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AMENABILITY AND GEOMETRY OF SEMIGROUPS

ROBERT D. GRAY1 and MARK KAMBITES2

Abstract. We study the connection between amenability, Følner con-
ditions and the geometry of finitely generated semigroups. Using re-
sults of Klawe, we show that within an extremely broad class of semi-
groups (encompassing all groups, left cancellative semigroups, finite
semigroups, compact topological semigroups, inverse semigroups, reg-
ular semigroups, commutative semigroups and semigroups with a left,
right or two-sided zero element), left amenability coincides with the
strong Følner condition. Within the same class, we show that a finitely
generated semigroup of subexponential growth is left amenable if and
only if it is left reversible. We show that the (weak) Følner condition is a
left quasi-isometry invariant of finitely generated semigroups, and hence
that left amenability is a left quasi-isometry invariant of left cancellative
semigroups. We also give a new characterisation of the strong Følner
condition, in terms of the existence of weak Følner sets satisfying a local
injectivity condition on the relevant translation action of the semigroup.

1. Introduction

What are now called amenable groups were introduced in 1929 by von
Neumann [25], motivated by the desire for a group-theoretic understanding
of paradoxical decompositions such as the Banach-Tarski paradox. The term
“amenable” was coined by Day [9], who also broadened consideration to en-
compass semigroups. In the decades that followed, amenability — in groups,
semigroups and also Banach algebras — has developed into a major topic
of study, forming a remarkably deep vein of connections between different
areas of mathematics including algebra, analysis, geometry, combinatorics
and dynamics; see [20] for a comprehensive introduction and for example
[3] for more recent developments. Important recent research on amenable
semigroups, specifically, includes for example [2, 4, 10, 26], while the exten-
sive memoir [8] studies the relationship between amenability in semigroups
and in related Banach algebras.

In the context of amenability, groups and semigroups have many simi-
larities, with many of the key results being shared. A notable exception,
however, appears where finitely generated objects are concerned. Within
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2 AMENABILITY AND GEOMETRY OF SEMIGROUPS

the study of amenable groups, there is a distinct strand of research fo-
cussing on amenability of finitely generated groups, and hence linking the
subject to combinatorial and geometry group theory. Notable results include
the quasi-isometry invariance of amenability (see [11, Theorem 10.23]) and
(building on important work of Kesten [18]) the beautiful characterisation of
amenability, due independently to Cohen [7] and Grigorchuk [16], in terms of
cogrowth. Despite widespread interest in finitely generated semigroups, both
within algebra and because of applications in theoretical computer science,
amenability of finitely generated semigroups has yet to receive a comparable
level of attention. This is, we suggest, because results about amenability for
finitely generated groups are largely built on elementary characterisations
in terms of Følner sets which tend to manifest themselves in natural ways
in Cayley graphs, and hence lend themselves to study using the tools and
techniques of geometric group theory. This approach poses two problems in
the semigroup setting.

The first is that the theory of finitely generated semigroups has in recent
decades been more combinatorial and less geometric than that of finitely
generated groups: the ideal structure of a semigroup is notoriously difficult
to capture in a geometric way, leading researchers to prefer other tools such
as rewriting systems and automata. However, recent advances such as the
authors’ use of asymmetric geometry [12, 14, 13, 15] seem to be bringing a
genuinely geometric aspect to the subject.

The second problem is that amenability in semigroups is not characterised
by the Følner set property, or indeed by any known elementary combina-
torial condition. To be precise, the Følner condition admits two formula-
tions which are trivially equivalent in a group (or indeed, a left cancellative
semigroup), but not in a general semigroup. The weaker of these (generally
known as “the Følner condition” or FC ) was studied by Day [9] who showed
that it was a necessary but not a sufficient condition for left amenability.
The stronger form (“the strong Følner condition” or SFC ) was considered
by Argabright and Wilde [1]; they showed that SFC is sufficient for left
amenability, and that necessity would follow from a conjecture of Soren-
son [22, 23], asserting that every right cancellative, left amenable semigroup
was also left cancellative. Subsequently, Klawe [19] showed that necessity
was actually equivalent to Sorenson’s conjecture, before disproving both, by
producing a (non-finitely-generated) example of a left amenable semigroup
which was right but not left cancellative; this was subsequently refined to
a finitely generated example by Takahashi [24]. Despite considerable fur-
ther work in this area (see for example [27]), an elementary combinatorial
characterisation of (left or two-sided) amenability for semigroups remains
elusive.

While SFC does not provide an exact characterisation of left amenability
for semigroups in full generality, it can do so within large and important
classes of semigroups. We have already noted that in the presence of left
cancellativity SFC is trivially equivalent to FC (which in general is weaker
that left amenability), and so both FC and SFC characterise left amenability
within the class of left cancellative semigroups. In fact, we shall see below
(Theorem 2.6 and Corollary 2.7) that SFC is equivalent to left amenability
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within an extremely large class of (not necessarily finitely generated) semi-
groups including not only left cancellative and commutative semigroups, but
also semigroups in which every ideal contains an idempotent: the latter con-
dition encompasses for example all groups, finite semigroups, compact left
or right topological semigroups, inverse semigroups, regular semigroups and
semigroups with a left, right or two-sided zero element, and the result there-
fore applies to the overwhelming majority of widely studied semigroups.

We also present (in Section 3) a new characterisation of SFC, in terms
of the existence of weak Følner sets satisfying a local injectivity condition
on the relevant translation action of the semigroup. As well as having po-
tential applications as a technical lemma for studying SFC, this result is
conceptually interesting, because it gives a new insight into the difference
between FC and SFC, and what exactly it is about left cancellativity which
is important for amenability.

The equivalence of FC and/or SFC with left amenability in such a wide
range of semigroups provides a strong motivation for studying these condi-
tions, and how they relate to the geometry of finitely generated semigroups:
results so obtained will bear directly upon amenability for a very large range
of semigroups, and are also likely to give clues as to how amenability itself
could be directly studied for finitely generated semigroups in even greater
generality. The chief aim of the present paper is to begin this study.

One of our main results (Theorem 4.4) is that, for semigroups in the same
broad class described above, a finitely generated semigroup of subexponen-
tial growth has SFC (and hence is left amenable) if and only if it is left
reversible (the latter being a trivially necessary condition for amenability in
all semigroups). We also show (Theorem 5.5) that FC is a left quasi-isometry
invariant of finitely generated semigroups, and hence that left amenability
is a left quasi-isometry invariant of finitely generated left cancellative semi-
groups. Neither amenability nor SFC is a left quasi-isometry invariant of
finitely generated semigroups more generally, but it remains open whether
these properties can be seen in the right quasi-isometry class, or in the left
and right quasi-isometry classes together.

2. Analytic, Algebraic and Geometric Conditions

In this section we briefly recall the definitions of left amenability, the
Følner condition and the strong Følner condition for semigroups. For a more
detailed introduction we direct the reader to the monograph of Paterson
[20]. We then show that, mainly as a consequence of work of Klawe [19],
the strong Følner condition exactly characterises left amenability within an
extremely broad class of semigroups. Semigroups are assumed to be discrete
unless indicated otherwise.

2.1. Amenability and Følner Conditions. A semigroup S is called left
amenable if there is a mean on l∞(S) which is invariant under the natural
left action of S on the dual space l∞(S)′ [20, Section 0.18]. Equivalently [20,
Problem 0.32], S is left amenable if it admits a finitely additive probability
measure µ, defined on all the subsets of S, which is left invariant, in the
sense that µ(a−1X) = µ(X) for all X ⊆ S and a ∈ S. Here, a−1X denotes
the set {s ∈ S | as ∈ X}. (Note that left invariance is strictly weaker than
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requiring µ(aX) = µ(X) for all X ⊆ S and a ∈ S; semigroups admitting a
finitely additive probability measure satisfying this much stronger property
are called left measurable — see [23] and [19, Section 5] for more on this
property.)

A semigroup S satisfies the Følner condition (FC ) if for every finite subset
H of S and every ε > 0, there is a finite non-empty subset F of S with
|sF \ F | ≤ ε|F | for all s ∈ H. A semigroup S satisfies the strong Følner
condition (SFC ) if for every finite subset H of S and every ε > 0, there is a
finite non-empty subset F of S with |F \ sF | ≤ ε|F | for all s ∈ H.

In a left cancellative semigroup FC and SFC are trivially equivalent, but
without left cancellativity SFC is strictly stronger, because left translation
by an element s can map many elements in a set F onto a few elements,
allowing sF \ F to be small but F \ sF large. For semigroups in general, it
is known that SFC implies left amenability [1], which in turn implies FC [9],
but neither of these implications is reversible [9, 19]. (For left cancellative
semigroups, of course, it follows that FC and SFC both exactly characterise
amenability.)

2.2. Left Thick Subsets and Left Reversibility. Recall that a subset E
of a semigroup S is called left thick if for every finite subset F of S there is an
element t of S such that Ft ⊆ E. Left thickness is of interest in the theory
of amenability, because it provides an abstract algebraic characterisation of
those subsets capable of having “full measure”: more precisely, a subset of a
left amenable semigroup S is left thick if and only if it has measure 1 in some
left invariant, finitely additive probability measure on S [20, Proposition 2.1].

In any semigroup, it is immediate from the definition that every left ideal
(and hence every two-sided ideal) is left thick. Right ideals in a general
semigroup need not be left thick, but in left amenable semigroups it tran-
spires that they are. Recall that a semigroup is called left reversible if every
pair of right ideals (or equivalently, every pair of principal right ideals) inter-
sects. Left reversibility is easily seen to be a necessary precondition for left
amenability [20, Proposition 1.23]. Examples of left reversible semigroups
include inverse semigroups, commutative semigroups, and cancellative semi-
groups which embed in groups of left quotients. The following elementary
result connects left reversibility with left thickness:

Proposition 2.1. For any semigroup S, the following conditions are equiv-
alent:

(i) S is left reversible;
(ii) every principal right ideal of S is left thick;
(iii) every right ideal of S is left thick;

Proof. Suppose first that (i) holds, and let aS1 = {a} ∪ aS be a principal
right ideal of S. Let F = {f1, . . . , fn} be a finite subset of S. Since S is left
reversible, the right ideal f1S intersects the right ideal aS, so we may choose
t1 ∈ S with f1t1 ∈ aS. Similarly, f2t1S intersects aS, so we may choose
t2 ∈ S so that f2t1t2 ∈ aS. Continuing in this way, we define a sequence
of elements t1, · · · , tn ∈ S so that fit1 . . . ti ∈ aS for each i. But since aS
is a right ideal, setting t = t1 . . . tn, it follows that fit ∈ aS for all i, i.e.
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Ft ⊆ aS. This shows that aS, and hence aS1, is left thick, and hence that
(ii) holds.

It is immediate from the definition that a set containing a left thick set is
left thick, so the fact that (ii) implies (iii) follows from the fact that every
right ideal contains a principal right ideal.

Finally, suppose (iii) holds, and let aS1 and bS1 be principal right ideals.
Since aS1 is left thick and {b} is a finite set, there is a t ∈ S so that
{b}t ⊆ aS1. But now bt ∈ aS1 ∩ bS1, as required to show that (i) holds. �

2.3. Near Left Cancellativity. In this section we introduce a new def-
inition which will prove useful for understanding the relationship between
amenability, Følner conditions and cancellativity conditions. We say that
a semigroup S is near left cancellative if for every element s of S there is
a left thick subset E on which the left translation map by s restricts to an
injective map, that is, such that sx 6= sy whenever x, y ∈ E with x 6= y.

(Near left cancellativity is stronger than that property informally termed
almost left cancellativity in [19, p.104], which is that for every s the set of
elements t such that there is no other element t′ with st = st′ is left thick.
The term almost left cancellative is also used in a completely different sense
in [20, Section 7.22].)

It is immediate that a left cancellative semigroup is near left cancellative,
since the whole semigroup will always be a left thick subset of itself. Per-
haps a more surprising observation is that any semigroup with a right zero
element is near left cancellative: indeed, the singleton set containing a right
zero is easily seen to be a left thick subset on which the left translation action
of every element of S cannot help but be injective. This may seem initially
troubling to the reader versed in the algebraic theory of semigroups, where
the existence of a zero element is often regarded as the antithesis of cancella-
tivity; from this perspective to declare everything with a zero to be close to
left cancellative may seem bizarre. However, when viewing semigroups in a
dynamic context the logic is clearer: intuitively, while a semigroup with zero
may have arbitrary algebraic complexity “above” the zero, random walks on
the semigroup eventually end at zero with probability 1, meaning the as-
ymptotic dynamical behaviour is the same as that of the (left cancellative)
trivial monoid.

The following proposition shows that the class of near left cancellative
semigroups is very large, including for example all left reversible regular
semigroups (and hence all inverse semigroups) and all left reversible finite
semigroups.

Proposition 2.2. Let S be a left reversible semigroup in which every ideal
contains an idempotent (for example, a left reversible regular and/or left
reversible finite semigroup). Then S is near left cancellative.

Proof. Let s ∈ S, and consider the ideal SsS. Since every ideal contains
an idempotent, we may choose an idempotent e ∈ SsS, say e = xsy. Now
xsyxsy = xsy implies e = xsyRxsyxs. Thus, xsyxs is a regular element
and so is also L-related to an idempotent, say xsyxsLf = f2. In particular,
f is L-below s, so we may write f = ts for some t.
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Now consider the right ideal fS. By Proposition 2.1 this is left thick.
Moreover, for any element fz ∈ fS we have t(s(fz)) = (ts)(fz) = f2z = fz
which tells us that left translation by s is injective on fS as required. �

Examples of semigroups which are not near left cancellative include non-
trivial left zero semigroups, or more generally, semigroups which are right
cancellative but not left cancellative. (This claim will be justified in the
remarks following Proposition 2.3 below.)

2.4. The Klawe Condition and Right Cancellative Quotients. We
say that a semigroup S satisfies the Klawe condition if whenever s, x and y
in S are such that sx = sy, there exists t ∈ S so that xt = yt. This condition
was implicitly introduced and used, although not given a name, by Klawe
[19]. Every left cancellative semigroup satisfies this condition vacuously; in
fact, it transpires that near left cancellativity suffices:

Proposition 2.3. Every near left cancellative semigroup satisfies the Klawe
condition.

Proof. Let S be near left cancellative. Suppose sx = sy. Let E be a left
thick subset of S on which s acts injectively by left translation. Since E
is left thick, we may choose a t ∈ S such that {x, y}t ⊆ E. Now s(xt) =
(sx)t = (sy)t = s(yt) where xt, yt ∈ E. But left translation by s is injective
on E, so we must have xt = yt. �

Note that a right cancellative semigroup satisfying the Klawe condition
must clearly be left cancellative, so Proposition 2.3 justifies the claim in the
previous section that a semigroup which is right cancellative but not left
cancellative cannot be near left cancellative.

On any semigroup S, we may define a binary relation by x ∼= y if and only
if there exists an s with xs = ys. In general this relation is not transitive, but
in the case S is left reversible it is actually a congruence, and the quotient
S/∼= is a right cancellative semigroup [20, Proposition 1.24]. (Note that left
reversibility is not a necessary condition for the relation to be a congruence
or the quotient to be right cancellative, as witnessed for example by a free
semigroup of rank 2.)

We shall need the following elementary fact, one implication of which was
shown by Klawe [19].

Proposition 2.4. Let S be a left reversible semigroup. Then S satisfies the
Klawe condition if and only if S/∼= is left cancellative.

Proof. The direct implication is the contrapositive of [19, Lemma 2.1].
For the converse, suppose S/∼= is left cancellative, and that sx = sy.

Then writing [a] for the ∼=-equivalence class of a, we have [s][x] = [s][y], so
by left cancellativity of the quotient we must have [x] = [y], that is, x ∼= y.
But by definition this means that there is a t with xt = yt, as required. �

Notice that the left reversibility hypothesis is required only to ensure
that ∼= is a congruence so that S/∼= is actually well-defined. The Klawe
condition does not suffice to ensure left reversibility (consider for example
a free semigroup of rank 2, or any cancellative semigroup which does not
embed in a group) or indeed even for ∼= to be transitive. For example, the
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semigroup 〈a, b, c, x, y | ax = bx, by = cy〉 is left cancellative, and hence
trivially satisfies the Klawe condition, but we have a ∼= b and b ∼= c but
a 6∼= c.

Klawe [19, Theorem 2.2] showed that a left amenable semigroup satisfies
SFC if and only if the right cancellative quotient S/ ∼= is also left cancellative.
Combining this with Proposition 2.4 yields a three-way equivalence:

Theorem 2.5. Let S be a left amenable semigroup. Then the following are
equivalent:

(i) S satisfies the strong Følner condition;
(ii) the right cancellative quotient S/∼= is left cancellative;
(iii) S satisfies the Klawe condition.

Combining with a result of Argabright and Wilde [1] we obtain the fact
that for the (very large) class of semigroups satisfying the Klawe condition,
the strong Følner condition gives an exact characterisation of amenability.

Theorem 2.6. Let S be a semigroup satisfying the Klawe condition. Then
S is left amenable if and only if S satisfies SFC.

Proof. One implication is immediate from Theorem 2.5; the other is [1,
Theorem 1]. �

Corollary 2.7. Let S be a semigroup in which every ideal contains an idem-
potent (for example a regular semigroup, inverse semigroup, finite semi-
group, compact left or right topological semigroup, or semigroup with a left,
right or two-sided zero). Then S is left amenable if and only if S satis-
fies SFC. Moreover, if S is left amenable then for every s ∈ S there is a
left invariant finitely additive probability measure on S such that the left
translation map by s is injective when restricted to some set of full measure.

Proof. If S is left amenable then in particular it is left reversible, so we
deduce by Proposition 2.2 that S is near left cancellative, by Proposition 2.3
that S satisfies the Klawe condition and so by Theorem 2.6 that S satisfies
SFC. The converse is again [1, Theorem 1].

Moreover, if s ∈ S then since S is near left cancellative, there is a left thick
subset E of S such that the left translation map of s on E is injective. But
since E is left thick, by [20, Proposition 1.21], there exists a left invariant
finitely additive probability measure on S such that E has full measure. �

Of course, it is not the case that every left thick subset of a left amenable
semigroup can be made to have full measure simultaneously, with respect to
the same measure; consider for example a non-trivial finite right zero semi-
group, which is left amenable but has disjoint left thick subsets. However,
with reference to the latter part of Corollary 2.7, one may ask whether it is
necessary for the measure to be chosen differently for different translation
maps, or if a single measure suffices:

Question 2.8. If a semigroup is left amenable and near left cancellative,
is there necessarily a left invariant finitely additive probability measure such
that every element acts injectively by left translation on some set of full
measure?
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3. A new characterisation of SFC

In this section we present a new characterisation of SFC, in terms of the
existence of weak Følner sets satisfying a local injectivity condition on the
relevant translation action of the semigroup. As well as having potential ap-
plications as a technical lemma for studying SFC, this result is conceptually
interesting, as it gives a new insight into what exactly it is about left can-
cellativity which is important for amenability. The proof is a straightforward
direct argument.

Theorem 3.1. Let S be a semigroup. Then S satisfies the strong Følner
condition if and only if for every finite set H ⊆ S and ε > 0 there is a finite
non-empty set F ⊆ S such that for each s ∈ H we have

|sF \ F | ≤ ε|F |
and for all x, y ∈ F and s ∈ H, if sx = sy then x = y.

Proof. Suppose the given condition is satisfied, and given H and ε choose F
as in the condition. Then for each s ∈ H, the injectivity of the action of s
on F implies that |sF | = |F |, whence

|F \ sF | = |sF \ F | ≤ ε|F |
as required to show that SFC holds.

Conversely, suppose S satisfies SFC and let H and ε be given. Let µ >
0 be small. By SFC we can choose a finite non-empty set A such that
|A \ sA| < µ|A| for all s ∈ H. Define

B = {a ∈ A | ¬ (∃s ∈ H, b ∈ A, b 6= a, sb = sa)}
to be the set of all elements of A which form singleton fibres under the action
of left translation by each element of H. Clearly by definition, elements of
H act injectively by left translation on B. We claim that

|A \B| ≤ 2|H|µ|A|. (1)

Indeed, clearly we have

A \B =
⋃
s∈H
{a ∈ A | ∃b ∈ A, b 6= a, sa = sb}.

We write Cs for the component of the union on the right-hand side corre-
sponding to s ∈ H. Now if (1) does not hold then there must be some s ∈ H
such that |Cs| > 2µ|A|. By the definition of Cs, it is clear that |sCs| ≤ 1

2 |Cs|
so we have

|sA| ≤ |sCs|+ |s(A \ Cs)|

≤ 1

2
|Cs|+ |A \ Cs|

= |A| − 1

2
|Cs|

< |A| − µ|A|
= (1− µ)|A|.

But this means that |A \ sA| > µ|A|, contradicting the choice of A. This
completes the proof of (1).
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It follows also from (1) that

|B| ≥ |A| − 2|H|µ|A| = (1− 2|H|µ)|A|. (2)

Now for any s ∈ H we have

|sB \B| = |B \ sB|
≤ |A \ sB| (since B ⊆ A)

≤ |A \ sA|+ |sA \ sB|
≤ |sA \A|+ |A \B|
≤ µ|A|+ 2|H|µ|A| (by the definition of A and (1))

= (1 + 2|H|)µ|A|

≤ (1 + 2|H|)µ
1− 2|H|µ

|B| (by (2)).

By choosing µ > 0 sufficiently small we may make

(1 + 2|H|)µ
1− 2|H|µ

< ε

(since the left hand-side as a function of µ takes the value 0 at µ = 0 and
is clearly continuous away from µ = 1/(2|H|), so that B is a non-empty set
satisfying

|sB \B| ≤ ε|B|
for all s ∈ H, completing the proof. �

4. Growth and Amenability

Our aim in this section is to show that for finitely generated semigroups
satisfying the Klawe condition, sub-exponential growth is a sufficient condi-
tion for SFC, and hence for left amenability.

Recall that if M is a semigroup generated by a finite subset X, the growth
function of M with respect to X is the function which maps a natural
number n to the number of distinct elements of M which can be written as a
product of n or fewer generators fromX. Although the growth function ofM
depends on the choice of finite generating set, its asymptotic behaviour does
not, and is an invariant of the monoid. We say that M has polynomial growth
if its growth function is bounded above by a polynomial, or subexponential
growth if its growth function is eventually bounded above by every increasing
exponential function. Growth of finitely generated semigroups is a major
topic in both abstract semigroup theory and application areas — see for
example [5, 17, 21] for work in this area.

We shall need the following lemma about semigroups satisfying the Klawe
condition.

Lemma 4.1. Let a and b be elements of a semigroup S satisfying the Klawe
condition. Then either aS and bS intersect, or a and b freely generate a free
subsemigroup of rank 2.

Proof. Consider the natural map ψ : {A,B}+ → S from the free semigroup
on symbols A and B to S, taking A to a and B to b. If a and b do not freely
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generate a free subsemigroup then this map cannot be injective, so we may
choose distinct words u, v ∈ {A,B}+ such that ψ(u) = ψ(v).

We may assume without loss of generality that neither u nor v is a prefix
of the other. Indeed, if u is a prefix of v, then choose c ∈ {A,B} such that
c is not the letter of v immediately following the prefix u. Then clearly we
have ψ(uc) = ψ(vc) where neither uc nor vc is a prefix of the other, so we
may simply replace u by uc and v by vc. A symmetric argument applies if
v is a prefix of u.

Now let w be the longest common prefix of u and v, and write u = wu′ and
v = wv′. The assumption from the previous paragraph ensures that u′ and
v′ are non-empty. If w is non-empty then ψ(w)ψ(u′) = ψ(w)ψ(v′) in S, so by
the Klawe condition we may choose s ∈ S such that ψ(u′)s = ψ(v′)s. If w is
empty then ψ(u′) = ψ(v′) so we may choose s ∈ S arbitrarily to obtain the
same property. But by construction, u′ and v′ begin with different letters
from {A,B}, so the element ψ(u′)s = ψ(v′)s lies in both aS and bS. �

An immediate corollary is a useful fact about semigroups satisfying the
Klawe condition:

Corollary 4.2. Let S be a semigroup satisfying the Klawe condition. Then
either S is left reversible or S contains a free subsemigroup of rank 2.

Note that the two possibilities in Corollary 4.2 are not mutually exclusive:
for example, adjoining a zero element to a free semigroup of rank 2 yields a
semigroup which satisfies both conditions (and also the Klawe condition).

Our next result says that all finitely generated semigroups of subexpo-
nential growth satisfy the weak condition FC. In itself this is not especially
interesting — indeed, it might be thought of as simply indicating just how
weak a condition FC is — but combined with other results it will allow us
to establish sufficient conditions for SFC.

Theorem 4.3. Let S be a finitely generated semigroup of subexponential
growth. Then S satisfies the Følner condition FC.

Proof. Given a finite subset H of S, we may choose a finite generating set
X for S containing H. Let Bi denote the ball of radius i in S with respect
to the generating set X, that is, the set of all elements which can be written
as a product of i or fewer generators from X. We claim that

inf
i∈N

|Bi+1|
|Bi|

= 1.

Indeed, because Bi ⊆ Bi+1 for each i the given infimum is certainly at least 1,
so if the claim were false it would be bounded below by some λ > 1. But then
we have |Bi+1|/|Bi| > λ for all i and certainly |B1| > 0, so |Bi| ≥ |B1|λi−1

for all i, contradicting the subexponential growth of S.
Hence, given ε > 0, we may choose i with |Bi+1|/|Bi| < 1 + ε. For any

s ∈ H we have s ∈ X so sBi ⊆ Bi+1 and now

|sBi \Bi| ≤ |Bi+1 \Bi| ≤ ε|Bi|

as required to show that S satisfies FC. �
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Since the Følner condition suffices for left amenability within the class of
left cancellative semigroups, it follows immediately from Theorem 4.3 that
left cancellative semigroups of subexponential growth are left amenable. But
in fact, by combining with previously known results, we are in a position to
prove something much stronger:

Theorem 4.4. Let S be a finitely generated semigroup of subexponential
growth and satisfying the Klawe condition. Then S is left amenable and
satisfies the strong Følner condition.

Proof. Since S has subexponential growth it cannot have free subsemigroups
of rank greater than 1, so Corollary 4.2 tells us that S is left reversible. Thus,
the quotient semigroup S′ = S/∼= is well-defined and right cancellative by
[20, Proposition 1.24], and left cancellative by Proposition 2.4.

It is immediate that the quotient S′ is finitely generated with growth
function bounded above by that of S (hence in particular subexponential).
Hence, by Theorem 4.3, S′ satisfies FC. But since S′ is left cancellative, this
means S′ it satisfies SFC, which by [1, Theorems 1 and 5] means that S is
left amenable and satisfies SFC. �

We also recover from Theorem 4.4 a new elementary proof of the well-
known fact that commutative semigroups are amenable (or equivalently,
satisfy SFC).

Corollary 4.5 ([1, Theorem 4]). All commutative semigroups are amenable.

Proof. Commutative semigroups trivially satisfy the Klawe condition, and
finitely generated ones clearly have growth functions bounded above by a
polynomial of degree the number of generators. Hence, given a commutative
semigroup S, Theorem 4.4 tells us that all of its finitely generated subsemi-
groups are left amenable, which by [20, Problem 0.30] suffices for S to be
left amenable.

Finally, right amenability is easily observed to be trivially equivalent to
left amenability in the commutative case. �

We have shown that subexponential growth suffices for left amenability in
a large class of finitely generated semigroups. We know it does not suffice for
semigroups in absolute generality, because not all finite semigroups are left
amenable [20, Corollary 1.19]. We do not know if lack of left reversibility is
the only possible obstruction here, that is, whether a left reversible, finitely
generated semigroup of subexponential growth is necessarily left amenable.
We conjecture that it is not, even if subexponential growth is replaced by
the stronger condition of polynomial growth:

Conjecture 4.6. There is a left reversible, finitely generated semigroup of
polynomial growth which is not left amenable.

Just as for the Sorenson conjecture, the question (for both polynomial
and subexponential cases) reduces to the case of semigroups which are right
cancellative but not left cancellative. Indeed, if S is an example as postulated
by the conjecture (or a corresponding example with subexponential in place
of polynomial growth) then S′ = S/∼= is well defined and right cancellative
by [20, Proposition 1.24]. Moreover, S′ is finitely generated, of polynomial
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(or subexponential) growth, left reversible (since this property is clearly
inherited by quotients) and also not left amenable [20, Proposition 1.25].
Finally, S′ is not left cancellative, since if it were then by Proposition 2.4
S would satisfy the Klawe condition, but then by Theorem 4.4 S would be
left amenable, giving a contradiction.

5. Quasi-Isometry Invariance of Følner Conditions

In this section we explore the extent to which amenability and the Følner
conditions are “geometric” properties of finitely generated semigroups, in
the sense of being invariant under left and/or right quasi-isometry.

5.1. Digraphs, Quasi-Isometry and Semigroups. If Γ is a digraph we
write V Γ for its vertex set and EΓ for its edge set, which we view as a subset
of V Γ×V Γ. We write Pf (X) for the set of finite non-empty subsets of a set

X. We write R for the set of non-negative real numbers with ∞ adjoined,
and extend multiplication, addition and the usual order on R to R in the
obvious way, leaving 0∞ undefined.

We briefly recall the definition of quasi-isometry for digraphs and semi-
groups — see [13] for a detailed introduction. Given a digraph Γ, we define
a semimetric dΓ : V Γ × V Γ → R by setting dΓ(x, y) to be the length of
the shortest directed path from x to y in Γ, or ∞ if there is no such path.
We say that two digraphs Γ and ∆ are quasi-isometric if there is a map
φ : V Γ→ V∆ and a real number λ > 0 such that for all vertices x and y of
Γ we have

1

λ
d∆(φ(x), φ(y))− λ ≤ dΓ(x, y) ≤ λd∆(φ(x), φ(y)) + λ,

and for every vertex y of ∆ there is a vertex x of Γ with d∆(φ(x), y) ≤ λ
and d∆(y, φ(x)) ≤ λ. The map φ is called a λ-quasi-isometry. Quasi-
isometry gives rise to an equivalence relation on the class of all digraphs [13,
Proposition 1].

If S is a semigroup with a finite generating set X, the right [respectively,
left ] Cayley graph of S with respect to X, denoted Γr(S,X) [respectively,
Γl(S,X)], is the digraph with vertex set S and an edge from s to t if and
only if sx = t [respectively, xs = t] for some x ∈ X. Although the right (or
left) Cayley graph depends on the choice of generators, its quasi-isometry
class does not [13, Proposition 4]; thus we may say that two finitely generated
semigroups are right [left ] quasi-isometric if their right [left] Cayley graphs
are quasi-isometric, without concerning ourselves about choice of generators.

Unlike in a group, the left and right Cayley graphs of a semigroup need
not be isomorphic, or indeed even quasi-isometric. The left and right quasi-
isometry classes of a semigroup thus form two distinct natural invariants
which in some sense capture its “large-scale geometry”, and it is natural to
ask what properties of a finitely generated semigroup can be seen in either
or both of these quasi-isometry classes. Our first observation is that the key
property of left reversibility can be seen in one of the quasi-isometry classes
(although not the other):

Proposition 5.1. Left reversibility is a right (but not a left) quasi-isometry
invariant of semigroups.
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Proof. From the definition it follows immediately that a semigroup is left
reversible if and only if every pair of principal right ideals contain a common
principal right ideal. Thus, left reversibility can be seen in the structure of
the containment order on the set of principal right ideals. By [13, Proposi-
tion 5], this order is a right quasi-isometry invariant of semigroups.

On the other hand, the 2-element left-zero semigroup (with both elements
as generators) is not left reversible, but its left Cayley graph is a complete
digraph on 2 vertices, so isomorphic (and in particular quasi-isometric) to
that of Z2, which is left reversible, with both elements as generators. �

5.2. Isoperimetric Numbers of Digraphs. Let Γ be a digraph. For any
subset A of V Γ we define the out-boundary ∂A of A to be the set

∂A = {x ∈ V Γ : ∃(y, x) ∈ EΓ with y ∈ A and x /∈ A}.
Now we define the (outward) isoperimetric number ι(Γ) of Γ by:

ι(Γ) = inf
A∈Pf (V Γ)

(
|∂A|
|A|

)
.

We shall be interested in digraphs with isoperimetric number zero, that is,
graphs Γ for which

(∀ε > 0) (∃A ∈ Pf (V Γ)) :
|∂A|
|A|

< ε. (3)

We note that the notions of outboundary and isoperimetric number of a
digraph defined here arise in the literature in the definitions of Cheeger
constants and Cheeger inequalities as part of the spectral theory of directed
graphs; see [6].

The following result shows the relationship between FC and isoperimetric
number.

Proposition 5.2. Let S be a semigroup generated by a finite set X. Then
S satisfies FC if and only if the left Cayley graph Γl(S,X) has isoperimetric
number zero.

Proof. Suppose first that S satisfies FC. We must show that Γ satisfies (3).
Let ε > 0 be given and choose δ > 0 with δ < ε/|X|. Since S satisfies FC
and X is a finite set, we may choose a finite non-empty subset F of S such
that

(∀x ∈ X)(|xF \ F | < δ|F |).
We claim that by taking A = F condition (3) will be satisfied. Indeed, by
the definition of Γ we have

∂A =
⋃
x∈X

(xA \A) =
⋃
x∈X

(xF \ F ),

and so

|∂A| =

∣∣∣∣∣ ⋃
x∈X

(xF \ F )

∣∣∣∣∣ ≤ ∑
x∈X
|xF \ F |

< |X|δ|F | < |X|(ε/|X|)|F | = ε|F | = ε|A|,

which shows that (3) holds.
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Conversely, suppose that Γ has isoperimetric number zero or, equivalently,
suppose that (3) holds. We must show that S satisfies FC. To this end, let
H ∈ Pf (S) and ε > 0 be given. Let r ∈ N be such that every element h ∈ H
can be written as a product of elements from X of length at most r; such
an r exists because H is finite and X is a generating set for S. Write X≤r

for the set of elements of S which can be written as a product of elements of
X of length at most r. Set C = |X≤r| and δ = ε/C. By (3) we may choose
a finite non-empty set F ∈ Pf (S) such that |∂F |/|F | < δ.

Let h ∈ H be arbitrary and consider the set hF \F . Write h = x1x2 . . . xt
where xi ∈ X and t ≤ r. This is possible by the definition of r. Consider an
arbitrary element of hF \ F , say hf where f ∈ F . Then there is a path of
length t in the left Cayley graph from f to hf = x1x2 . . . xtf with the edges
labelled x1, x2, · · · , xt. Since this path leads from a vertex in F to a vertex
not in F , it must have at least one vertex in ∂F (say xixi+1 . . . xtf , with
1 ≤ i ≤ t). It follows that hf can be written as the product of an element
of X≤r and an element of ∂F (namely of x1x2 . . . xi−1 and xixi+1 . . . xtf).
Thus, there are at most C|∂F | choices of hf ∈ hF \ F , so we have

|hF \ F | ≤ C|∂F | < C (δ|F |) < C

(
ε|F |
C

)
= ε|F |.

This holds for all h ∈ H and therefore S satisfies FC. �

Next we shall show that the property of having isoperimetric number zero
is a quasi-isometry invariant of directed graphs with bounded out-degree.
We first need a lemma.

Lemma 5.3. Let φ : V Γ→ V∆ be a quasi-isometry between digraphs. If Γ
has bounded out-degree then φ has bounded fibre sizes.

Proof. Let k be an upper bound on the out-degree of Γ, and suppose φ is a
λ-quasi-isometry. Fix an element x ∈ V Γ and consider the set of elements
y ∈ V Γ with φ(y) = φ(x). For each such y we have

dΓ(x, y) ≤ λd∆(φ(x), φ(y)) + λ = λd∆(φ(x), φ(x)) + λ = λ.

Thus, every such y is reachable by a directed path of length at most λ
starting from x. But there are clearly no more than

λ′∑
i=0

ki

such paths, where λ′ is the integer part of λ, so this number, which is
independent of x, forms a bound on the fibre size. �

Theorem 5.4. Let Γ and ∆ be directed graphs both with bounded out-degree.
If Γ and ∆ are quasi-isometric then ι(Γ) = 0 if and only if ι(∆) = 0.

Proof. Let φ : Γ → ∆ be a λ-quasi-isometry. Let C be the bound on the
fibre size of φ given by Lemma 5.3. Since ∆ has bounded out-degree, we
may choose an upper bound (call it E) on the number of directed paths in
∆ originating at any one vertex and having length at most λ. Similarly, let
D be an upper bound on the number of directed paths in Γ originating at
any one vertex and having length at most 2λ2 + 2λ.
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Γ ∆

φ
A

Q

Bλ(φ(a))φ(A)

a

∂A 3 b

t

≤ 2λ2 + 2λ

φ(a)

y ∈ ∂Q

z = φ(t)

≤ λ

Figure 1. Diagram showing the inequality |∂Q| ≤ DE|∂A|
in the proof of Theorem 5.4.

Suppose that ι(Γ) = 0. We claim that ι(∆) = 0, so, we must show that
in the digraph ∆ we have

(∀ε > 0) (∃Q ∈ Pf (V∆)) :
|∂Q|
|Q|

< ε.

Let ε > 0 be given. Since ι(Γ) = 0 we may choose a finite subset A of V Γ
such that

|∂A|
|A|

<
ε

CDE
. (4)

Set
Q =

⋃
a∈A
Bλ(φ(a)) ⊆ V∆,

where
Bλ(x) = {a ∈ V∆ | d(a, x) ≤ λ and d(x, a) ≤ λ}.

We claim that |∂Q||Q| < ε and the rest of the proof will be devoted to estab-

lishing this fact.
Firstly, since φ(A) ⊆ Q, by Lemma 5.3 we have

|Q| ≥ |φ(A)| ≥ |A|
C
. (5)

Now we want to estimate the size of the set ∂Q, seeking an upper bound in
terms of |∂A|.

In ∆ let y ∈ ∂Q be an arbitrary element of the out-boundary of the set
Q. Since φ is a λ-quasi-isometry there is a vertex z ∈ φ(V Γ) such that

d∆(z, y) ≤ λ and d∆(y, z) ≤ λ. (6)

Let t ∈ V Γ be such that φ(t) = z. Notice that t /∈ A; indeed, y ∈ Bλ(z) =
Bλ(φ(t)) so if t were in A then, by the definition of Q, we would have y ∈ Q
contradicting y ∈ ∂Q.

Now by the definitions of Q and ∂Q, there exists a ∈ A such that

d∆(φ(a), y) ≤ λ+ 1.
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Together with (6) and the directed triangle inequality this gives

d∆(φ(a), φ(t)) = d∆(φ(a), z) ≤ 2λ+ 1.

Applying the quasi-isometry inequality to this, we obtain

dΓ(a, t) ≤ λ d∆(φ(a), φ(t)) + λ ≤ λ(2λ+ 1) + λ = 2λ2 + 2λ.

So in the digraph Γ we have a ∈ A, t 6∈ A, and there is a directed path from
a to t in Γ of length at most 2λ2 + 2λ. Any such path must include at least
one vertex from the out-boundary ∂A. It follows that there is a directed
path of length at most 2λ2 + 2λ from some vertex b ∈ ∂A to the vertex t.
The number of possibilities for b is |∂A|, and once b ∈ ∂A is chosen, there
are at most D possible paths of the given length. We conclude that the
number of possibilities for the vertex t is bounded above by D|∂A|. Since
z = φ(t) it follows that the number of distinct vertices z that can occur in
the above argument is also bounded above by D|∂A|. But every y ∈ ∂Q is
reachable from some such z by a path of length at most λ, and there are at
most E such paths from each z, so we obtain

|∂Q| ≤ DE|∂A|. (7)

Finally, combining equations (4), (5) and (7) we obtain

|∂Q|
|Q|

≤
(
C

|A|

)
(DE|∂A|) < ε

as required to complete the proof. �

An immediate consequence of the above results is the following.

Theorem 5.5. The Følner condition FC is a left Cayley graph quasi-isometry
invariant of finitely generated semigroups.

Proof. This follows from Proposition 5.2 and Theorem 5.4. �

For left cancellative semigroups, where the conditions of left amenability,
FC and SFC coincide, this yields a direct generalisation of a well-known
result for groups:

Corollary 5.6. Left amenability is a left quasi-isometry invariant of finitely
generated left cancellative semigroups.

In contrast, the fact that left reversibility is not visible in the left Cayley
graph (Proposition 5.1) means that neither SFC nor left amenability are
left quasi-isometry invariants for finitely generated semigroups in general.
Indeed, we have already seen that the 2-element left zero semigroup, which is
not left reversible (and hence not left amenable), is left quasi-isometric to the
amenable (and hence SFC) group Z2. However, since left reversibility is a
right quasi-isometry invariant (Proposition 5.1), it is natural to ask whether
SFC and/or left amenability are invariants of the right quasi-isometry class,
or of the two quasi-isometry classes considered together.

Question 5.7. Can SFC and/or left amenability of a finitely generated
semigroup be determined from (i) the right quasi-isometry class or (ii) the
left and right quasi-isometry classes together?
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[11] É. Ghys and P. de la Harpe. Infinite groups as geometric objects (after Gromov). In
Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci.
Publ., pages 299–314. Oxford Univ. Press, New York, 1991.
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