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Abstract

We use random walks to show that the Basilica group is amenable, answering an open

question of Grigorchuk and Żuk. Our results separate the class of amenable groups from

the closure of subexponentially growing groups under the operations of group extension

and direct limits; these classes are separated even within the realm of finitely presented

groups.

1 Introduction

The concept of amenability, introduced by von Neumann (1929), has been central to many

areas of mathematics. Kesten (1959) showed that a countable group is amenable if and only

if the spectral radius equals 1; in particular, if the random walk escapes at a sublinear rate.

Although this connection has been deeply exploited to study the properties of random walks,

it appears that it has not yet been used to prove the amenability of groups.

A group is amenable if it admits a finitely additive invariant probability measure. The

simplest examples of amenable groups (AG) are

(i) finite and Abelian groups and, more generally,

(ii) groups of subexponential growth.

Amenability is preserved by taking subgroups, quotients, extensions, and direct limits.

The classes of elementary amenable (EG), and subexponentially amenable (SG, see Grig-

orchuk (1998), and Ceccherini et al. (1999), §14) groups are the closure of (i), (ii) under

∗Department of Mathematics, University of California, Berkeley, CA 94720. laurent@math.berkeley.edu.
†Department of Mathematics, MIT, Cambridge, MA 02139. balint@math.mit.edu. Research partially

supported by NSF grant #DMS-0206781.

1



Figure 1: The Basilica, or the action of G on ∂T

these operations, respectively. We have

EG ⊆ SG ⊆ AG,

and the question arises whether these inclusions are strict: Day (1957) asked this about

EG ⊆ AG (see also Grigorchuk (1998)). Chou (1980) showed that there are no elementary

amenable groups of intermediate growth. Thus Grigorchuk’s group separates the class EG

and SG, answering Day’s question.

In this paper, we show by example that the inclusion SG ⊂ AG is also strict.

The Basilica group G we are considering is the iterated monodromy group of the

polynomial z2 − 1. It was first studied by Grigorchuk and Żuk (2002a), who showed that G

does not belong to the class SG. The main goal of this note is to show, using rate of escape

for random walks, that G is amenable. This answers a question of the above authors.

Let T be the rooted binary tree with vertex set V consisting of all finite binary sequences,

and edge set E = {(v, vi) : v ∈ V, i ∈ {0, 1}}. Let ε ∈ Aut(T ) send iv to ((i + 1) mod 2)v.

For g, h ∈Aut(T ) (with the notation g : v 7→ vg) let (g, h) denote the element of Aut(T )

sending 0v 7→ 0vg and 1v 7→ 1vh. The Basilica group G is generated by the following two

recursively defined elements of Aut(T ):

a = (1, b), b = (1, a)ε.

Then G is the iterated monodromy group of the polynomial z2 − 1; the scaling limit of the

Schreier graphs of its action on level n of T is the Basilica, i.e. the Julia set of this polynomial

(see the survey Bartholdi, Grigorchuk, and Nekrashevych (2003) and Figure 1). Let Zn be

a symmetric random walk on G with step distribution supported on a, b and their inverses.

We will study the speed of the random walk Zn to show our main theorem.
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Theorem 1 The return probability P (Z2n = 1) has slower than exponential decay.

By Kesten’s theorem, this implies that the group G is amenable, and SG 6= AG.

In the rest of the paper, we extend this result in two directions. In Section 4, Theorem

12 we give a finitely presented example G̃ separating AG and SG, showing that these classes

are distinct even in this realm. Grigorchuk (1998) showed that EG 6= AG (more precisely,

EG 6= SG) for finitely presented groups.

In Section 3 Corollary 10, we give a quantitative upper bound of order n5/6 on the rate

of escape. For the heat kernel, we have the following quantitative lower bound.

Theorem 2 There exists c > 0 so that for all n we have P(Z2n = 1) ≥ e−cn2/3
.

Motivated by their question about amenability, Grigorchuk and Żuk (2002b) study spec-

tral properties of G. Amenability of G has been claimed in the preprint Bartholdi (2002),

whose proof appears to contain serious gaps and is considered altogether incomplete. The

present paper uses the same starting point as Bartholdi (2002), but follows a different path;

we get specific heat kernel bounds for a less general family of groups.

2 A fractal distance

For g ∈ G and v ∈ T let g[v] ∈Aut(T ) denote the action of g on the descendant subtree of

v, and let g(v) ∈ C2 denote the action on the two children of v. Let S be a finite binary

subtree of T containing the root (i.e. each vertex in S has zero or two descendants). Let

| · | denote shortest-word distance in G with the above generators. Let ∂S denote its set of

leaves, and let

νS(g) =
∑

v∈∂S

(|g[v]|+ 1)− 1,

ν(g) = min
S

νS(g).

The quantity ν has the alternative recursive definition; for g = (g1, g2)ε∗, let

ν(g) = min(|g|, 1 + ν(g1) + ν(g2)).

Lemma 3 The function ν is a norm on G. Moreover, ν-balls have exponential growth.

Proof. First note that since multiplying g by a increases |g1| + |g2| by at most 1, we

get |g| ≥ |g1|+ |g2|. This implies that if ν(g) = |g| then ν(g) ≥ ν(g1) + ν(g2). So in general,

we have

ν(g1) + ν(g2) ≤ ν(g) ≤ ν(g1) + ν(g2) + 1. (1)
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We now check that ν satisfies the triangle inequality; this is clear if ν(g) = |g|, ν(h) = |h|,
otherwise we may assume that ν(g) = ν(g1) + ν(g2)− 1. Then we get

ν(gh) ≤ 1 + ν((gh)1) + ν((gh)2) ≤ 1 + ν(g1) + ν(g2) + ν(h1) + ν(h2) ≤ ν(g) + ν(h),

where the first inequality holds by induction (some care is needed to show that the induction

can be started).

We now claim that the balls Bn = {g : ν(g) ≤ n} grow at most exponentially, more

precisely, we have

#Bn ≤ 40n for all n. (2)

Indeed, there are at most 4n such subtrees S with at most n edges. Given the subtree S,

the element g ∈ Bn is defined by its action g(v) ∈ C2 at the vertices of S that are not leaves

(at most 2n possibilities), as well as the words g[v] at the vertices v that are leaves (these

can be described with n symbols from the alphabet a, a−1, b, b−1 and comma). Thus we have

#Bn ≤ (4 · 2 · 5)n.

For the other direction, note that ν-balls contain the word-distance balls of the same

radius and G has exponential growth (see Grigorchuk and Żuk (2002a)).

3 Self-similarity of random walks on G

Fix r > 0, and consider the random walk Zn on the free group F2 where each step is chosen

from (a, a−1, b, b−1) according to weights (1, 1, r, r), respectively. This walk projects to a

subgroup of F2 o C2 via the substitution π : a 7→ (1, b) and b 7→ (1, a)ε. Let (Yn, Xn)εn be

the projection of Zn.

For the sequel, we consider this definition from another point of view. Consider the sub-

group H0 ⊂ F2 oC2 of elements of the form (g, 1). The right cosets of H0 have representatives

of the form (1, g)κ, with g ∈ F2, κ ∈ C2.

Given the walk Zn, we may define Xn and εn by saying that (1, Xn)εn is the representative

of the coset H0π(Zn), which we abbreviate H0Zn. Similarly, (Yn, 1)εn can be defined as the

representative of H1Zn where H1 ⊂ F2 o C2 is the subgroup of elements of the form (1, g).

Define the stopping times

σ(0) = 0,

σ(m + 1) = min{n > σ(m) : εn = 1, Xn 6= Xσ(m)}, m ≥ 0,

τ(0) = min{n > 0 : εn = ε},

τ(m + 1) = min{n > τ(m) : εn = ε, Yn 6= Yτ(m)}, m ≥ 0.
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Figure 2: The random walks (Xn, εn) and Xσ(m)

Lemma 4 Xσ(m), Yτ(m) are simple random walks on F2 with step distribution given by the

weights (r/2, r/2, 1, 1) on (a, a−1, b, b−1), respectively.

Proof. First note that the process (Xn, εn) is a reversible random walk on a weighted

graph. More precisely, it is a walk on the weighted Schreier graph of the right action of

(F2, {a, a−1, b, b−1}) on the right cosets of H0. See the left of Figure 2; there the value of εn

is represented by a circle (1) or square (ε).

The Markov property of (Xn, εn) follows since F2 acts on these cosets; reversibility follows

from the reversibility of the original walk.

When we only look at this walk at the times σ(n), the resulting process is still a Markov

chain, where the transition probabilities are given by the hitting distribution on the 4 circles

that are neighbors or separated by a single square.

The hitting distribution is given by effective conductances, and using the series law we

get the picture on the right hand side of Figure 2. This process is a symmetric random walk

with weights as claimed.

The proof for Y is identical. Because τ(0) has a different definition, the process Yτ(m)

does not start at 0, rather at a or a−1. Note that the processes Xσ(m) and Yτ(m) are not

independent.

Lemma 5 With probability 1, we have lim m/σ(m) = (2+r)/(4+4r) =: f(r), and the same

holds for τ .
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Proof. The increments of the process σ(m) are the time the random walk in Figure 2

spends between hitting two different circles. These increments are independent and identi-

cally distributed. Let t◦, t denote the expected times starting from a circle or a neighboring

square to hit a different circle. Conditioning on the first step of the walk gives the equations

t◦ = 1 + r/(r + 1)t

t = 1 + r/(2(r + 1))t◦ + 1/(r + 1)t

And the solution is t◦ = 4(1+ r)/(2+ r). The claim now follows from the strong law of large

numbers.

If Zn denotes the image of Zn in G, then by construction we have Zn = (Y n, Xn)εn. In

the rest of this section we will simply (ab)use the notation Zn, Xn, Yn for the images in G

of the corresponding random words.

Proposition 6 We have lim ν(Zn)/n = 0 a.s..

Proof. By Kingman’s subadditive ergodic theorem (see Kallenberg (2002), Theorem

10.22), the random limit

s(r) = lim ν(Zn)/n

exists and equals a constant with probability 1. By (1) we also have

ν(Zn) ≤ ν(Xn) + ν(Yn) + 1

and therefore

s(r) ≤ lim sup ν(Xn)/n + lim sup ν(Yn)/n

= lim sup ν(Xσ(m))/σ(m) + lim sup ν(Yτ(m))/τ(m)

=
(
lim ν(Xσ(m))/m

)
(lim m/σ(m)) +

(
lim ν(Yτ(m))/m

)
(lim m/τ(m))

= 2s(2/r)f(r).

In the last equality we used Lemmas 4 and 5. Iterating this inequality we get

s(r) ≤ 4s(r)f(r)f(2/r) = 4s(r)/8

and since s is a finite constant we get s = 0 with probability 1.

We get Theorem 1 as a simple corollary.
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Corollary 7 The return probability P (Z2n = 1) has slower than exponential decay.

Proof. Let ε > 0, n even. Recall that the most likely value of Zn is 1. Thus

P(ν(Zn) ≤ εn) =
∑

v∈Bεn

P(Zn = v) ≤ (#Bεn)P(Zn = 1) (3)

Since balls grow at most exponentially (2), we get

P(Zn = 1) ≥ P(ν(Zn) ≤ εn)40−εn.

Since ν(Zn)/n converges to 0 in probability, the first factor on the right converges to 1. Thus

the return probability can be bounded below by an exponential with an arbitrary slow rate,

as required.

A more technical version of Proposition 6 gives a better bound on the ν-rate of escape.

Proposition 8 There exists c > 0 depending on r so that for all n ≥ 1

ur(n) := Emax
i≤n

ν(Zi) ≤ cn2/3.

Proof. Let L(n) be the largest so that σ(L) ≤ n, and let M(n) be the largest so that

τ(M) ≤ n. Following the argument of Proposition 6, we get

ur(n) ≤ Emax
i≤n

ν(Xi) + Emax
i≤n

ν(Yi) + 1

= E max
i≤L(n)

ν(Xσ(i)) + E max
i≤M(n)

ν(Yτ(i)) + 1

≤ 2 + 2u2/r(f(r)n + kn) + 2nP(L(n) > f(r)n + kn) (4)

where we can choose the constants kn = nα for some α > 1/2 but less than 2/3. The stopping

time σ(1) has an exponential tail i.e. for all n > 0

P(σ(1) > n) ≤ c1e
−c2n,

since starting from any position the walk has a nonzero chance to stop within two steps. By

standard large deviation arguments, we get that last term of (4) can be bounded above by

c3ne−c4n2α−1
< c5. Thus for n ≥ 1 we get

ur(n) ≤ u2/r(f(r)n + kn) + c6 ≤ u2/r(f(r)n) + (c6 + 1)nα.

Applying this to u2/r as well and using the fact that f(r)f(2/r) = 1/8, we easily get

ur(8n) ≤ 4ur(n) + c7n
α
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with ur(1) ≤ 1. Iteration at values of n that are powers of 8 gives that for such values

ur(n) ≤ c8n
2/3.

Since ur(n) is monotone in n, the claim follows.

Corollary 9 There exists c > 0 depending on r so that for all n ≥ 0 we have

P(Z2n = 1) ≥ e−cn2/3

.

Proof. By Markov’s inequality, we have

P(ν(Zn) ≤ 2cn2/3) ≥ 1/2

and therefore by (3) for even n we have

P(Zn = 1) ≥ 1/2 · 402cn2/3

as required.

Let Mn = max(|X1|, . . . , |Xn|). We have the following bound on the rate of escape.

Corollary 10 There exists c > 0 so that for all a, n ≥ 1 we have P(Mn > an5/6) < c/a.

Proof. Let Kn = max(ν(X1), . . . , ν(Xn)). We have

P(Mn > an5/6) = P(Mn > an5/6, Kn > ac1n
2/3)

+ P(Mn > an5/6, Kn ≤ ac1n
2/3). (5)

The first term is at most P(Kn > ac1n
2/3) < c2/(c1a) by Proposition 8 and Markov’s

inequality. The second term is bounded above by the sum of P(Xm = g) over all m ≤ n

and all g with |g| > an5/6 and ν(g) ≤ ac1n
2/3. By the Varopoulos-Carne bounds (see Carne

(1985)

) the first constraint on g implies

P(Xm = g) ≤ e−(an5/6)2/(2n),

and since ν-balls grow exponentially (2) the second term of (5) is bounded above by

ne−(an5/6)2/(2n)+c3c1an2/3

= ne(c3c1a−a2/2)n2/3

,

which is at most c4/a for an appropriate choice of c1.
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4 A finitely presented example and generalizations

Our first goal is to show that an HNN-extension of G gives a finitely presented example

separating AG and SG. The following lemma is needed.

Lemma 11 G has the following presentation:

G = 〈a, b |σn[a, ab] ∀n ∈ N〉,

where σ is the substitution b 7→ a, a 7→ b2.

Proof. By Proposition 9 of Grigorchuk and Żuk (2002a) we have

G = 〈a, b |σn[a, ab2m+1

] ∀n, m ∈ N〉.

For odd i, we have abi ≡ [a−1, b−2]babi−2
using the relation [b2a, b2] = σ([ab, a]); therefore

[abi
, a] follows from [abi−2

, a] and [[a−1, b−2]b, a], which itself is a consequence of [ab, a]. So the

relations σn([a, ab2m+1
]) may be eliminated for all m > 1 as long as σn([a, ab]) and σn+1([a, ab])

are kept.

Theorem 12 G embeds in the finitely presented group

G̃ = 〈a, t | at2 = a2, [[[a, t−1], a], a] = 1〉.

Furthermore, G̃ is also amenable, and does not belong to the class SG.

This implies that the classes SG and AG are distinct, even in the realm of finitely presented

groups.

Proof. Let G̃ be the HNN extension of G along the endomorphism σ identifying G and

σ(G): it is given by the presentation

G̃ = 〈a, b, t| at = σ(a), bt = σ(b), relations in G〉.

A simpler presentation follows by eliminating the generator b.

Consider the kernel H of the map a 7→ 1, t 7→ t from G̃ to 〈t〉. Since the HNN extension

is “ascending”, we have H =
⋃

n∈Z Gtn , an ascending union. Therefore H is amenable, and

since G̃ is an extension of H by Z, it is also amenable.

Finally, if G̃ were in SG, then G would also be in SG, since it is the subgroup of G̃

generated by a and at−1
. However, Proposition 13 of Grigorchuk and Żuk (2002a) shows

that G is not in SG.
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Generalizations. In what setting does the proof for amenability work? Let G be a

group acting spherically transitively on a b-ary rooted tree (b ≥ 2), and suppose that it is

defined recursively by the set S of generators gi = (gi,1, . . . , gi,b)σi, where each gi,v is one of

the gj. Consider the Schreier graph of the action of G on T1, that is level 1 of the tree; we

label level 1 of the tree by the integers 1, . . . b. Furthermore, we label each directed edge

(v, gi) by gi,v.

Fix a vertex at level 1, without loss of generality the vertex 1. Consider the set of cycles in

the Schreier graph that go from 1 to 1 and may traverse edges either forwards or backwards;

such a cycle is called “irreducible” if it only visits 1 at its endpoints. The label of a cycle is

the product of the labels along its edges (taking inverses if we traverse an edge backwards).

If #S ≥ 2 then there are infinitely many irreducible cycles. A necessary condition (1)

for our proof to work is that the set of labels of irreducible cycles is finite and agrees with

the set S of generators together with the identity.

Given a probability distribution µ on the set of generators, we get a distribution on the

set of irreducible loops by considering the path of a random walk on G up to the first positive

time τ that it fixes 1 and has a cycle whose label is not 1. Call the distribution of this label

µ′. The transformation µ 7→ µ′ is a continuous map from a convex set to itself, so it has a

fixed point.

A further necessary condition is that at least one fixed point is in the interior of the convex

set, i.e. assigns positive weight to each generator. For this, it is sufficient that condition (1)

does not hold for any proper subset of S.

Now let µ0 be a such a fixed point, and let α = log b/ log Eτ for the corresponding random

time τ . If α > 1/2, then the argument above gives a heat kernel lower bound of e−cnα
. The

argument above cannot give an exponent below 1/2 as the rate of escape cannot be slower

than n1/2. In the proof, the large deviation bounds for σ break down at α = 1/2.

Example. Consider the group acting on the binary tree generated by ai = (1, ai+1) for

i < k, and ak = (1, a1)ε. The distribution µ = (m1, . . . ,mk) on the generators (and sym-

metrically on their inverses) is then sent to Tµ′ = (mk/2, m1, . . . ,mk−1)/(1 − mk/2). A

fixed point is given by (1, 21/k, . . . , 2(k−1)/k) normalized to be a probability distribution. A

simple computation gives Eτ = 21+1/k, and we get the heat kernel lower bound e−cnα
with

α = k/(k + 1).

In this example, it is not important to consider a fixed point. Since T k = 1, one may

iterate the decomposition process k times starting from an arbitrary µ. Then one is lead

to consider 2k processes having the same distribution as the original walk, each with time
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running slower by a constant factor. After massive cancellations, one finds that the constant∏
Eτi does not depend on µ, and equals 2k+1. This gives the same heat kernel bound as

above.
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