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Amenability and the second dual of a Banach algebra
by

FREDERIC GOURDEAU (Québer)

Abstract. Amenability and the Arens product are studied. Using the Arens product,
derivations from A are extended te derivations from A**. This is used to show directly
that .A** amenable implies A amenable.

1. Introduction and preliminaries. The study of cohomological prop-
erties of A*" in relation to those of A goes back to B. E. Johnson's semi-
nal article [9]. Recently, Ghahramani, Loy and Willis [4] have studied the
amenability and weak amenability of A in relation to the same properties
for A**, with an emphasis on the Banach algebra L'(G). One of their result
is that the amenability of A" implies the amenability of A: this result was
originally proved in [5] by other methods, but has not been published.

In this article, we show how Arens’ construction of a product on the
second dual of a Banach algebra enables us to extend derivations from A
into a bimodule X to derivations from 4™ into A™**, answering a question
raised in [9]. This is then used, along with a criterion for amenability which
does not involve duals, to give a simple proof that .A™ amenable implies A
amenable,

For basic definitions, the reader is referred to [2]. Let A be a Banach
algebra. Then the second dual of A can also be made into a Banach algebra,
using either the Arens product or the reversed Arens product. For clarity
and completeness, we recall precisely a few definitions related to the Arens
product, and regroup properties we shall need in a lemma. The reader who
wishes to return to the original is referred to [1].

Let X, Y and Z be Banach spaces and let m : X x Y — Z be a bounded
bilinear map. Let z € X, 2’ € X* and 3" € X**, where X* is the Banach
space dual of X, with similar notations for ¥ and Z. From m, we can
construct a map m*™* : X* x Y** — Z** in the following manner. For
r€ X,z ¢ X* ¢" € X*, and so on, we have maps:
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76 F. Gourdeau

m*:Z*x X = Y* givenby m*{z,2)(y) = 2 (m(z.y));
m* Y™ x Z* = X* givenby m™ (", 2 ) z) =y (m" (<, 2));
m*** . X** % Y** N Z** given by m***(mﬁjyﬂ)(zr) — m”(m**(y”,z')).

The same construction can be done with the transposed map mb Y x
X — Z, to obtain mT** : Y** x X** — Z**. Transposing again, we have
mTrT . X 5 Y+, 7% How are m*** and mT***T related?

DEFINITION. The bilinear map m is Arens regular if and only if, for all
z e X* and all ,yu c Y'**, mT***T(m”,y”) — m***(z”,y”).

Of course, the product of a Banach algebra A can be seen as a bilinear
map m : Ax A — Agiven by m(a1, ) = aray for all ay, a2 € A. Using the
construction above, we can construct two bilinear maps m*** and mTeeT
from A™ x A** into A™*; these maps turn out to give two products on A™,

DEFRINITION. The Banach algebra A is Arens regular if the two definitions
of a product given above coincide.

The product defined by m*** is called the Arens product, while the prod-
uct defined by m™***7T is called the reversed Arens product. The basic prop-
erties of the Arens product which we shall need are given in the following
lemma,

For convenience, we denote by “z, — 2" that z, is a bounded net in
X which, when seen as a net in X**, converges to " in the weak-x topology
of X**. We use yg — ¢ in a similar way.

LevMMa 1.1. Let m: X x ¥ — Z be a bilinear map.

(i) m is Arens regular if and only if, for all 2’ € Z*, the bilinear form
Zdom: X xY — Cis Arens regular;

(i) m*** ¢ X** xY™** — Z** is weak-+ to weak-+ continuous in z' € X*
for a fized ¥y € Y**, and is weak-x fo weck-+ confinuous in y” for a fived
z € X,

(iii) mT*T . X** x Y™ — Z* is weak-+ to weak-+ continuous in
! € X** for a fizted y € Y, and is weak-+ to weak-x continuous in y"
for a fixed x" € X**;

(iv) m* (2", y") = limg liwg m(za, ya) weak-x in Z** for oll " € X,
Y €Y**, and all T, = 2, yg =y,

(v) m™**T (g y") = limg limg m{2za, yg) weak-x in Z** for all ' €
X**, yu = Y**, and all 2, X :E”, Ys oA yH_

Proof. The proofs of (i}-(ii) can be found in (1], 2.3 and 3.2). However,
we find it easier to prove them after proving (iv) and (v); the author did

not find these last two properties stated as such elsewhere in the literature
on the subject.
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Given any bilinear map m: X x Y — Z, we have from the construction

*
of m***,

m***(m”,y”)(zf) o <m**(yﬂ,zf)’ m”)
= lién(ma,m**(y”,z')) where 2o — 2"
= lim{m*(z', za),y")
o
= 1i(£n(lién(yg,m* (7,24))) where yg = 3"
= lig‘nli{rin(m(:ca,yg),z’).

Therefore m*** (z”, y'") = limg limg m(Tq, ¥s) in the weak-* topology of Z**.
Similarly, m™***T(z", y"') = limg limg m(z4, ya) in the weak-+ topology
of Z**, Thus we have proven (iv) and (v).
To prove (i), suppose that m is not Arens regular. From (iv}) and (v), we
deduce that there are ' € Z*, z, — 2/ and yg 2 ¢ such that

lim lién Z o m(zq,yp) = 1i§nlién(m(mmyg),z’)
# liplim{m{za, ys), #) = limlim 2’ o m(%e yg)

Now, the left-hand side defines (2 e m)***(z",y") while the right-hand side
defines (z'om)T***T (¢, /"), This proves the “if” part. The other implication
follows similarly.

As for (i) and (iii), we can deduce them from the proof of (iv) and (v).
For instance, it follows from m**(z",y")(¢') = (m*™(y", '), ") that m™*
is weak-# to weak-* continuous in ¢/ € X** for a fixed ¢y’ € Y™ =

Note that part (iv) of the lemma allows us to define the Arens product
on A** as follows. For F and @ in A™, let (a,) and (bs) be two bounded
nets in .4 which, when seen as nets in A™*, converge in the weak-+ topology
to F and G respectively. Then the Arens product of FG of F and G is given
by FG = lim, limg e,bg, where the limits are taken in the weak-* topology
of A, The reversed Arens product is given by reversing the order of the
limits.

2. Arens product and derivations. From now on, let X be a Banach
A-bimodule (with module actions denoted by a - @ and o for ¢ € A and
z € X),and D: A— X be a hounded derivation. Also from now on, we let
z€ X, o' € X* and x/ € X™, where X" is the Banach space dual of X

Recall that a Banach algebra A is amenable if all bounded derivations
from A into a dual module are necessarily inner. We shall use the following
equivalent criterion for amenability (see [6]).
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PrOPOSITION 2.1 ([6]). A Banach algebra A is amenable if and only
if any bounded derivation from A into any Banach A-bimodule s approzi-
mately inner, or, equivalently, weakly approzimotely inner.

Here, we say that a derivation D : A — X is approzimately inner (re-
spectively weakly approgimately inner) if there exists a bounded net (o) in
X such that, for all @ € A, Da = limy.0(@ - o — To - @) in norm in X
(respectively, in the weak topology on X).

The study of relations between cohomological properties of A and those
of A™ goes back to [9]. In this paper, Johnson considered the following
general question: given A and an A-bimodule &, for which (if any) Banach
A**_bimodule Y is there a link between H'(A4, X) and H'(A*,))? The
case ¥V = X*, inspired by the need to have a dual module when looking
at amenability, is shown not to work in general: J cannot, in general, be
given a natural A**-bimodule structure arising from the bimodule structure
of A'. Thus, in [9], Johnson concludes that it does not seem possible to link
cohomological properties of A with those of A™.

Fortunately, we can use a classical construction and Arens’ ideas to cir-
cumvent this difficulty, and explicitly extend a derivation from A to one
from A™".

Given a Banach A-bimodule X, we let B = A& X be a Banach algebra,
with product given by (a,z)(b,y) = (eb,a -y + z - b), where (a, %), (b,y) €
A& X, together with the norm ||(a, 2)|| = ||ef 4 + ||z|| 4. Given a bounded
derivation D : A — X, we define the map 6 : A — A X by 8(a) = (a, Da).
It is easy to check that € is a continuous homomorphism from A into AG X.

Let us now consider B** and A** with the Arens product. (Note that
we can also take the reversed Arens product: all the following results still
hold, with the appropriate and straightforward modifications in the proofs.)
The bilinear maps 8** and D**, given by dualizing 6 and D twice, have the
following properties.

LEMMA 2.2. With the notation above,

(i) the map 8** is a continuous homomorphism from A™ into B**, and
is given by 8**(a") = (0", D**(a"}) for o’ € A™;
(ii) the product of elements of the type (a”,0) with those of the type
(0,2") in B** induces a Banach A -bimodule structure on X™™;
(iii) D** is then a bounded derivation.

Proof By weak-x continuity of #** (standard theory) and by Lem-
ma 1.1(iv), we have

6 (FG) = liénliénO(aabﬁ) = litlxnliénﬂ(aa)G(bﬁ)
= lim 9(aa)li£1;n 8(bg) = 6" (F16™(G)
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where (a,) and (bg) are two bounded nets in A which, when seen as nets in
A™, converge in the weak-+ topology to F and G respectively. Thus we get
the first statement.

To prove the second, define the actions of A*™ on X** by identifying .4**
with A™ @0 and X" with 0@ X™* in B**. The properties needed for these
actions to be bimodule actions follow immediately from the fact that B**
is a Banach algebra. Another way of stating this definition is: let o” - 2"
be defined by the relation (0,d” - 2") = (a”,0)(0, 2”), where the product is
taken in B**, with a similar definition for z” - a”.

Finally, that D is a continuous derivation is an easy consequence of (i)
together with the definition of the product on B**. =

We have thus shown that we can extend bimodule actions of A on X
to bimodule actions of A*™ on X™** in guch a way that D** is a bounded
derivation. This yields the result we were after.

TueoreM 2.3 ([5]). If A™ is amenable then A is amenable.

Proof. Let the notation be as above with D : A — & a bounded
derivation. Extending D to D** as above, we deduce, from the hypothesis
that A*™ is amenable and Proposition 2.1, that D** is approximately inner.
Thus there is a bounded net (z]) € A™* such that, in particular,

Da=D"a= lim (a- 2l —a%-a) innorm, for alla € A.
O et
Let 2 be a weak-* accumulation. point of (z) in A**. Then, by definition

of the module actions through the product on B**, for a fixed o € A, the
module action is weak-* continuous on ™ (Lemxoa 1.1). Thus

a-z' — 2" a=lim(a -z’ -z a)=Da weak-*in A
[
Also from Lemma 1.1(ii), (iii), for a bounded net () in X' which tends
to z' in the weak-* topology when seen as a nef in ™,

. . *
o 2" ~z"-a :hin(a-a;;\ — @y a)  weak- in AT

. , , .
However, in the last expression both a -z — @ -6 and a- 2" — gz - a are in
X, and therefore

Da = liin(a c@y—xy-a) weakly in A

Thus D is weakly approximately inner, and we conclude from Proposition 2.1
that A is amenable. w

3. Conclusion. Ciiven the links made between the amenability of A
and the amenability of A, one can wonder if Arens regularity is also linked to
amenability. Counterexamples to all direct implications between amenability
(or non-amenability) and Arens regularity (or non-Arens regularity) can be
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found in the literature, though not explicitly in all cases. Let us briefly give
the references. ‘

A class of Banach algebras which provides counterexamples is I1(S,w),
the class of weighted convolution algebras on a discrete semigroup S. This
class of algebras has been studied by Craw and Young for Arens regularity
[3] and by Niels Grgnbaek for amenability and weak amenability [7, 8].

It is shown in [10] that {*(G) is Arens regular if and only if G is finite.
It is also well known that I*(G) is amenable if and only if G is amenable as
a group. Thus I'(G) is amenable and Arens regular if G is finite; amenable
and non-Arens regular if G is amenable and infinite; and not amenable and
non-Arens regular if G is not amenable and infinite. For example, I*(Z) is
amenable not being Arens regular, and for the free group G on two symhols,
the algebra [1(G) is neither Arens regular nor amenable.

As a last example, the Banach algebra I*(Z,w), with weight w(n) =
1+ |n| for n € Z, is Arens regular and is not amenable. It is Arens regular
because

w(m,; + nj)

inf —————% =
i< w(ms jw(n;)

for all sequences of distinct elements of Z (see [3]). And it is not amenable
because w(n) does not satisfy sup, w(g)w(g~) < oo ([7], Theorem 3.2).

Would it be easier to link weak amenability with Arens regularity? There
are no direct links there either. An amenable Banach algebra being weakly
amenable, we already have examples of weakly amenable Banach algebras,
some of which are Arens regular and some of which are nof,

For the other examples, note that it easily follows from [8], Corollary 4.8,
that ['(Z,w) is weakly amenable if and only if sup,cz{|n|/(w(n)w(—n))}
= 00.

Thus, with the weight w(n) = el™l, I*(Z, w) is not weakly amenable: it
is not Arens regular either as w({m+ n)/(w(m)w(n}) = 1 (see (3]). With the
weight w(n) = 14 |n|, I*(Z,w) is not weakly amenable as in|/(w(n)w(—n))
< 1, and it is Arens regular as we have seen before.

A question left open is if the amenability of A™* implies the Arens reg-
ularity of .A. The scarcity of examples of A** which are amenable makes it
difficult to have a clear idea of why this should or should not hold, and we

have not found counterexamples to this implication (see [4] for more in this
area).

0
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