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AMENABILITY OF DISCRETE CONVOLUTION
ALGEBRAS, THE COMMUTATIVE CASE

NIELS GRONBEK

A Banach algebra 2 is called amenable if all bounded derivations
into dual Banach 2-modules are inner. Let S be a semigroup and let
1(S) be the corresponding discrete convolution algebra. This paper
is on the theme: “On the hypothesis that /!(S) is amenable, what
conclusions can be drawn about the (algebraic) structure of S ?” We
give a complete characterization of commutative semigroups carrying
amenable semigroup algebras. If S is commutative, then /'(S) is
amenable if and only if S is a finite semilattice of groups, that is,
there is a finite semilattice Y and disjoint commutative groups G,
(a€Y) such that S =,y G. and G.Gp C Gop (a, f€Y).

The theme above has previously been studied in [3] and [4]. In
both papers it is apparent that the condition of amenability imposes
strong algebraic constraints on the semigroup. In [3] a rather com-
plete description of inverse semigroups carrying amenable semigroup
algebras is given. Of particular interest for this paper is that a semi-
lattice carries an amenable semigroup algebra if and only if it is finite
[3, Theorem 10]. In [4] it is proved that, if a one-sided cancellative
semigroup carries an amenable semigroup algebra, then it is a group.
The result of this paper, that for a commutative semigroup S, the
semigroup algebra /!(S) is amenable if and only if S is a finite lat-
tice of groups, is proved by looking at the gross structure of S by
means of the “principle of maximal homomorphic image of a given
type”. Using the fact that homomorphic images of S carry amenable
semigroup algebras when S does, we establish the necessity of the
characterization by showing that each archimedean component of S
is a group. This is obtained by applying the results from [3] and [4],
mentioned above, to the maximal semilattice, the maximal cancella-
tive, and the maximal separative homomorphic images of S. The
sufficiency of the characterization is easily verified. Alternatively, it
follows from [3, Theorem 8§].

1. Preliminaries. We shall need some elementary semigroup the-
ory. We prefer to keep our exposition self-contained, so although
most of what follows can be found in standard texts on the subject,
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we shall, with a few exceptions, give proofs in some detail. For a
further discussion the reader is referred to [1]. Throughout S will
denote a commutative semigroup, with the binary operation written
multiplicatively.

1.1. DerFiNITIONS. Consider the following conditions on S':
(A) Each element of S is an idempotent.
(B) For all s, t€ S thereis n € N such that

s"etS and (" esS.

(C) s?=t2=st=>s=t (s,t€S).

If S satisfies (A) we call S a semilattice.

If S satisfies (B) we call S archimedean.

If S satisfies (C) we call S separative.

An ideal in S 1is a subset I such that ST C 1. A prime ideal in S
is an ideal, whose complement is a subsemigroup of S'.

A congruence on S is an equivalence relation which is compatible
with the semigroup operation.

A congruence ~ on S will be called separative (cancellative,
archimedean, etc.) if the semigroup S/ ~ is separative (cancellative,
archimedean, etc.).

1.2. DerFINITION. (Principle of maximal homomorphic image of
a given type). Let € be a class of congruences on S, closed under
intersections. Put py = ({p|lp € €}. Then S/py is the maximal
“type class €” homomorphic image of S .

See also [1, p. 18] and [7, §1].

EXAMPLE. Let po = N{p|s*ps (s € S)}. Then S/p, is the maxi-
mal semilattice homomorphic image of §S'.

1.3. DErFINITION. Let s € S and choose m € N smallest possible so
that s = s™*" for some r € N. Then order(s) = m and the smallest
possible r is called period (s). If no such m € N can be found we
put order(s) = oco.

1.4. DErFINITION. Let S be a semigroup and suppose that there is
a semilattice Y and disjoint subsemigroups S, (¢ €Y) of S such
that S = {J,cy Sa and SuSp € Sop (@, B€Y). Then S is called a
semilattice of the subsemigroups S, (¢ €Y).

The following lemma is the main structure theorem for commuta-
tive semigroups.



AMENABLE DISCRETE CONVOLUTION ALGEBRAS 245

1.5. LEMMA. Let S be a commutative semigroup and let Y be
the maximal semilattice homomorphic image of S. Then there are
disjoint archimedean subsemigroups S, (a € Y) of S such that S is
a semilattice of the semigroups S, (a € Y). This decomposition of S
into archimedean subsemigroups is unique up to isomorphism of Y,
and S is separative if and only if each archimedean component S, is
cancellative.

Proof. See [1, §4.3].

1.6. LEMMA. On S define the relations:
sct<Jue S su=tu

and
sot< Ing € NVn > ng s" =1".

Then ¢ and o are congruences and S/c is the maximal cancellative
homomorphic image of S and S/o is the maximal separative homo-
morphic image of S.

Proof. 1t is clear that both relations are congruences. Now suppose
p is a cancellative congruence; that is, suptu = spt (s,t,u€S).
Then clearly sct = spt (s,t € S) so that ¢ € p. Since c is
cancellative we are done with the statements about c.

Now suppose that 52 o £2 o st ; that is, there is ng € N so that s2" =
121 = g7 for n > ny. Then s¥otlt = g5 - 12 . t = g2+l 20+ =
s%m0+2 5o that for n > 8ng+2 we have s" = t". Hence sot, proving
that o is separative. Let p be a separative congruence. If so ¢, then
there is k € N so that stk = (k1. In particular stk p tk+! . This gives

With x = stk=! and y = t* we have x2pyZpxy so that xpy,
that is, st*~! ptk. Repeating as necessary, we get st pt2 ps?, where
the second relation follows from symmetry. Thus s p ¢, proving that
cCp. O

1.7. LEMMA. s?os < order(s) < oo and period(s) = 1. If e, f
are idempotents in S, then ecf < e = f.

Proof. Suppose s2os. Then there is ny € N so that s2" = s for
n > ng. If r is the period of s we have 2n =n (mod r) for n > ny
so that r = 1. The rest is obvious. O
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1.8. LEMMA. S/a is a group if and only if S is archimedean with
unique idempotent.

Proof.. First suppose that S/c is a group. From Lemma 1.7 it
follows that S has a unique idempotent. Let s, ¢ € .S. Since S/o is
a group there are u, v € § so that suogt and tvgs. By definition
of o, s divides a power of ¢ and ¢ divides a power of s, that is, .S
is archimedean. Conversely, let s € S and let e denote the unique
idempotent in S. Since S is archimedean there are ¢, u € .S so that
st =e and ue = s™ for some ny. We have (es)nt? = e"otPs"osP =
e"tPyesP = yes? = s"*P (p € N) so that esags. Clearly stge, so
S/o is a group. O

2. The main theorem. For the remainder of this paper we shall as-
sume that S is a commutative semigroup such that /!(S) is amenable.
We shall make frequent use of the fact that, if 7 is a homomor-
phic image of S, then /!(T) is amenable, and if 7 is an ideal in
S which is generated by an idempotent, then /!(I), being a closed
[1(S)-ideal which is unital as a Banach algebra, is amenable [6, Propo-
sition 5.1]. Thus, if S = J,cySo is the decomposition of S into
its archimedean components, then the semilattice Y is finite, since
[1(Y) is amenable ([3, Theorem 10]). We give Y the usual semilat-
tice ordering a < f < af=a (a, B€Y). Since Y is finite, ¥ has
a minimal element, namely the product of all elements in Y .

It is convenient to start with the case where S is separative; that is,
we are assuming that each archimedean component is cancellative.

2.1. LEMMA. Let S and Y be as above and let oy be the minimal
element of Y . Then S,, is a group.

Proof. By [4, Theorem 2.3] S/c is a group. Let s € S, Then
there is ¢ € S so that for all u € S stucu, thatis, for all u € S
there is v € S so that stuv = uv. Since ¢ is minimal, st € Sa0
and uv € S, , so, using the cancellation law in S, , we see that st
is a neutral element in Sa0 . Consequently / 1(S%) can be identified
canonically with an ideal generated by an idempotent in /!(S). It
follows that l‘(Sao) is amenable and therefore S, is a group, again
by [4, Theorem 2.3]. o

2.2. LEMMA. Let [1(S) be amenable and suppose that S is separa-
tive. Then S is a finite semilattice of groups.
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Proof. Let S = J,cy Sa be the decomposition of § into its archi-
medean components. Let f € Y, and define T ={J,> 8 So. Then T
is a subsemigroup of S and S\ 7T is a (prime) ideal in S. Hence
the canonical Banach space direct sum [/1(S) = I/ (T) @ [(S\T) is a
semidirect product, so that /!(7) is amenable. Since S is minimal in
{a €Y|a > f}, Lemma 2.1 implies that Sg is a group. But f was
arbitrary in Y . O

We now turn to the general case.

2.3. LEMMA. Suppose [1(S) is amenable. Then S is a finite semi-
lattice of its archimedean components, S = J,cy Sa. Each S, has a
unique idempotent e,, and e,S, is a group, isomorphic to the maxi-
mal separative homomorphic image of S, .

Proof. By Lemma 2.2 S/c is a finite semilattice of groups, S/o =
Ugey Go- Let S, be the preimage of G, by the canonical map
S — S/o. With slight abuse of notation we have S,/0 = G,, so
that S, is archimedean with unique idempotent, e, say, by Lemma
1.8. It follows that S = J,cy S. is the decomposition of S into its
archimedean components. Now let s € S,. Since G, is a group,
there is 1 € S, so that stoe,,1.e. (st)" =e, for some n € N. Hence
e,s""1t" is an inverse to e,s. Clearly the canonical map from e,S,
to G, is surjective. Assume that e,soe, for some s € S,. Since
€sS, 1s a group it follows from Lemma 1.7 that e,s = e,, proving
injectivity of the canonical map. o

We shall finish the proof of the main theorem by proving that
e.Se = S, for each o €Y. This is done by exploiting that /!(S),
being amenable, has a bounded approximate identity. First we need
a definition.

2.4. DEFINITION. Let s € S. Then we define
[ss7!1 = {u € S|us = s}.

Since /'(S) has a bounded approximate identity [ss~!] # @ for all
s €S [4, Theorem 1.1].

2.5. LeMMA. Let S = |J,cy Sa be the decomposition of S into
its archimedean components, as in Lemma 2.3, and let s € S,. If
[ss711NS, # D, then s € exSy. If o is maximal in Y, then S, is a
group.
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Proof. Let u € [ss'1NS,. Then usoe,s. Since S,/o is a group
we have uoe,,ie. u" =e, forsome n € N. Hence s = u"s = ¢,s.
In general, if s €S, and u € [ss~!']N Sy, then s = us € S, N Sg,,
so B > . Thus, when «a is maximal in Y we have that [ss~!] € S,
for all s € S, . It follows that e,S, = S., so that S, is a group by
Lemma 2.3. o

2.6. LEMMA. Let s =J,cy So be asin Lemma 2.3. Then [ss~']N
{eala € Y} # D forall s € S. In particular 11(S) is unital.

Proof. First note that, if u € [ss™!], then [uu~!] C [ss~']. Let
s € § and let S, be the archimedean component of s. Put up = s
and choose successively u; € [uk_lu,:ll]. Let S,, be the archimedean
component of u;. As noted in the proof of Lemma 2.5 we have
ag < ay <+ <ap <---. Since cardY < oo, we eventually have
Sa, = Sa,,, whence [wu;'|N Sa, # @, so that e, € [uu;'] by
Lemma 2.5. As observed in the beginning of the proof e, € [ss~1].
From [S, Theorem 7.5] it follows that /!(S) has a unit. O

We are now able to prove:

2.7. THEOREM. Let S be a commutative semigroup. Then ['(S) is
amenable if and only if S is a finite semilattice of commutative groups.

Proof. The sufficiency has been noted in the introduction. Hence
we assume that /!(S) is amenable. Let s = {J,cy S. be the de-
composition as in Lemma 2.3. By Lemma 2.5 the theorem is true
if cardY = 1. We proceed by induction on » = cardY . Assume
that n > 2 and that the theorem is true for semigroups which are
semilattices of archimedean semigroups with cardinality of the semi-
lattice strictly less than n. Let «p be the minimal element in Y.
Let B € Y\ {a}, and define Ty = {J,55S. As in the proof of
Lemma 2.2, we see that /!(Tj) is amenable. Thus, by the induction
hypothesis, we have that S, is a group for a € Y \ {ap}. We finish
the induction step by proving that So, = e%SaO. To this end, define
a congruence ~ on S by

s~te Ss=8t (s,t€09).

Note that, if s ~ ¢, then s € St, since [ss™!] # @. Using that S,
is a group for a # ag, we see that S/~= Ua#%{ea} U S,,/~. Hence
I (Sa,/~) is (isomorphic to) a closed ideal of finite codimension in the
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amenable Banach algebra /!(S/~), and therefore /!(S, /~) is itself
amenable [2, Theorem 4.1]. From Lemma 2.5 we get that S, /~ is a
group. In particular we have for all s € Sga0 that s ~ e, s, so, by the
note above, Sy, & €a,S,, - The induction step is hereby completed. O
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