(1I- - 7ro) ~ N(O,E), where E is positive definite; e is a 

compact subset of RP that contains 00 ; f is continuous on R" x e, and f( 7ro , 0) = f( 7ro , ( 0 ) for 0 E e implies 

Assumption 2. eo is an interior point of e; f is differentiable with 7r and twice differentiable with 0 at 

. hb h d f ( e) d k (&/(lrO ,8 0 ») a nelg or 00 0 7ro , 0 ; an ran &8' = p. 

The following Proposition 1 establishes the consistency of 8, and Proposition 2 derives its asymptotic 

distribution. Proposition 3 shows that (3.3) is a minimum chi-square method. The proofs are simple. but 

the results are useful. 

Proposition 1: Under Assumption 1, 8 Leo. 
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Proof: Let D((}) = 1'( 7ro, (})Q.-1 f(-rro, ()~ and Dn((}) = 1'( ir, (})0.-1 f( ir, ()). Dn ((}) converges in probability 

to D((}) uniformly on 9. Since D((}) has the unique minimum at () = (}o, 0 converges in probability to (}o 

[see, e.g., Jennrich (1969)]. 

Q.E.D. 

Proposition 2: Under Assumptions 1 and 2, ..fii(0 - (}o) E.. N(O, A), where 

(3.4) 

Proof: Since 0 .f.. (}o, for n sufficiently large, 81'~:!;) 0.-1 f( ir, 0) = 0 with probability arbitrarily close to 

one. By the mean value theorem, 

where 0 lies between 0 and (}o. By the 6-method, 

'-f(' (})_8f (fr,(}o) '-(' ) v n 7r, 0 - 87r' . v n 7r - 7r 0 

8f(7ro,(}o) '-(' ) + (1) = 87r' . V n 7r - 7r 0 Op 
(3.6) 

D 
- N(O,Q.). 

By the continuous mapping theorem, f(ir,O) .f.. 0, 8!,~:,9) .f.. 8/,(;;,90
), and 

Hence by the Slutsky lemma, 

The result follows from (3.6) and (3.7). 

Q.E.D. 

Proposition 3: Under Assumptions 1 and 2, 
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Proof: By the mean value theorem, for sufficiently large n and with probability close to one, 

f(
A (}A) _8f(ir, 9) (A _ ) 8f(ir, 8)«(}A _ () ) 

11", - 811"' 11" 11"0 + 8(}' 0 , 

because f(1I"0,(}o) = O. With (3.6) and (3.7), 

vnf(ir,O) 

(3.8) 

= 8f~;(}o) 'vn(ir-1I"o)+ 8f (;;;(}o) 'vn(8-(}o)+op(1) (3.9) 

= { J _ 8f (;;; (}o) [81'(;;, (}o) 0-1 8f (;; (}o) r1 
81'(;;, (}o) 0-1 } . vnf(ir, (}o) + op(1). 

Let C be a nonsingular matrix such that CC' = 0-1
. It follows from (3.6) that 

C' . vnf( ir, (}o) !!. N(O, J). 

Denote 

which is an idempotent matrix with rank q - p. Equation (3.9) implies that 

C' . vnf( 7r, 0) = M . c' vnf( 7r, (}o) + op(1). 

It follows from (3.9)-(3.12) that 

n!'(7r, 0)0- 1 f(7r, 0) = n!'(7r, 0)0- 1 f(7r, 0) + op(1) 

= n!'(7r, O)CC'f(7r, 0) + op(l) 

= n!'(7r, (}o)CMC' f(7r, (}o) + op(1) 

!!. X2(q - p). 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Q.E.D. 

The generalized minimum distance method in (3.3) has also an interest property on the testing ofnest~d 

restrictions as the minimum distance method in (2.9). Consider imposing additional restrictions, which can 

be expressed as () = g(a), where g is a known function from R6 to RP with s :-::; p. 

Assumption 3: The parameter space A of a is a compact subset of R 6
; the true parameter vector a o 

is in the interior of A; g is a continuous mapping on A; g(a) = (}o for a E A implies a = a o; g is twice 

continuously differentiable at a o ; and rank (8~;/o)) = s. 
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The generalized minimum distance estimator & is derived from 

min f'( ir, g( 0'»0-1 f( ir, g(a». 
ere..4 

(3.14) 

Proposition 4: Under Assumptions 1, 2 and 3, d1 - d2 E. X2(p - s), where 

d1 = nJ'(ir,g(&»O-1 f(ir,g(&», (3.15) 

and 

(3.16) 

Furthermore, d1 - d2 is asymptotically independent of d2, and d1 - d2 is asymptotically equivalent to d3 • 

Proof: Similar to the derivation of (3.13), 

(3.17) 

where u = C'.,(iif(ir, 00 ), 

Mer = 1- D'0g(ao) [og'(ao) DD'og(ao)]-1 og'(ao) D, 
00" 00' 00" 00' 

(3.18) 

8J'(1< 9 ) 
and D =86' ° C. It follows from (3.13) and (3.17) that 

(3.19) 

Since DD' is positive definite, there exists a nonsingular matrix A such that AA' = DD'. Equations (3.11) 

and (3.18) imply that 

Mer _ M = D'{(AA')-1 _ og(ao) [og'(ao) AA,og(ao)] -1 og'(ao)}D 
00" 00' 00" 00' (3.20) 

where Q = I - A,8~:,o) [ 8g1:o) AA,8~(:,o) ] -1 8g1:o) A is an idempotent matrix with rank p - s. Since 

A-1 D(A- 1 D)' = I, it follows from (3.10) that A-1 Du E. N(O, 1). Hence d1 - d2 E. X2(p - s). From (3.13), 

d2 = u'[I - D'(DD,)-1 D]u + op(I). (3.21) 
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Since [I - D'(DD,)-lD]D' = 0, it follows that [I - D'(DD,)-l D](Ma - M) = O. Hence, it is evident from 

(3.19) and (3.21) that d l - d2 is asymptotically independent of d2 • 

Q.E.D. 

For AGLS, (J = (lh, "Yd, f( ir, (J) = irl - [ITJl , J2 ](J, q = K and p = ml + kl' where K is the total number 

of exogenous variables in the system, ml is the number of endogenous variables, and kl is the number 

of exogenous variables included on the right-hand side of (2.3). q - p = K - ml - kl is the number of 

overidentification restrictions in (2.3). Proposition 3 implies that 

(3.22) 

which provides a statistic for the testing of overidentification restrictions. 

The overidentification test statistic above is related to some overidentification test statistics in the 

literature under some situations. For the single equation estimation of the classical simultaneous equation 

model, AGLS estimator is identical to Theil's two stage least squares (2LS) estimator [Amemiya (1978)]. It 

can be easily shown that for the classical model, the overidentification test statistic (3.22) corresponds to 

the statistic: 

(3.23) 

where Y1, y(1), Xl and X are the data matrices of Yl, Y(l), Xl and x, respectively, (P1, "11) is the 2SL estimate 

of (J.h, "Yd, and &r is a consistent estimate of the variance of il. The statistic (3.23) has been derived as a 

modification of the Anderson-Rubin (1949) overidentification test statistic in Hausman (1983, p. 433). The 

test statistic (3.23) can also be derived from Hansen's generalized method of moments (GMM) procedure 

[Hansen(1982) and Newey (1987)]. For the special cases where ir l and IT in the first stage estimation can 

be expressed as sample moments of the data, the test statistic (3.22) will correspond to Hansen's over-

identification test [see Hansen (1982)]. 
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