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0. Introduction

In 1972, B.E. Johnson proved that for every discrete group G, �1(G) is
amenable as a Banach algebra if and only if G is amenable as a group [9].
When S is a commutative semigroup, �1(S) is amenable if and only if S is
a finite semilattice of abelian (and hence amenable) groups [7]. When S is
a cancellative semigroup with identity, it is amenable if and only if S is an
amenable group [6]. In 1978, J. Duncan and I. Namioka showed that if S
is an arbitrary inverse semigroup with finite set of idempotents E(S), then
�1(S) is amenable if and only if each maximal group of S is amenable [4].
Also, they showed that �1(S) fails to be amenable if E(S) is infinite, for E-
unitary semigroups. In 1990, J. Duncan and A.L.T. Paterson completed the
story for inverse semigroup by showing that the above result holds without the
restriction of S being E-unitary [5]. Recently, G.K. Dales, A.T.-M. Lau and
D. Strauss have shown that for an arbitrary semigroup S, �1(S) is amenable
if and only if S is ’built up from amenable groups’ [3, Theorem 10.12]. They
used the methods of [4].

We apply some of the above results to the semigroup algebra �1(Sr), where
Sr is the restricted 0-semigroup associated to an inverse semigroup S [1], to
prove similar results about the restricted semigroup algebra �1

r(S), introduced
by the second author and A.R. Medghalchi in [1]. We show that the restricted
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semigroup Sr is a 0-direct union of Brandt semigroups (Lemma 2.1). This is a
key concept for us to show that �1(Sr) is an amenable Banach algebra if and
only if these Brandt semigroups are amenable and E(S) is finite (Theorem
2.4). We also prove that amenability of the Banach algebras �1

r(S), �1(Sr), and
�1(S) are equivalent (Theorems 2.6, 2.8 and Corollary 2.9 ). We calculate Sr for
some inverse semigroups S and discuss the amenability of the corresponding
algebras.

If a Banach algebra is amenable then it has a bounded approximate identity.
J. Duncan and I. Namioka characterized those inverse semigroups S for which
�1(S) has a bounded approximate identity by introducing the condition (Dk)
[4]. We show that �1

r(S) and �1(Sr) have bounded approximate identity if and
only if E(S) is a finite set. In general we know that �1

r(S) always has a (not
necessarily bounded) approximate identity [1].

1. Preliminaries

An inverse semigroup S is a discrete semigroup such that for each s ∈ S
there is a unique element s∗ with

ss∗s = s, s∗ss∗ = s∗.

The map s �−→ s∗ is an involution on S [11], [10]. The set E(S) of idempotents
of S consists of elements of the form ss∗, where s ∈ S. It is easy to see that
E(S) is a commutative subsemigroup of S [11], [10]. There is a natural order
≤ on E(S) defined by e ≤ f if and only if ef = e. We refer the interested
reader to [10] for more details.

For an arbitrary inverse semigroup S, the restricted product of elements x
and y of S is xy if x∗x = yy∗ and undefined, otherwise. The set S with this
restricted product forms a discrete groupoid [10, 3.1.4]. If we adjoin a zero
element 0 to this groupoid and put 0∗ = 0, we get an inverse semigroup Sr [10,
3.3.3] with multiplication rule

x • y =

{
xy x∗x = yy∗

0 otherwise
(x, y ∈ S ∪ {0})

which is called the restricted semigroup of S in [1].
We remind that a subgroup G of S is a subsemigroup of S such that G is a

group. Also, a subset I of S is an (a two-sided) ideal , if sa ∈ I and as ∈ I,
for each a ∈ I and s ∈ S. For every element b ∈ S, there is the smallest
ideal containing b called the principal ideal containing b. For an inverse
semigroup S, the principal ideal containing b is SbS [10]. One of the Green’s
relations J , is defined in terms of principal ideals. For s, t ∈ S

sJt ⇔ SsS = StS.

The J-class containing t is denoted by Jt. We refer the readers to [2], [8], and
[10] for more details.

A nonzero idempotent in a semigroup with zero is said to be primitive,
if it is minimal relative to the natural partial order on the set of all nonzero
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idempotents. An inverse semigroup S with zero is called primitive, if every
nonzero idempotent is primitive. A semigroup S without zero is called simple
if it has no proper ideals. A semigroup S with zero is called 0-simple if

(i) {0} and S are its only ideals,
(ii) S2 = SS �= {0}.
A semigroup is called completely 0-simple if it is 0-simple and primitive.

A Brandt semigroup is a completely 0-simple inverse semigroup. References
[8], [2], [10], and [11] contain more details about these concepts.

An ideal I of a semigroup S induces a relation ρI on S by

(s, t) ∈ ρI ⇔ either s = t or s, t ∈ I.

This is a congruence on S. The quotient S
ρI

is called the Rees quotient

semigroup and is usually denoted by S
I
. Note that S

I
is S when the ideal I is

collapsed to zero.
The minimum ideal of S (if it exists) is denoted by K(S). A principal series

of ideals for S is a chain

S = I1 � I2 � ... � Im = K(S)

where I1, I2, ..., Im are ideals in S and there is no ideal of S strictly between Ij

and Ij+1, for each j ∈ Nm−1.
The Banach algebra �1(S) of all complex valued functions f on S satisfying

‖f‖1 = (
∑
x∈S

|f(x)|) < ∞

is called the semigroup algebra of S. This is a Banach algebra with con-
volution product

(f ∗ g)(x) =
∑
st=x

f(s)g(t) (f, g ∈ �1(S)).

When S is a ∗-semigroup, we put f̃(x) = f(x∗), for each f ∈ �1(S). Following
[1], we define

(f • g)(x) =
∑

x∗x=yy∗
f(xy)g(y∗) (x ∈ S).

Under the usual �1-norm, (�1(S), •,˜) is a Banach ∗-algebra [1]. We denote
this Banach algebra by �1

r(S) and call it the restricted semigroup algebra
of S [1].

Example 1.1. Let S be a meet semilattice, that is a semigroup such that, for
every a ∈ S, a2 = a. This means that a∗ = a. Thus we can define the restricted
semigroup Sr with the restricted product

x • y =

{
x x = y
0 otherwise

(x, y ∈ S ∪ {0}).
In this case, Sr is also a meet semilattice.
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Example 1.2. Rees inverse semigroups are Brandt semigroups [8, 5.1.8]. If
S is a Brandt semigroup then S ∼= M0(G, I, n) for some group G with identity
e, some n ∈ N, and a matrix I = (δij) of order n defined by

δij =

{
e i = j
0 otherwise

(0 < i, j < n + 1).

We use the notation of [3]. An arbitrary element of S is (x)ij for x ∈ G (with
the (i, j)th component x, and 0 elsewhere). In this semigroup ((x)ij)

∗ = (x−1)ji.
Therefore

((x)ij)
∗(x)ij = (x−1)ji(x)ij = (x−1ex)jj = (e)jj

and also
(y)kl((y)kl)

∗ = (y)kl(y
−1)lk = (yey−1)kk = (e)kk

for x, y ∈ G. Thus we have

(x)ij • (y)kl =

{
(x)ij(y)kl j = k
0 otherwise

(x, y ∈ G)

that is

(x)ij • (y)kl =

{
(xy)il j = k
0 otherwise

(x, y ∈ G).

This restricted product is exactly the ordinary product of S. Therefore S = Sr

for a Brandt semigroup S.

Example 1.3. Let S be a Clifford semigroup. Then S is isomorphic to a
strong semilattice of groups [10, 5.2.12], say S = ∪e∈E(S)Ge. If e, f ∈ E(S),
x ∈ Ge and y ∈ Gf then x−1x = xx−1 = e and y−1y = yy−1 = f . Therefore
x • y = y • x = 0, unless e = f . For x, y ∈ Ge we have x • y = xy and
y • x = yx. For every non-zero element s ∈ Ge ⊂ Sr,

s−1 • s = s−1s = e = ss−1 = s • s−1.

Also,
0−1 • 0 = 0−10 = 0 = 00−1 = 0 • 0−1.

Thus Sr is a Clifford semigroup [10, 5.2.12]. Note that Sr is not 0-simple in
general, because every Gi ∪ {0} is a proper ideal of Sr.

Remark 1.4. For every nontrivial inverse semigroup S, the restricted semi-
group Sr is not an E-unitary semigroup, because 0 ∈ Sr ∩ E(Sr).

2. Amenability of the algebras �1(Sr) and �1
r(S)

In this section we discuss the amenability properties of some function alge-
bras on semigroups. We study the relation between amenability of the semi-
group algebra �1(Sr) of the restricted semigroup Sr of an inverse semigroup
S, the restricted semigroup algebra �1

r(S), and the semigroup algebra �1(S).
For more details about amenability of semigroups and their function algebras,
see [9], [4], [3] and [12]. For every inverse semigroup S, the restricted semi-
group Sr is an inverse semigroup and E(Sr) = E(S) ∪ {0}. For each elements
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e, f of E(Sr), if ef �= 0 then e = e∗e = ff ∗ = f , hence every element of
E(Sr) is minimal relative to the canonical partial order. Thus Sr is a primitive
semigroup.

By [8, theorem 3.3.4] or [10, theorem 3.3.5], we have the following lemma.

Lemma 2.1. For every inverse semigroup S, the restricted semigroup Sr is
0-direct union of Brandt semigroups; i.e. Sr = ∪i∈ISi such that every Si is a
Brandt semigroup and Si ∩ Sj = SiSj = {0}, if i �= j.

For each i ∈ I there exist an element e ∈ E(S) such that Si = Je ∪ {0}.
Because every Si is a completely 0-simple inverse semigroup (Brandt), the only
ideals of Si are {0} and Si. Also, we have (Si)

2 = SiSi �= {0}.
If E(S) (and so E(Sr)) is a finite set, then the set I in the above lemma is

finite and we have |I| ≤ |E(Sr)|. Suppose that I = {1, 2, ..., n}. Each Si, for
i ∈ I, and every finite union of these semigroups are ideals of Sr.

Lemma 2.2. Let S be an inverse semigroup with E(S) finite. The nontrivial
ideals of the restricted semigroup Sr are exactly

(S1), (S2), ..., (Sn), (S1 ∪ S2), ..., (S1 ∪ S2 ∪ S3), ..., (S1 ∪ ... ∪ Sn).

proof. If K is a nontrivial ideal of Sr, then for some i ∈ I, K ∩Si �= ∅. The
set K ∩Si is an ideal of Si. Hence, it is {0} or Si, because Si is 0-simple. This
says that K is a finite union of semigroups Si. �

We need the next lemma for studying the amenability of �1(Sr).

Lemma 2.3. For every inverse semigroup S with E(S) finite, the restricted
semigroup Sr has a principal series.

proof. Consider the chain

Sr = (S1 ∪ ... ∪ Sn) � (S1 ∪ ... ∪ Sn−1) � ... � (S1 ∪ S2) � (S1) � {0} � ∅.
Like in the above lemma, there is no proper ideal of Sr strictly between two
consecutive ideals of this chain. Let 2 � i � n be arbitrary. The Rees quotient
semigroup

S1 ∪ S2 ∪ ... ∪ Si−1 ∪ Si

S1 ∪ S2 ∪ ... ∪ Si−1

= {S1 ∪ S2 ∪ ... ∪ Si−1} ∪ (Si − {0})
is just Si with (S1∪S2∪ ...∪Si−1) collapsed to zero. Hence, this Rees quotient
semigroup is a Brandt semigroup. On the other hand, S1

{0} = {{0}} ∪ (S1 −
{0}) can be identified with S1 and this Rees quotient semigroup is a Brandt
semigroup, too. It is obvious that each two ideals of the above chain are
distinct, which completes the proof. �

We know that if �1(S) is amenable then E(S) is finite [5]. The next result
is one of the main theorems of this section, in which we find a necessary and
sufficient condition for amenability of �1(Sr), where S is an inverse semigroup
with finitely many idempotents. This follows from the above lemma and [3,
theorem 10.12].
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Theorem 2.4. Let S be an inverse semigroup with finitely many idempotents.
We know that Sr = ∪n

i=1Si such that each Si is a Brandt semigroup with the
corresponding group Gi. Then �1(Sr) is amenable if and only if every Gi is an
amenable group.

Next we study the relation between the amenability of Banach algebras
�1(S), �1

r(S) and �1(Sr), for an arbitrary inverse semigroup S.

Lemma 2.5. If S is an inverse semigroup, then Cδ0 is a closed ideal of �1(Sr).

proof. Let f ∈ �1(Sr) and cδ0 ∈ Cδ0 are arbitrary elements. For each
nonzero element x ∈ Sr we have

(f • cδ0)(x) =
∑

x∗x=yy∗
f(xy)cδ0(y

∗) = 0

unless y∗ = 0. If y∗ = 0 then y = 0 and x = 0. Hence, for every nonzero
element x ∈ Sr, (f • cδ0)(x) = 0. For x = 0

(f • cδ0)(0) =
∑

0∗0=yy∗
f(0y)cδ0(y

∗) =
∑
y=0

f(0)cδ0(y
∗)

Therefore f • cδ0 ∈ Cδ0. On the other hand, for an arbitrary nonzero element
x ∈ Sr, if x∗x = yy∗ then xy ∈ S and xy �= 0. Thus

((cδ0) • f)(x) =
∑

x∗x=yy∗
cδ0(xy)f(y∗) = 0.

Also

((cδ0) • f)(0) =
∑

0∗0=yy∗
cδ0(0y)f(y∗) = cf(0) ∈ C.

Hence cδ0 • f ∈ Cδ0. Therefore Cδ0 is an ideal of �1(Sr).
Now it remains to show that if {cnδ0} ⊂ Cδ0 converges to f ∈ �1(Sr), then

f ∈ Cδ0. Let x ∈ Sr and x �= 0. For each n, cnδ0(x) = 0 and cnδ0(0) = cn.
Since limn→∞ ‖f − cnδ0‖ = 0, we have

0 = lim
n→∞

∑
x∈Sr

|f(x) − cn(x)δ0(x)| = lim
n→∞

(|f(0) − cn| +
∑

0 �=x∈S

|f(x)|).

Hence f(x) = 0, for each 0 �= x ∈ S. It is obvious that f(0) ∈ C. Therefore
f ∈ Cδ0 and the proof is complete. �

Theorem 2.6. Let S be an inverse semigroup. The restricted semigroup al-
gebra �1

r(S) is amenable if and only if �1(Sr) is amenable.

proof. By [1, theorem 3.2], we know that �1
r(S) ∼= �1(Sr)

�δ0
. But Cδ0 is an

closed ideal of �1(Sr), hence, by [12, corollary 2.3.2] and [12, theorem 2.3.10],
it follows that �1

r(S) is an amenable Banach algebra if and only if �1(Sr) is
amenable as a Banach algebra. �
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Lemma 2.7. Let S be an inverse semigroup. Every nonzero subgroup of S is
a subgroup of Sr and every nonzero subgroup of Sr is a subgroup of S.

proof. Let G be a nonzero subgroup of S. If 0 ∈ G, then 00−1 = 0 �= e,
which is a contradiction (here e is the identity of G). Hence G is a subset of Sr

which 0 /∈ G. If a, b ∈ G are two arbitrary elements of G, then a−1a = e = bb−1.
Hence a•b = ab �= 0 and a•b ∈ G. Thus a•a−1 = aa−1 = e, a−1•a = a−1a = e,
a • e = ae = a, and e • a = ea = a. Therefore, G is a subgroup of Sr.

Conversely, let Gr be an arbitrary nonzero subgroup of Sr and er be the
identity element of Gr. The zero element of Sr could not be in Gr. We
conclude that Gr ⊂ S, as sets. Suppose that a, b ∈ Gr are arbitrary. Then
a • b ∈ Gr and a • b �= 0. Thus ab = a • b, therefore Gr is a subgroup of S. �

Theorem 2.8. Let S be an inverse semigroup. The semigroup algebra �1(S)
is amenable if and only if �1(Sr) is amenable.

proof. By the previous lemma, every maximal nonzero subgroup of S is
a maximal nonzero subgroup of Sr and vice versa. Also, {0} is an amenable
maximal subgroup of Sr and possibility of S. On the other hand, E(S) is a
finite set if and only if E(Sr) is finite. Now, the result follows from [4, theorem
8] and [5, corollary 1]. �

Corollary 2.9. For an inverse semigroup S, �1(S) is amenable if and only if
�1
r(S) is amenable.

In particular, if �1
r(S) is an amenable Banach algebra, then S is an amenable

semigroup, but the converse is false (see also [4, lemma 3 and theorem 10]). It
is trivial that Sr is always 0-amenable [4, remark (2) on Page 311]. Theorems
2.6 and 2.8 show that, to study the amenability of �1(S), we need to calculate
the semigroups Si and their corresponding groups Gi, where Sr = ∪n

i=1Si, and
investigate the amenability of the groups Gi. For more information about these
groups, refer to [8].

We finish this section by presenting some examples.

Example 2.10. Let S ∼= M0(G, I, n) be a Brandt semigroup. In example 1.2,
we proved that S = Sr. Therefore �1(Sr) = �1(S) and we have

�1
r(S) =

�1(S)

Cδ0

∼= M0(�1(G), I, n).

For more details, see [3, Page 62] and [1, theorem 3.2]. Thus the Banach
algebra �1

r(S), and so �1(S), is amenable if and only if G is an amenable group.
We note that the index set I is finite, then the set E(S) is finite.

Example 2.11. For every finite meet semilattice S, we have

Sr = ∪n
i=1Si
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where Si = {0, ai} with ai ∈ S. Thus Si is a Brandt semigroup with corre-
sponding group Gi = {ai}. The groups Gi are trivially amenable, therefore the
Banach algebras �1(Sr), �1

r(S) and �1(S) are amenable.

Example 2.12. For each Clifford semigroup S with finitely many idempo-
tents, Sr is a Clifford semigroup (see example 1.3). If S = ∪n

i=1Gi and ei is
the identity of Gi, the restricted semigroup Sr is equal to S ∪ {0} with the
restricted product •. Put Si = Gi ∪ {0} for i = 1, 2, ..., n. For each i, Si is
a Brandt semigroup with corresponding group Gi and Sr = ∪n

i=1Si. Also we
have Si ∩ Sj = SiSj = {0}, for every i �= j. Thus Sr is 0-direct union of these
Brandt semigroups Si. Hence the Banach algebras �1(Sr), �1

r(S) and �1(S) are
amenable if and only if each Gi is an amenable group.

3. Bounded approximate identities for �1
r(S) and �1(Sr)

A necessary condition for a Banach algebras to be amenable is that it pos-
sesses a bounded right approximate identity. In this section, we characterize
those inverse semigroups S for which the restricted semigroup algebra �1

r(S)
has a bounded right approximate identity. we do the same for the semigroup
algebra �1(Sr).

Note that in an inverse semigroup S, for s, t ∈ S, δs ∗ δt = δst, but this
relation fails for the dot product •.
Lemma 3.1. For an inverse semigroup S we have

δs • δt =

{
δst s∗s = tt∗

0 otherwise
(s, t ∈ S)

proof. Let x ∈ S be an arbitrary element. Then

δs • δt(x) =
∑

x∗x=yy∗
δs(xy)δt(y

∗) = 0

unless x∗x = yy∗, s = xy and t = y∗. If these equalities hold, then x = xx∗x =
(xy)y∗ = (s)y∗ = st or x = st. Therefore δs • δt(x) = 0, unless x = st. Now

δs • δt(st) =
∑

t∗s∗st=yy∗
δs(sty)δt(y

∗) = 0

unless y∗ = t, sty = s and t∗s∗st = yy∗. These equalities imply that t∗s∗st =
t∗t and so t(t∗s∗st) = t or s∗st = t. From this and sty = s (or stt∗ = s), we
have s∗s = (tt∗s∗)(stt∗) = s∗stt∗tt∗ = (s∗st)t∗ = tt∗. Therefore

δs • δt(st) =

{
1 s∗s = tt∗

0 otherwise
(s, t ∈ S).

These imply that

δs • δt(x) =

{
1 x = st and s∗s = tt∗

0 otherwise
(s, t ∈ S)

which completes the proof. �
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Lemma 3.2. Let S be an inverse semigroup. Then �1
r(S) admits a bounded

right approximate identity with bound M if and only if given ε > 0 and any
number of elements s1, s2, ..., sn ∈ S there exists α ∈ �1

r(S) such that

‖α‖1 ≤ M, ‖δsi
− δsi

• α‖1 < ε (i = 1, 2, ..., n).

proof. One side is clear. We shall prove the other side. Suppose that f =∑
s∈S f(s)δs ∈ �1

r(S) and ε > 0 are arbitrary. Since ‖f‖1 =
∑

s∈S |f(s)| < ∞,
there are at most countably many s ∈ S, say s1, s2, ..., for which f(s) �= 0.
Hence, for ε > 0, there is N ≥ 1 such that

∑∞
i=N+1 f(si) < ε

2(1+M)
. By

assumption, there exists α ∈ �1
r(S) such that

‖α‖1 ≤ M, ‖δsi
− δsi

• α‖1 <
ε

2N‖f‖1
(i = 1, 2, ..., N).

It is clear that for any s ∈ S we have

‖δs − δs • α‖1 ≤ ‖δs‖1 + ‖δs • α‖1 ≤ 1 + M.

Thus

‖f − f • α‖1 = ‖
∞∑
i=1

f(si)δsi
−

∞∑
i=1

f(si)(δsi
• α)‖1

= ‖
∞∑
i=1

f(si)(δsi
− δsi

• α)‖1

≤
N∑

i=1

|f(si)| ‖δsi
− δsi

• α‖1 +

∞∑
i=N+1

|f(si)| ‖δsi
− δsi

• α‖1

≤ ε

2N‖f‖1

N∑
i=1

|f(si)| + (1 + M)

∞∑
i=N+1

|f(si)| ≤ ε

2
+

ε

2
= ε.�

Lemma 3.3. �1
r(S) admits a bounded right approximate identity with bound

M if and only if �1
r(E(S)) has the same property.

proof. Consider the linear map T : �1
r(S) → �1

r(E(S)), defined by δs �→ δss∗,
for s ∈ S. If f = (

∑
s∈S f(s)δs) ∈ �1

r(S) then

T (f) = T (
∑
s∈S

f(s)δs) =
∑
s∈S

f(s)T (δs) =
∑
s∈S

f(s)δss∗,

and so T is a norm decreasing linear map. By lemma 3.2, we have

T (δe • δs) =

{
δe • T (δs) e = ss∗

0 otherwise
(e ∈ E(S), s ∈ S).

Therefore for α = (
∑

s∈S α(s)δs) ∈ �1
r(S) and e ∈ E(S),

T (δe • α) =
∑
s∈S

α(s)T (δe • δs) =
∑
ss∗=e

α(s)(δe • T (δs)) =
∑

ss∗=e

α(s)δe
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and also
δe • T (α) = δe • (

∑
s∈S

α(s)δss∗) =
∑
ss∗=e

α(s)δe.

Therefore T (δe • α) = δe • T (α). Now suppose that �1
r(S) admits a bounded

right approximate identity with bound M . Let ε > 0 and e1, ..., en ∈ E(S).
There exist α ∈ �1

r(S) such that

‖α‖1 ≤ M, ‖δei
− δei

• α‖1 < ε (i = 1, ..., n).

Hence T (α) ∈ �1
r(E(S)), ‖T (α)‖1 ≤ M and for i = 1, ..., n we have

‖δei
− δei

• T (α)‖1 = ‖T (δei
) − T (δei

• α)‖1 ≤ ‖δei
− δei

• α‖1 < ε.

Conversely suppose that �1
r(E(S)) admits a bounded right approximate iden-

tity with bound M . Given ε > 0 and s1, ..., sn ∈ S there exists α ∈ �1
r(E(S))

such that

‖α‖1 ≤ M, ‖δsi
∗si

− δsi
∗si

• α‖1 < ε (i = 1, ..., n).

Thus for i = 1, ..., n we have

‖δsi
− δsi

• α‖1 = ‖δsisi
∗si

− δsisi
∗si

• α‖1

= ‖δsi
• δsi

∗si
− (δsi

• δsi
∗si

) • α‖1

= ‖δsi
• (δsi

∗si
− δsi

∗si
• α)‖1 ≤ ‖δsi

‖1‖δsi
∗si

− δsi
∗si

• α‖1 < ε.�
One can prove a similar result for bounded left approximate identity. Be-

cause E(S) is a commutative semigroup, �1
r(E(S)) has a bounded right ap-

proximate identity if and only if it has a bounded left approximate identity.

Lemma 3.4. �1
r(E(S)) admits a bounded right approximate identity with up-

per bound M if and only if S has finitely many idempotents, with |E(S)| ≤ M .

proof. When E(S) is finite, �1
r(S), and therefore �1

r(E(S)), has a bounded
approximate identity with upper bound |E(S)| [1, Proposition 3.2].

Conversely suppose that �1
r(E(S)) admits a bounded right approximate iden-

tity with upper bound M . Let k be an positive integer with k ≥ M . Given
e1, ..., ek+1 ∈ E(S) there exists α ∈ �1

r(E(S)) such that

‖α‖1 ≤ M, ‖δei
− δei

• α‖1 <
1

k + 1
(i = 1, ..., k + 1).

Let α =
∑

ur∈E(S) λrur. For i = 1, ..., k + 1 put uri
= ei. Then

1 − |λri
| ≤ |1 − λri

| = ‖δei
− δei

• α‖1 <
1

k + 1

and so k
k+1

< |λri
|. If e1, ..., ek+1 are distinct elements of E(S), then

M ≥
∑

|λr| ≥
k+1∑
i=1

|λri
| > (k + 1)

k

k + 1
= k

which contradicts our choice of k. Therefore ei = ej for some i, j with 1 ≤ i <
j ≤ k + 1. Thus |E(S)| ≤ k. �
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Theorem 3.5. For any inverse semigroup S, �1
r(S) admits a bonded approxi-

mate identity if and only if S has finitely many idempotents.

proof. By lemmas 3.3 and 3.4, �1
r(S) admits a bonded right approximate

identity if and only if S has finitely many idempotents. The statement for
bonded left approximate identity is proved similarly. �
Theorem 3.6. For any inverse semigroup S, �1(Sr) has a bounded approxi-
mate identity if and only if S has finitely many idempotents.

proof. If E(Sr) has finitely many idempotents, say E(Sr) = {0, e1, e2, ..., ek},
then E(Sr) satisfies condition (Dk) of Duncan and Namioka [4, section 4], since
each subset of E(Sr) with k + 1 members has at least two equal members or
includes 0.

Conversely suppose that E(Sr) is infinite. For e, f ∈ E(Sr) we have

e • f =

{
e e = e∗e = ff ∗ = f
0 otherwise

and so for any positive integer k, there is a set of k + 1 nonzero idempo-
tents, which fails to satisfy condition (Dk). Therefore �1(Sr) does not admit a
bounded approximate identity. �

Corollary 3.7. If S has infinitely many idempotents, then the algebras �1(S),
�1
r(S) and �1(Sr) are not amenable.

Proposition 3.8. Let S be an inverse semigroup. If �1
r(S) (or �1(Sr)) has a

bounded approximate identity with upper bound M then �1(S) has a bounded
approximate identity with upper bound 2k − 1, where k = |E(S)|.

proof. If �1
r(S) (or �1(Sr)) has a bounded approximate identity with upper

bound M then k = |E(S)| is finite and so E(S) satisfies condition (Dk) [4].
Now the result follows from the proof of [4, Lemma 15]. �

Example 3.9. Consider S = (N,∧), where m ∧ n = max(m,n) and n∗ = n,
for m,n ∈ N. Then �1(S) has a bounded approximate identity, but E(S) = S
is not finite. This shows that the converse of proposition 3.8 does not hold.
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