AMENABILITY OF DISCRETE CONVOLUTION ALGEBRAS, THE COMMUTATIVE CASE

NIELS GRØNBÆK

A Banach algebra $\mathfrak A$ is called amenable if all bounded derivations into dual Banach $\mathfrak A$ -modules are inner. Let S be a semigroup and let $l^1(S)$ be the corresponding discrete convolution algebra. This paper is on the theme: "On the hypothesis that $l^1(S)$ is amenable, what conclusions can be drawn about the (algebraic) structure of S?" We give a complete characterization of commutative semigroups carrying amenable semigroup algebras. If S is commutative, then $l^1(S)$ is amenable if and only if S is a finite semilattice of groups, that is, there is a finite semilattice Y and disjoint commutative groups G_{α} ($\alpha \in Y$) such that $S = \bigcup_{\alpha \in Y} G_{\alpha}$ and $G_{\alpha}G_{\beta} \subseteq G_{\alpha\beta}$ (α , $\beta \in Y$).

The theme above has previously been studied in [3] and [4]. In both papers it is apparent that the condition of amenability imposes strong algebraic constraints on the semigroup. In [3] a rather complete description of inverse semigroups carrying amenable semigroup algebras is given. Of particular interest for this paper is that a semilattice carries an amenable semigroup algebra if and only if it is finite [3, Theorem 10]. In [4] it is proved that, if a one-sided cancellative semigroup carries an amenable semigroup algebra, then it is a group. The result of this paper, that for a commutative semigroup S, the semigroup algebra $l^1(S)$ is amenable if and only if S is a finite lattice of groups, is proved by looking at the gross structure of S by means of the "principle of maximal homomorphic image of a given type". Using the fact that homomorphic images of S carry amenable semigroup algebras when S does, we establish the necessity of the characterization by showing that each archimedean component of S is a group. This is obtained by applying the results from [3] and [4], mentioned above, to the maximal semilattice, the maximal cancellative, and the maximal separative homomorphic images of S. The sufficiency of the characterization is easily verified. Alternatively, it follows from [3, Theorem 8].

1. Preliminaries. We shall need some elementary semigroup theory. We prefer to keep our exposition self-contained, so although most of what follows can be found in standard texts on the subject,

we shall, with a few exceptions, give proofs in some detail. For a further discussion the reader is referred to [1]. Throughout S will denote a commutative semigroup, with the binary operation written multiplicatively.

- 1.1. DEFINITIONS. Consider the following conditions on S:
- (A) Each element of S is an idempotent.
- (B) For all $s, t \in S$ there is $n \in \mathbb{N}$ such that

$$s^n \in tS$$
 and $t^n \in sS$.

(C)
$$s^2 = t^2 = st \Rightarrow s = t \ (s, t \in S)$$
.

If S satisfies (A) we call S a semilattice.

If S satisfies (B) we call S archimedean.

If S satisfies (C) we call S separative.

An ideal in S is a subset I such that $SI \subseteq I$. A prime ideal in S is an ideal, whose complement is a subsemigroup of S.

A congruence on S is an equivalence relation which is compatible with the semigroup operation.

A congruence \sim on S will be called separative (cancellative, archimedean, etc.) if the semigroup S/\sim is separative (cancellative, archimedean, etc.).

1.2. DEFINITION. (Principle of maximal homomorphic image of a given type). Let $\mathfrak C$ be a class of congruences on S, closed under intersections. Put $\rho_0 = \bigcap \{\rho | \rho \in \mathfrak C\}$. Then S/ρ_0 is the maximal "type class $\mathfrak C$ " homomorphic image of S.

See also [1, p. 18] and [7, §1].

EXAMPLE. Let $\rho_0 = \bigcap \{\rho | s^2 \rho s \ (s \in S)\}$. Then S/ρ_0 is the maximal semilattice homomorphic image of S.

- 1.3. DEFINITION. Let $s \in S$ and choose $m \in \mathbb{N}$ smallest possible so that $s^m = s^{m+r}$ for some $r \in \mathbb{N}$. Then $\operatorname{order}(s) = m$ and the smallest possible r is called $\operatorname{period}(s)$. If no such $m \in \mathbb{N}$ can be found we put $\operatorname{order}(s) = \infty$.
- 1.4. DEFINITION. Let S be a semigroup and suppose that there is a semilattice Y and disjoint subsemigroups S_{α} $(\alpha \in Y)$ of S such that $S = \bigcup_{\alpha \in Y} S_{\alpha}$ and $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$ $(\alpha, \beta \in Y)$. Then S is called a semilattice of the subsemigroups S_{α} $(\alpha \in Y)$.

The following lemma is the main structure theorem for commutative semigroups.

1.5. Lemma. Let S be a commutative semigroup and let Y be the maximal semilattice homomorphic image of S. Then there are disjoint archimedean subsemigroups S_{α} ($\alpha \in Y$) of S such that S is a semilattice of the semigroups S_{α} ($\alpha \in Y$). This decomposition of S into archimedean subsemigroups is unique up to isomorphism of Y, and S is separative if and only if each archimedean component S_{α} is cancellative.

Proof. See [1, §4.3].

1.6. LEMMA. On S define the relations:

$$s c t \Leftrightarrow \exists u \in S \ s u = t u$$

and

$$s \sigma t \Leftrightarrow \exists n_0 \in \mathbb{N} \forall n \geq n_0 \ s^n = t^n.$$

Then c and σ are congruences and S/c is the maximal cancellative homomorphic image of S and S/σ is the maximal separative homomorphic image of S.

Proof. It is clear that both relations are congruences. Now suppose ρ is a cancellative congruence; that is, $su \rho tu \Rightarrow s \rho t$ $(s, t, u \in S)$. Then clearly $sc t \Rightarrow s \rho t$ $(s, t \in S)$ so that $c \subseteq \rho$. Since c is cancellative we are done with the statements about c.

Now suppose that $s^2 \sigma t^2 \sigma st$; that is, there is $n_0 \in \mathbb{N}$ so that $s^{2n} = t^{2n} = s^n t^n$ for $n \ge n_0$. Then $s^{4n_0+1}t = ss^{2n_0} \cdot t^{2n_0} \cdot t = s^{2n_0+1}t^{2n_0+1} = s^{4n_0+2}$ so that for $n \ge 8n_0+2$ we have $s^n = t^n$. Hence $s \sigma t$, proving that σ is separative. Let ρ be a separative congruence. If $s \sigma t$, then there is $k \in \mathbb{N}$ so that $st^k = t^{k+1}$. In particular $st^k \rho t^{k+1}$. This gives

$$(st^{k-1})^2 = st^{k-2}st^k \rho st^{k-2}t^{k+1} = st^{k-1}t^k \rho t^{k+1}t^{k-1} = (t^k)^2.$$

With $x = st^{k-1}$ and $y = t^k$ we have $x^2 \rho y^2 \rho xy$ so that $x \rho y$, that is, $st^{k-1} \rho t^k$. Repeating as necessary, we get $st \rho t^2 \rho s^2$, where the second relation follows from symmetry. Thus $s \rho t$, proving that $\sigma \subseteq \rho$.

1.7. LEMMA. $s^2 \sigma s \Leftrightarrow \operatorname{order}(s) < \infty$ and $\operatorname{period}(s) = 1$. If e, f are idempotents in S, then $e \sigma f \Leftrightarrow e = f$.

Proof. Suppose $s^2 \sigma s$. Then there is $n_0 \in \mathbb{N}$ so that $s^{2n} = s^n$ for $n \ge n_0$. If r is the period of s we have $2n \equiv n \pmod{r}$ for $n \ge n_0$ so that r = 1. The rest is obvious.

1.8. Lemma. S/σ is a group if and only if S is archimedean with unique idempotent.

Proof. First suppose that S/σ is a group. From Lemma 1.7 it follows that S has a unique idempotent. Let $s, t \in S$. Since S/σ is a group there are $u, v \in S$ so that $su \sigma t$ and $tv \sigma s$. By definition of σ , s divides a power of t and t divides a power of s, that is, S is archimedean. Conversely, let $s \in S$ and let e denote the unique idempotent in S. Since S is archimedean there are $t, u \in S$ so that st = e and $ue = s^{n_0}$ for some n_0 . We have $(es)^{n_0+p} = e^{n_0+p} s^{n_0} s^p = e^{n_0+p} ues^p = ues^p = s^{n_0+p}$ ($p \in \mathbb{N}$) so that $es \sigma s$. Clearly $st \sigma e$, so S/σ is a group.

2. The main theorem. For the remainder of this paper we shall assume that S is a commutative semigroup such that $l^1(S)$ is amenable. We shall make frequent use of the fact that, if T is a homomorphic image of S, then $l^1(T)$ is amenable, and if I is an ideal in S which is generated by an idempotent, then $l^1(I)$, being a closed $l^1(S)$ -ideal which is unital as a Banach algebra, is amenable [6, Proposition 5.1]. Thus, if $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is the decomposition of S into its archimedean components, then the semilattice Y is finite, since $l^1(Y)$ is amenable ([3, Theorem 10]). We give Y the usual semilattice ordering $\alpha \leq \beta \Leftrightarrow \alpha\beta = \alpha \ (\alpha, \beta \in Y)$. Since Y is finite, Y has a minimal element, namely the product of all elements in Y.

It is convenient to start with the case where S is separative; that is, we are assuming that each archimedean component is cancellative.

2.1. Lemma. Let S and Y be as above and let α_0 be the minimal element of Y. Then S_{α_0} is a group.

Proof. By [4, Theorem 2.3] S/c is a group. Let $s \in S_{\alpha_0}$ Then there is $t \in S$ so that for all $u \in S$ stucu, that is, for all $u \in S$ there is $v \in S$ so that stuv = uv. Since α_0 is minimal, $st \in S_{\alpha_0}$ and $uv \in S_{\alpha_0}$, so, using the cancellation law in S_{α_0} , we see that st is a neutral element in S_{α_0} . Consequently $l^1(S_{\alpha_0})$ can be identified canonically with an ideal generated by an idempotent in $l^1(S)$. It follows that $l^1(S_{\alpha_0})$ is amenable and therefore S_{α_0} is a group, again by [4, Theorem 2.3].

2.2. Lemma. Let $l^1(S)$ be amenable and suppose that S is separative. Then S is a finite semilattice of groups.

Proof. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be the decomposition of S into its archimedean components. Let $\beta \in Y$, and define $T = \bigcup_{\alpha \geq \beta} S_{\alpha}$. Then T is a subsemigroup of S and $S \setminus T$ is a (prime) ideal in S. Hence the canonical Banach space direct sum $l^1(S) = l^1(T) \oplus l^1(S \setminus T)$ is a semidirect product, so that $l^1(T)$ is amenable. Since β is minimal in $\{\alpha \in Y | \alpha \geq \beta\}$, Lemma 2.1 implies that S_{β} is a group. But β was arbitrary in Y.

We now turn to the general case.

2.3. Lemma. Suppose $l^1(S)$ is amenable. Then S is a finite semilattice of its archimedean components, $S = \bigcup_{\alpha \in Y} S_{\alpha}$. Each S_{α} has a unique idempotent e_{α} , and $e_{\alpha}S_{\alpha}$ is a group, isomorphic to the maximal separative homomorphic image of S_{α} .

Proof. By Lemma 2.2 S/σ is a finite semilattice of groups, $S/\sigma = \bigcup_{\alpha \in Y} G_{\alpha}$. Let S_{α} be the preimage of G_{α} by the canonical map $S \to S/\sigma$. With slight abuse of notation we have $S_{\alpha}/\sigma = G_{\alpha}$, so that S_{α} is archimedean with unique idempotent, e_{α} say, by Lemma 1.8. It follows that $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is the decomposition of S into its archimedean components. Now let $s \in S_{\alpha}$. Since G_{α} is a group, there is $t \in S_{\alpha}$ so that $st \sigma e_{\alpha}$, i.e. $(st)^n = e_{\alpha}$ for some $n \in \mathbb{N}$. Hence $e_{\alpha}s^{n-1}t^n$ is an inverse to $e_{\alpha}s$. Clearly the canonical map from $e_{\alpha}S_{\alpha}$ to G_{α} is surjective. Assume that $e_{\alpha}s \sigma e_{\alpha}$ for some $s \in S_{\alpha}$. Since $e_{\alpha}S_{\alpha}$ is a group it follows from Lemma 1.7 that $e_{\alpha}s = e_{\alpha}$, proving injectivity of the canonical map.

We shall finish the proof of the main theorem by proving that $e_{\alpha}S_{\alpha}=S_{\alpha}$ for each $\alpha\in Y$. This is done by exploiting that $l^{1}(S)$, being amenable, has a bounded approximate identity. First we need a definition.

2.4. Definition. Let $s \in S$. Then we define

$$[ss^{-1}] = \{u \in S | us = s\}.$$

Since $l^1(S)$ has a bounded approximate identity $[ss^{-1}] \neq \emptyset$ for all $s \in S$ [4, Theorem 1.1].

2.5. Lemma. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be the decomposition of S into its archimedean components, as in Lemma 2.3, and let $s \in S_{\alpha}$. If $[ss^{-1}] \cap S_{\alpha} \neq \emptyset$, then $s \in e_{\alpha}S_{\alpha}$. If α is maximal in Y, then S_{α} is a group.

Proof. Let $u \in [ss^{-1}] \cap S_{\alpha}$. Then $us \sigma e_{\alpha}s$. Since S_{α}/σ is a group we have $u \sigma e_{\alpha}$, i.e. $u^n = e_{\alpha}$ for some $n \in \mathbb{N}$. Hence $s = u^n s = e_{\alpha}s$. In general, if $s \in S_{\alpha}$ and $u \in [ss^{-1}] \cap S_{\beta}$, then $s = us \in S_{\alpha} \cap S_{\beta\alpha}$, so $\beta \geq \alpha$. Thus, when α is maximal in Y we have that $[ss^{-1}] \subseteq S_{\alpha}$ for all $s \in S_{\alpha}$. It follows that $e_{\alpha}S_{\alpha} = S_{\alpha}$, so that S_{α} is a group by Lemma 2.3.

2.6. Lemma. Let $s = \bigcup_{\alpha \in Y} S_{\alpha}$ be as in Lemma 2.3. Then $[ss^{-1}] \cap \{e_{\alpha} | \alpha \in Y\} \neq \emptyset$ for all $s \in S$. In particular $l^{1}(S)$ is unital.

Proof. First note that, if $u \in [ss^{-1}]$, then $[uu^{-1}] \subseteq [ss^{-1}]$. Let $s \in S$ and let S_{α_0} be the archimedean component of s. Put $u_0 = s$ and choose successively $u_k \in [u_{k-1}u_{k-1}^{-1}]$. Let S_{α_k} be the archimedean component of u_k . As noted in the proof of Lemma 2.5 we have $\alpha_0 \le \alpha_1 \le \cdots \le \alpha_k \le \cdots$. Since $\operatorname{card} Y < \infty$, we eventually have $S_{\alpha_k} = S_{\alpha_{k+1}}$, whence $[u_k u_k^{-1}] \cap S_{\alpha_k} \ne \emptyset$, so that $e_{\alpha_k} \in [u_k u_k^{-1}]$ by Lemma 2.5. As observed in the beginning of the proof $e_{\alpha_k} \in [ss^{-1}]$. From [5, Theorem 7.5] it follows that $l^1(S)$ has a unit.

We are now able to prove:

2.7. Theorem. Let S be a commutative semigroup. Then $l^1(S)$ is amenable if and only if S is a finite semilattice of commutative groups.

Proof. The sufficiency has been noted in the introduction. Hence we assume that $l^1(S)$ is amenable. Let $s = \bigcup_{\alpha \in Y} S_\alpha$ be the decomposition as in Lemma 2.3. By Lemma 2.5 the theorem is true if $\operatorname{card} Y = 1$. We proceed by induction on $n = \operatorname{card} Y$. Assume that $n \geq 2$ and that the theorem is true for semigroups which are semilattices of archimedean semigroups with cardinality of the semilattice strictly less than n. Let α_0 be the minimal element in Y. Let $\beta \in Y \setminus \{\alpha_0\}$, and define $T_\beta = \bigcup_{\alpha \geq \beta} S_\alpha$. As in the proof of Lemma 2.2, we see that $l^1(T_\beta)$ is amenable. Thus, by the induction hypothesis, we have that S_α is a group for $\alpha \in Y \setminus \{\alpha_0\}$. We finish the induction step by proving that $S_{\alpha_0} = e_{\alpha_0} S_{\alpha_0}$. To this end, define a congruence \sim on S by

$$s \sim t \Leftrightarrow Ss = St$$
 $(s, t \in S).$

Note that, if $s \sim t$, then $s \in St$, since $[ss^{-1}] \neq \emptyset$. Using that S_{α} is a group for $\alpha \neq \alpha_0$, we see that $S/\sim \cong \bigcup_{\alpha \neq \alpha_0} \{e_{\alpha}\} \cup S_{\alpha_0}/\sim$. Hence $l^1(S_{\alpha_0}/\sim)$ is (isomorphic to) a closed ideal of finite codimension in the

amenable Banach algebra $l^1(S/\sim)$, and therefore $l^1(S_{\alpha_0}/\sim)$ is itself amenable [2, Theorem 4.1]. From Lemma 2.5 we get that S_{α_0}/\sim is a group. In particular we have for all $s \in S_{ga_0}$ that $s \sim e_{\alpha_0}s$, so, by the note above, $S_{\alpha_0} \subseteq e_{\alpha_0}S_{\alpha_0}$. The induction step is hereby completed. \square

Acknowledgment. I wish to acknowledge a stimulating correspondence with Professor J. Duncan on the subject. I wish to thank Dr. K. B. Laursen for a careful reading of the manuscript.

REFERENCES

- [1] A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Math. Surveys no. 7, Amer. Math. Soc., Providence, Rhode Island 1967.
- [2] P. C. Curtis and R. J. Loy, *The structure of amenable Banach algebras*; (to appear in J. London Math. Soc.).
- [3] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semi-group algebras, Proc. Royal Soc. Edinburgh, 80A (1978), 309–321.
- [4] N. Grønbæk, Amenability of weighted discrete convolution algebras on cancellative semigroups, Proc. Royal Soc. Edinburgh, 110A (1988), 351–360.
- [5] E. Hewitt and H. S. Zuckerman, *The l*₁-algebra of a commutative semigroup, Trans. Amer. Math. Soc., **83** (1956), 70–97.
- [6] B. E. Johnson, Cohomology in Banach algebras; Mem. Amer. Math. Soc., 127 (1972).
- [7] T. Tamura, The study of closets and free contents related to semilattice decomposition of semigroups; in Semigroups, Proceedings of a symposium on semigroups held at Wayne State University, Detroit, Michigan, (1968); Academic Press, New York and London.

Received August 29, 1988.

Københavns Universitets Matematiske Institut Universitetsparken 5 2100 København ø, Denmark