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AMENABLE ACTIONS OF GROUPS

SCOT ADAMS, GEORGE A. ELLIOTT, AND THIERRY GIORDANO

Abstract. The equivalence between different characterizations of amenable
actions of a locally compact group is proved. In particular, this answers a
question raised by R. J. Zimmer in 1977.

0. Introduction

The concept of amenability for a second countable locally compact group
G can be described in many different equivalent ways. Two of the most well-
known characterizations are the following:

(i) there is a left invariant mean on L°°(G) ;
(ii) any affine (5-action has a fixed point.

In [Zl], R. J. Zimmer introduced the notion of amenability for an action of a
separable locally compact group G, or for an equivalence relation, on a standard
Borel space (S, ß) with a probability measure. He used an analogue of the fixed
point criterion.

In [CW], A. Connes and E. J. Woods studied group-invariant, time-dependent
Markov random walks. In particular, if (X, v) denotes the Poisson boundary
of a group-invariant matrix-valued random walk on a separable locally compact
group, they pointed out that there exists a (7-equivariant conditional expectation
from L°°(X x C7) onto L°°{X).

If G is discrete, it is known among other equivalent characterizations that the
action of G on (5, ß) is amenable if and only if there exists a (j-equivariant
conditional expectation from L°°(SxG) onto L°°(S), and if and only if (S, ß)
is isomorphic as a G-space to the Poisson boundary of a group-invariant matrix-
valued Markov random walk on G.

In this paper we shall extend these equivalences to second countable locally
compact groups in general. We summarize these different equivalences in the
following theorem:

Theorem A. If (S, ß) is a standard measure space and G acts ergodically on
(S, ß), then the following statements are equivalent:

(i) (S, ß) is an amenable G-space,
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(ii) (S, ß) is isomorphic as a G-space to the Mackey range of a homomor-
phism from a countable amenable equivalence relation to G ;

(iii) (5, ß) is isomorphic as a G-space to the Poisson boundary of a group-
invariant matrix-valued Markov random walk on G ;

(iv) there exists a G-equivariant conditional expectation from L°°(SxG) onto
L°°{S).

(v) the equivalence relation Mq induced by the action of G on (S, ß) is
amenable and the stability subgroup Gs = {g e G; sg = s} is amenable ß-a.e.

In [Z2], Zimmer proves that (ii) implies (i). The converse of this implication
was shown by Golodets and Sinel'shchikov in [GS]. In their announcement,
Golodets and Sinel'shchikov state and give an outline of the proof of the fol-
lowing implications:

(i) => (ii) =* (v) => (i) .
In [Z3], Zimmer proved that if G is a discrete countable group then (iv) implies
(i). His proof works without any change in the continuous case.

We sketch the proof of Golodets and Sinel'shchikov that (i) implies (ii) in
§1, and use it as a starting point in §2 to prove the implication from (ii) to (iii).
Using results of Jaworski's thesis [J], we then deduce (iv) from (iii).

In §3, we give a direct proof of (i) to (iv), which we use in §4 to show that if (i)
holds then the stability subgroups Gs are amenable a.e. As the amenability of
31q follows from the definitions, the implication (i) to (v) is proved. In §5, we
show the converse, i.e., (v) implies (i). Note that Golodets and Sinel'shchikov
gave in [GS] another proof of this equivalence using (ii).

Using the main result of [CFW], we can show that a countable equivalence
relation is amenable if and only if almost every ergodic component is amenable.
Techniques of [FHM] extend this to any equivalence relation generated by an
action of a locally compact group. Thus assertion (v) has the following conse-
quence:
Corollary B. Let G be a locally compact, second countable topological group
acting nonsingularly on a standard measure space (X, ß). Let O : X —* E be
a map defining a decomposition of X into ergodic components. Let v — <P„(yU)
and let {ße}e£E be a disintegration ß along fibers of <&; then, for v-a.e. e ç. E,
the G-action on (X, ße) is ergodic. The action of G on X is amenable if and
only if, for v-a.e. e e E, the action of G on (X, ße) is amenable.

This result is not surprising, but does not seem to follow directly from the
definition of amenability. The same may be said of the following assertion.
Corollary C. Let G be a locally compact, second countable topological group
acting nonsingularly on the standard measure spaces (X, ß) and {Y, v). Let
<P : X -* Y be a G-equivariant map and assume that 4>*(/¿) = v ■ If the G-action
on Y is amenable, then the G-action on X is amenable.

In other words, an extension of an amenable action is again amenable. This is
the dynamical analogue of the statement that a closed subgroup of an amenable
group is again amenable.

Corollary C extends [Zl], Theorem 2.4 to actions which are not necessarily
ergodic. The proof is straightforward, given Corollary B and [Zl], Theorem 2.4,
and given the fact that almost every ergodic component of X is an extension
of an amenable ergodic component of Y.
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In Lemma 3.15, we borrow an idea from R. Lyons and in Lemma 4.3 one
from J. King. The first author would like to thank J. Feldman and T. Steger
and the third one W. Jaworski for helpful conversations.

I. The construction of Golodets and Sinel'shchikov

In [GS], Golodets and Sinel'shchikov announced and gave a sketch of the
proof of the following result:

Theorem 1.1. Let (S, ß) be a standard measure space and let G be a second
countable locally compact group acting ergodically and amenably on (S, ß).

Then (S, ß) is isomorphic as a G-space to the Mackey range of a homomor-
phism from a countable amenable equivalence relation to G.

For the convenience of the reader, we present an outline of the proof.
An important tool in the proof of 1.1 is the following fact, used without com-

ment by Golodets and Sinel'shchikov. We prove it for the sake of completeness.
A different and more complicated proof is given in [AS], Proposition 4.4.
Proposition 1.2. For any second countable locally compact group G, there exists
a standard measure G-space (X, v) such that

(a) v is a G-invariant probability measure,
(b) the action of G is essentially free.
Let us first state the following technical result:

Lemma 1.3. Let Q be a standard Borel G-space, with a G-invariant probability
measure ß. Then there exist a compact metric space Y, on which G acts
continuously, and a G-invariant probability measure v , whose support is Y,
suchthat L2{Q,f) and L2(Y,v) are G-isomorphic.
Proof. By [V], Theorem 5.7, there is a compact metric space X on which G
acts continuously and an injective G-map y/: Q -» X . The measure v -
y/{ß) is a G-invariant probability measure on X and its support is a closed
G-invariant subset of X. Set

(Y,v) = (Supp(i/),i/|Supp(i/)).
As L2(Q, v) = L2(Y, v) , the lemma is proved.   D

To prove 1.2, we need the following construction. Let H be a (separable)
real Hubert space and let n denote an orthogonal representation of G on H.
As in Section 5.2.13 of [Z4], we consider the probability space

(Q^) = n(K'7^exp(-f)^)-
Let T : H -» L2(Q, v) denote the orthogonal isometry from H into L2(Q, v)
defined by Ten = pn for n > 1, where {en)n>\ is a basis for H and pn is
the projection onto the «th component of Q.. Then there exists an action n of
G on Q preserving the measure ß such that the following diagram commutes:

H -^—*   L2(Çl,v)

"(g)
i«

H —^ L2{Çl,v) ,
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where for / 6 L2(Q, v) ,

ii;f)(°>) = /(*(*"»,       co eil.
Moreover, we may assume that (Q, ß) and r\ have the properties of Lemma
1.3. Then, keeping the above notations, we have:

Lemma 1.4. If n is a faithful representation, then for all g e G , g ^ 1 , there
exist a neighourhood N of g and a nonempty open set U of Q such that

nh(U)nU = 0 ,       heN.
Proof. Let g e G , g ^ 1 , be given. As n is faithful, there exists Ç G
H, llfH = 1 , such that nig-1)^ ¿ £ . Set / = r(i) € L2{Çl,v) and
Ag = {co efl; rjgco ̂  œ} . As n(g~l)C ^ Ç , Ag is a nonempty open set. Fix
co e Ag , and let F be a open neighbourhood of co suchthat ng(V)r\V = 0 .
By continuity of n , there exists a open neighbourhood W of œ such that

ri„(W)ctig(V),        heNg.
Then  W nV is an open neighbourhood of Q such that with IV (IV = U,

nh(U)nU c r¡g(V)nV = 0,       heNg.   o
Proof of Proposition 1.2. Keeping the above notation, we denote by (X, i/)
the infinite product space Y\n>l(Sl,ß) and consider on (X,z/) the G-action
given by:

gx = g{œx ,■■■ , œn, ■ ■ ■ ) = (rjgtoi, • • • , ngœn ,■■■)

for g e G and x = (gji , •• • , œn, ■•■) e X .
Then this action of G preserves the measure v . By Lemma 1.4, there exists

a neighbourhood Ng and a nonempty open set Ug such that

{x e X ; 3 h e Ng , hx = x }
= {x = (con)n>i € X ; 3h e Ng , r]gCon = <y„ , V« > 1}

Ç JJ Q x { w € Q ; rçA<y t¿ eu , V h e Ng}

As  G is second countable locally compact, there exists  (gn)n>\   such that

\jNg„ = Gx{l}.
n>\

If  Gx = { g e G ; gx = x }   denotes the stabilizer of x e X , then

{xeX; Gx ¿ {1}} = {xeX; 3g, g ¿ e , gx = x]
= [j{x e X ; 3 /z e Ngk ,hx = x}

/t>i \«>i     /
As i/(U>,(n„>i " ^ Ug,)) < Efc>i n„>i M" s C&) = 0, the action of G
on X is essentially free.   D
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Proposition 1.5. Let (S, ß) be a standard measure G-space.
Then (S, ß) is isomorphic as a G-space to the Mackey range of a homomor-

phism from an equivalence relation to G.
Proof. Let (X, v) be a free G-space with an invariant probability measure,
as given by 1.2.

On  (Y, X) = Y[n£Z{X, v) , we consider the following actions of G and Z :

yg = (xi, ■■■ ,x„,---)g = (xxg, ■■■ ,x»g, •••),       g e G ,
ny = Sny,        n e Z ,

where S denotes the shift on (Y, X) .
These two actions commute and therefore (Y, X) is a (G x Z)-space. Then

(S x Y, ß x X) becomes a (G x Z)-space, via

(5, y)(g, n) = {sg, nyg)   for (5, y) e S x Y and (g, n) e GxZ.

Consider the cocycle defined by

a:(SxY, ß x X) x (G x Z) -» G
((s, y), (g, n))   ^g.

Let us still denote by a the (G x Z)-skew-product action on S x Y x G , i.e.,
for  {g,n)eGx1 ,

{s,y, h){a{g, n)) = {sg, nyg, hg) ,    (s, y, h) e S x Y x G.

If p:SxYxG—>S is defined by p{s, y, g) = sg~l , then it induces a
G-isomorphism between L°°(S,ß) and L°°(S x Y x G)a , because G acts
freely on 5x7 and Z acts ergodically on Y.   D

Proof of Theorem 1.1. Let us keep the notation introduced in the proof of 1.5.
As {S, ß) is an amenable G-space, the space (S x Y, ß x X) is G-amenable
by [Zl], Proposition 4.3.4, and hence (G x Z)-amenable by [GS1], Theorem
A.l.

By [CFW], Corollary 16, the ergodic equivalence relation obtained from the
orbits of GxZ is hyperfinite. Then using [FHM], Theorem 6.4, we get the
result.   D

Remark 1.6. (i) In [Zl], Theorem 3.3, Zimmer proves the converse of Theorem
1.1.

(ii) Let (S, ß) be a standard measure space and let G be a second count-
able locally compact group acting ergodically on (S, ß). Let 31q denote the
equivalence relation on (S, ß) induced by G. Using Theorem 1.1, Golodets
and Sinel'shchikov prove in [GS] that (S, ß) is an amenable G-space if and
only if ¿%g is amenable and the stabilizers Gs are amenable, //-a.e. In §§4
and 5, we shall give a direct proof of this result.

II. Mackey range and Poisson boundary
In this section, G will denote as above a second countable locally compact

group. We refer to [CW] or [EG] for the notion of Poisson boundary used here.
The main result of this section is the following:
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Theorem 2.1. Let ¿% be an ergodic amenable discrete equivalence relation on
a standard Borel space {Y, X)  and let a : 31 -+ G be a homomorphism.

Then the Mackey range of a is isomorphic (as a G-space) to the Poisson
boundary of a matrix-valued random walk on G.

This result extends Theorem 3.1 of [EG] and its proof to continuous groups.
For the convenience of the reader let us recall the following definition ([EG],
Definition 3.4, or [S3]).
Definition 2.2. (1) A Bratteli diagram D is a graph with set of vertices V and
set of edges E with the following properties :

(a) V is the disjoint union of subsets V(n) (n > 0) with   \V(n)\ < oo
for all n > 0.

(b) E is the disjoint union of subsets E(n) ( n > 0 ), with each edge e e E(n)
connecting a vertex s(e) e V(n) with a vertex r(e) e V(n + 1).

(c) For every vertex v e V, there exist e, f e E with s(e) = v , r(f) = v
(except for v e V(0), for which we omit the second requirement).

(2) A path in D is a sequence (ek) of edges with s{eo) £ V(0) , and s(ek) =
r{ek_x) , k> 1.

We denote by Q„ the space of paths of length n , and by Q the space of paths
of infinite length. We view Q asa topological space, with basis {Q(/) ; f e
ßft, n > 1} , where to each f = (fo, A , ■ ■ ■ , fn-\) £ &n  we associate the set

Q(/) = {eeQ,ek = fk;0<k<n}.
(3) An AF-measure (or Markov measure) ßp on Q. is a measure determined

by a system of transition probabilities/? (i.e. maps p : E -» [0, 1] with p(e) >
0 and T,{e,s(e)=v)P(e) = !  for every vertex v ), given by

ßP(n(f)) = f[p(fk),
k=0

where / = (f0, f\, ■ ■ ■ , /„) 6 Q„ .
Note that Q carries a canonical equivalence relation ¿%a defined by

e&nf <=> for some n, ek = fk for all k > n.
If (bn)n>o is a sequence of maps b„ : E(n) —* G , let us denote by ß' :

âlçi —> G the homomorphism given by

ß'(e,f) = M^o) •••M^M/k)-'••• Wo)"1
whenever  e âêçi f  and ek= fk   for   k > n + 1.

Proof of Theorem 2.1. Let X denote the compact group lln>i{0, 1} with the
Borel a -algebra si and denote by K the dense subgroup 0„>i Z/2Z acting
on X by addition. For all k > 1, let us denote by Sk the automorphism of
X corresponding to the element (xn)„>\ £ K with x„ = 5nk ,    n > 1.

By Theorem 10 of [CFW] and [C], Lemma 7, we may assume that the ergodic
amenable dynamical system (Y,X,3t) is equivalent to (X,ß,3lK) where
ß is a iT-ergodic nonatomic probability measure on  (X, s/ )  such that

for each k > 1,     log       k    takes only finitely many values,
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and ¿%k is the equivalence induced by the action of K.
By Lemma 3.5 of [EG], there exist
(i) a Bratteli diagram D, an AF-measure ßp on the path space Q of D,

and an isomorphism y/ : (X, ß) —> (Q, ßp) such that   y/(ß) = ßp   and

y/(x)3?ay/(y) & x^Ky    ,

(ii) a sequence {bn)n>0 of maps b„ : E(n) -* G such that if ß' e Zl(¿%w, G)
denotes the cocycle given by

ß'(e, f) = b0(e0) ■ ■ ■ bn(en)bn(f„rl ■ ■ ■ b0(f0)-1

whenever  e3ftç\f and ek — fk   for  k > n + 1, then

ß(x, xSk) = ß'(y/{x), y/{xSk))   ß-a.e., keK

For each n > 0 and each (v , w) e V(n) x V(n + 1) , consider the positive
measure   a„yV>w   on G given by

On,v,w = XI P(e)àbn{e)
{e€E(n) ; s{e)=v ,r(e)=w}

where f5¿n(e)  is the Dirac function at g — bn(e). Note that, for every v e G,

£     °n,v,W(G) -      Y, E PW = L
weV(n+l) w€V{n+l) {eeE{n) ;s(e)=v , r(e)=w}

For each n > 0 , set F„ = LLei'í/i) ̂  and consider the transition probabil-
ity   P„"+1   from Fn  to Fn+i   given by

PZ+l((v,g),(w,A)) = <rn,v>w(g-lA).

Let us fix a countable dense subgroup T of G. By [GS2], Proposition 1.2,
we may assume that a takes values in T, and by using [EG], Lemma 3.3, there
exists a homomorphism ß : ¿%k —► T c G cohomologous to a, such that for
every y e K, the map  x *-> ß(x, xy)  takes only finitely many values.

Then the Markov process consisting of the sequence of measurable spaces
(En)n>o with the transition probabilities (P%~l)n>x defines a right group-
invariant matrix-valued random walk on G associated with the sequence
[On)n>\ ■ Therefore Theorem 2.1 is proved.   D

Corollary 2.3. Let   (S, ß)   be a standard measure space and  G  be a second
countable locally compact group acting ergodically and amenably on (S, ß).

Then there exists a conditional expectation

P : L°°{S xG,ßGxß)-+ L°°(S, ß)

such that for all h e G ,

P(f-h) = P(f)h,       f eL°°(SxG,ßGxß),
where f-h(s,g) = f(sh, gh) , {s, g) e S x G.
Proof. By Theorem 2.1, we may assume that (S, ß) is the Poisson boundary
of a matrix-valued random walk on G.

Therefore, 2.3 follows from [J], Theorem 2.3.4.   D
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III. EqUIVARIANT CONDITIONAL EXPECTATIONS

A direct proof of the implication from (i) to (iv) of Theorem A will be
presented in this section.

To begin we prove some technical results that we will need later.
Let M be a von Neumann algebra, and denote by A/» the predual of M

and by Aut (M) the group of automorphisms of M.
Let U : G —> Aut(Af) be a representation of G into M (i.e. for all x £ M

and all <j> £ Mt , the map  g <-> <f)(Ugx)   is continuous).
For all ß £ M (G), the integral

/ Ug(x)dß(g)Jg
defines a bounded linear form on Af» , hence an element of M, denoted by
U(ß)(x).

Let B(M) denote the Banach algebra of all bounded linear operators on M.
For x £ M and tj> £ M* , we define a bounded linear form <f>(-x) on B(M)
by

4>{-x){T) = <t>{Tx),        T£B(M).
Denote by B(M)„ the norm-closed linear subspace

Span {(¡>{-x) ; <f> £ Af„ , x £ M} c B{M)* .

Remark 3.1. For S £ B{M), the maps   T £ B(M) >-> ST £ B(M)  and   T £
B(M)^TSeB{M)  are a{B{M), 5(Af),)-continuous.

The following result is easy to check:

Lemma 3.2. If {ßn)n>i and ß are measures with compact support and if ßn —» ß
weakly, then  U(ßn) converges a(B(M), B(M)t) to U(ß).

Let us denote by B(M)X the closed unit ball of B(M). By the Banach-
Alaoglu theorem, B(M)X is a{B(M), 2?(Af)»)-compact. Therefore we have:

Lemma 3.3. Let 32 c B(M)X . Then for all x e M,

3Txa{M'M'] = (3r{B{MhB{M)'])x.

Proof. It follows from the definitions that 32 x c 3tx. Let y £ 3ix and let
{Oa} be a net in M such that <S>ax —» y. By the Banach-Alaoglu theorem,
31 is compact, and so after passing to a subnet, we may assume that {<Pa}
converges, say to OeJ1. Then <bax -+ <S>x , and so y = 4>x e 31 x .   D

From now on, (G, p) will be a locally compact, second countable topological
group, with a right invariant Haar measure p. Let us state the main theorem
of this section.

Theorem 3.4. Let {S, ß) be a standard measure space and G be a locally com-
pact, second countable topological group, acting amenably on (S, ß).

Then there exists a conditional expectation P : L°°(SxG, ßxp) —> L°°(S, ß)
such that P(f • g) = (Pf) - g , where

f-g(s,h) = f(sg,hg)   and   (Pf) • g(s) = Pf(sg) ,        s£S,g£G.
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Let us denote by R  the representation of G  on either L°°(S x G)  or
L°°(S, ß) given for g e G by

Rgf(s,h) = f(sg,hg)   if   feL°°(SxG)
and

Rgf(h) = f(hg)   if   f€L°°{G).
For g e G, let also Vg be defined by

Vgf(s,h) = f(s,g-lh)   if   feL°°(SxG),
and

Vgf(h) = f(g-lh)   if   f£L°°{G).
As L°°(5 x G) £ L°°(S) ® L°°(G), it is easy to check that the fixed point
subalgebra

L°°(S x G)v = {/ € L°°(S x G) ;  K,/ = / for all g e G}

is canonically isomorphic to L°°(S).

Lemma 3.5. The map I:SxG->SxG defined by I(s, h) = (sh~l, h~l)
intertwines the actions R and V, i.e., for all g e G, for all s £ S,

IoRg(s,h) = VgoI(s,h)   and   I o Vg{s, h) = Rg oI(s, h).

Using Lemma 3.5, one sees that Theorem 3.4 is equivalent to the following:

Theorem 3.6. Let (S, ß) be a standard measure space and G be a locally com-
pact, second countable topological group, acting amenably on (S, ß). Then
there exists a conditional expectation <P of L°°(SxG) onto L°°{SxG)R which
is Vg-equivariant for all g e G.

The proof of this theorem will be divided into a series of lemmas.
Let us denote by B(S x G) the set of bounded Borel functions on 5x6.

Definition 3.7. A function f e B(S x G) is uniformly continuous on R-orbits if
for any e > 0, there exists a neighbourhood U of the identity in G such that,
for all g £ U,

\f(sg,hg)-f(s,h)\<e    for all   (s, h) £ S x G .

Remark 3.8. Let / £ B(S x G) be uniformly continuous on /?-orbits. Then,
for all g e G, Rgf is again uniformly continuous on jR-orbits.

Let us denote by CC(G) the continuous functions on G with compact sup-
port.

Lemma 3.9. If <f> e CC(G), then any function class in

R¿(L°°(S x G)) = {¡RgA-, -Mg)dp(g) ; fe L°°(S x G) I

contains a function in B(S x G) which is uniformly continuous on R-orbits.
Proof. Let f £ L°°{S x G) be given. Choose f0 £ B(S x G) such that

fo = f,   a.e.
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Set M — sup{\fo(s, h)\ ; (s, h) £ S x G} , and let U be a neighbourhood of
the identity in G such that

I Mkg-1) - ct>(k)\dp(k) < ¿   for all * e U .

For g £ G, we have

RgR¿fo){s, h) = jRgfo(sk,hk)4>(k)dp(k)

=   ff0(sk,hk)cf>(kg-l)dp(k) ,        (s,h)£SxG.

Then, for all g £ U,

\RsR+{fo){s, h) - R^fo)(s ,h)\ = I \(fo)(sk, hk)U{kg-x) - <¡>{k)\ dp(k)

< M f \<f>(kg-l)-<t>(k)\dp(k)<e.   D
Jg

If X is a normed space and A c X ,v/e denote by co (A) (resp. œ(A) ) the
convex hull (resp. the closed convex hull) of A in X.

Lemma 3.10. Let f0 e B(S x G) be uniformly continuous on R-orbits and let F
be a dense subset of G. For s e S, consider the subsets

{Rrfo(s,-); yer}c{Rgfo(s,.) ; geG}cL°°(G).
Then

co{ RyMs, •) ; y e r} = co{ Rgf0{s,.) ; g e G }.
Proof. As T c G,  we have co{R7f0{s, •); y e T} c co{Rgf0(s, •); g e G}.
Conversely, fix g e G and choose a sequence {yn)n>\ m T such that yn -» g.

Then,
Ry„fo —> Rgfo uniformly on S x G

and so
Rynfo(s » ') -► Rgfo{s, •) uniformly on G .

Then, _
Rgfo(s,-)e{Ryf0(s,-) ; y eT}.   o

Let us denote by L°°(S)+ the set of nonnegative functions in L°°(S) .

Definition 3.11. Let 32 c B(L°°(S x G)) denote the set of operators defined by

(¿afÄÄ/) (s, h) = ¿«iW/ííft, Aft) ,    (5, h) £ SxG , f£L°°(SxG) ,
\i=i / ¡=i

where for 1 < i < n ,
n

(1)    gi e G,     (2)   ai £ L°°(S)+ ,    and   (3)    J> = 1 .

Remark 3.12. (a) As L°°(S) s ¿"(S x G)K , (2) can be replaced by
(2')   a¡ £ L°°(S x G)v+ .
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(b) By definition, 32 c B(L°°(S x G))x and by Lemma 3.2,
32f = 32f   forai\f£L°°{SxG).

Let E denote the separable Banach space L'(G, p) and c : S x G —► Iso(£)
the cocycle given by

c(s, g)f(h) = f(hg),       f£L\G,p),    h£G.
If H(E*) denotes the group of homeomorphisms of the closed unit ball E\

with the topology of uniform convergence, then the induced (Borel) cocycle
c* :SxG^ H(E\) is defined by

c*(s,g)f(h) = (c(s,g)-lyf(h) = f(hg),       f£L°°(G), h£G.
Lemma 3.13. Let f, £ B(SxG) be uniformly continuous on R-orbits and be such
that ||/olk°°(SxG) < 1 • For s £ S , set As = œ{ Rgf0 ; g £ G } C L°°(SxG).
Then

(i) {AS}S£S isa c-invariant Borel field of compact convex subsets of L°° (G) x.
(ii) If X is a Borel section of this field, then there exists f £ 32 fa such that

X(s) = f{s, •),     a.e. s £S .
Proof. Let T be a dense countable subgroup of G. For n > 1 , let X„ : S -» E\
be defined by

X„(s) = Ry„f(s, •) £ E\ = L°°(G)X .
By Lemma 3.10 and [Z2], Lemma 2.2,  {^j^s is a Borel field of compact
convex subsets of L°°(G)i and (ii) is proved.

For / £ L°°(G) , s£S , g and h £ G, we have
c*(s,g)Rhf(sg, •) = Rhf(sg, -g) = f(sgh,.gh) = Rghf(s, •).

Therefore, {As}s€s is c-invariant.     D
Lemma 3.14. Let (j> e CC{G) and f £ R^(L°°(SxG)). If (S, ß) is an amenable
G-space, then there exists O £32 such that O/* is Rg-invariant.
Proof. We may assume that ||/*||¿°o(5xc7) < 1 and, by Lemma 3.9, that / is
uniformly continuous on .R-orbits and

\f(s,h)\ < 1,        (s,h)£SxG.
Let c : S x G —> lso(Ll(G, p)) and {4s}îes be as in Lemma 3.12. As (S, ß)
is an amenable G-space, there exists a c-invariant Borel section a in {As}s€s »
i.e. a Borel function a : S —» L°°(G)i such that a(s) £ As a.e. and for each
g £ G , c*(s, g)a{sg) = <t(s) a.e.

By Lemma 3.13, there exists /' e 32 f such that
a(s) = f'(s » 0     f°r a-e- S £S .

By c-invariance of a, we have for each g £ G ,
Rgf'(s,-) = f'(s,-)   fora.e.s£S.

Therefore, /' is i?(;-invariant and by Remark 3.12, f'e32f.   D
Lemma 3.15. If (S, ß) is an amenable G-space, then there exists $> e32 such
that 0)/ is RG-invariant for all f £L°°(S xG) .
Proof. For f£L°°(SxG) , set Kf = {O £ 32 ; <E>/ is ÄG-invariant} . Denote
by 3£ the system of the closed subsets Kf , f e L°°{S x G) .
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As 32 is a{B(L°°(S x G)), B(L°°{S x G)),)-compact, showing that JT has
the finite intersection property will prove 3.14.

The proof will be by induction. Let fx, ■ ■ ■ , fk £ L°°{S x G) and ¥ £ 32
be such that *F/i, • • • , ^Vfk-i are all i?G-invariant.

For 1 < i < k - 1 ¿by definition of 32 , Q¥/ = "Vf for all il £ 32 , and
therefore for all Q £ 32 . In particular, ÇPVfi is Rc-invariant.

Fix a nonnegative function 4> ¡n Q(G) such that ||</>||li(g,/>) = 1- Let
(ßi) be a sequence of finitely supported probability measures on G such that
ßi —> 4>. By Lemma 3.2, Rm -* R^. For each i > 1 , Rßj £ 32 . Therefore,
R4,£32.

By Lemma 3.13, there exists *¥' e 32 such that *¥'{R^fk) is Re-invariant.
Set O = "Y'R^V. Then <D/ is .RG-invariant for 1 < /' < k and so 5? has the
finite intersection property.     D
Proof of Theorem 3.6. Set ^ = {<D e B(L°°(S x G)) ;  <D(1) = 1 ,  0(/) >
0,forall/GL°°(5xG)}.

As  l/l < U/H,, for/ 6 L°°(.S x G) , and O(l) = 1 , we have
||<D||<1,    foralKDe^l.

Therefore S?x is a(B(L°°{S x G)),B{L°°(S x G))»)-compact.
By Remark 3.1, the set

&> = {<p e &>x ; O is L°°{S x G)Ä-linear and F-equivariant }
is a(B(L°°(S x G)), B(L°°(S x G))»)-closed and therefore compact with respect
to the a(B(L°°(S x G)), B(L°°{S x G)),)-topology.

By definition, 32 c 5?. By Lemma 3.15, there exists a Ä-invariant O in
32 and therefore in 5?. This finishes the proof of Theorem 3.6.     □

IV. Amenability of stabilizers

Let (G, p) be a locally compact, second countable topological group, with
a right invariant Haar measure p as above.

In the first two lemmas, we give a necessary and sufficient condition for a
closed subgroup of G to be amenable.

Let G act on the left and right of LX(G) by, for / € L°°(G),
g-f(h)=Vgf(h) = f(g-1h),    f-g{h) = Rg-J{h) = f{hg-i) ,        h£G.

This last action is the dual of the action of G on Ll(G, p) given by

/ • g(h) = Rg-a(h) = x(hg-])   for ̂  € L\G, p) .
There is a corresponding left action of G on LX{G, p) given by

g-X(h) = VgX(h) = X(g-lh)A(g-1),        g£G, x£L\G,p)
where A is the modular function on G.

We will denote by (•, •) the pairing between L'(G, p) and L°°(G, p) given
by the integral.

Let UCB(G) denote the left uniformly continuous bounded functions on
G, i.e. the functions / £ L°°(G) such that for all e > 0, there exists a
neighbourhood U of the identity in G with the following property:

for all set/,     \\(g-f)-f\\L«>(G) <e ,
where (g • f)[h) = f{g~xh) , AeG.
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Set
P(G) = {xe L\G, p) ; x > 0, \\x\\v(G,P) = !}•

Definition 4.1. Let G0 be a closed subgroup of G and let E ç L°°(G). We will
say that E is a Go-domain if E is a left Go-invariant separable norm-closed
subspace of UCB(G) which contains the constant functions. We denote the
set of Go-domains by 3(G0).
Lemma 4.2. Let Go be a closed subgroup of G and A a countable norm-dense
subset of Go . Let E e 2 (Go) and E0 be a countable dense subset of E.

Then the two following conditions are equivalent:
(i) There is a left Go-invariant mean on E.
(ii) For any finite subset Ao ç A, for any finite subset F ç E0, for all e > 0,

there exists y/ e3s(G) such that:

for all ßeF, and XeA0 ,    \(X- y/ - y/, ß)\ < n\\ß\\L~(G).
Proof. By continuity, the existence of a left Go-invariant mean on E is equiv-
alent to the existence of a mean m on E such that: for all X e A, for all
e e £o, we have m(X • e) = m(e). The result follows from [Z4], Proposition
7.2.3(b), and the definition of the weak * topology.   D

Lemma 4.3. Let Go be a closed subgroup of G. Then Go is amenable if and
only if for every E £ 2) (Go), there is a left Go-invariant mean on E.
Proof. Only if: Let UCB(G0) denote the left uniformly continuous bounded
functions in L°°(Go). Let m0 be a left Go-invariant mean on UCB(G0). Let
m denote the mean on UCB(G) defined by m(f) = Wo(/|Go). Then, for all
E e 2(Go), m\E will be a left G0-invariant mean on E.

If: For all E e 2(G0), let KE denote the set of means on L°°(G) such
that m\E is left G0-invariant. Then Jf - {KE ; E £ 2(G0)} satisfies the
finite intersection property; choose m £ {\32f. Then m\UCB(G) is left Go-
invariant.

Next, we mimic the argument of [Z4], Lemma 7.2.8, to produce a left Go-
invariant mean on L°°(G).

Fix a right invariant Haar measure po on Go . Set

P(Go) = {4>£L\Go,Po) ; 4>>0, U\\v(G0,P0) = i}.
Using [Z4], Proposition 7.2.6(c), choose an approximation {e„}„>x <z3>(G)

to the identity. If y/ £ 3°(G) , <t> £ 3>(Go) and / e L°°(G), then we define
y/-cf>£3>(G) and <¡>-f£ L°°(G) by

(¥ • <P)(g) = / O • go)(g)<ß(go) dpo(go),

(4>-f)(g) = l<t>(go)(go-f)(g)dpQ(go).
If y/ £ P(G) and / € L°°(G), then we define y/ * f £ UCB(G) by

(y, * f)(h) = I yt(g)f(g-xf)(h) dp(g).
Choose ^o € P(G) and consider the mean m on L°°(G) defined by m(f) =

m(y/o*f).
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Fix any / £ L°°(G) and <f> £ 3>(G0). For all n £ N, set /„ = en * f. By
parts (a) and (c) of [Z4], Proposition 7.2.6, we have that ^o * fn —* Wo * f and
(Vo •</>)*/«-► (Vo •</>)* / in L°°(G) as n -* oo . Now y/0 * (</> • /) = (y/0 • <£) */
and, for all neN, we have y/o*(<t>-fn) = (Vo'<t>)*fn • So m(</> •/„)-► m(<¡>-f).
Further, m(fn) -* m(f). But the argument of [Z4], Proposition 7.2.7, shows,
for all neN, that m(<f> • f„) — m(fn). We conclude that m(4> • f) = m(f).

Fix any / e L°°(G) and go e Go ■ Choose any r/5 6 R(Go). By the argument
of the last paragraph, m((/> • (go • /)) = m(g0 • f) and m((4> • g0) ■ f) = m(f).
But (j> • (go • /) = (<P • go) • /, so we conclude that m(g0 • f) = m(f). That is,
m is a left Go-invariant mean on L°°(G).

Let 5 : Go \ G -+ G be a Borel section of the natural map n : G -> Go \ G.
Define p : G -> G0 by />(#) = ^^(Tcig))]-1. For all g e G, for all g0 e G0, we
have p(go^) = goP(g) ■ Define a mean m0 on L°°(G0) by m0(f) = m(fop) ;
then mo is left Go-invariant.   D

Let (S, ß) be a standard Borel G-space with a quasi-invariant probability
measure ß. We denote by 32G the equivalence relation induced by the action
of G on (S,ß).

Recall that a complete lacunary section T c S is a Borel set such that TG
is conull and there is a neighbourhood U of the identity of G such that

s£/nr={s}   for allí 65.
Clearly every lacunary section is a countable section (i.e. sGnT is countable
for all s£S).
Proposition 4.4. There exist

(1) a Borel set TCS,
(2) a probability measure v on T,
(3) a Borel map 4> : S —» G, and
(4) a Borel map a : 32G\T -> G
such that :
(A) for all s £ S, (sG) n T is countable and nonempty;
(B) ./or a// 5ore/ subsets To Q T, we have: To is v-null if and only if TGo

is ß-null;
(C) for all S£S, s<f>(s) £ T ;
(D) for all t£T, <¡>(t) = \G ; and
(E) for all (t, t') £ 32G\T, ta(t, t') = f.

Proof. By [Ke], Corollary 1.2, there exists a complete lacunary section T ç S
for the G-action.

Set A = {(s, g) £ S x G ; sg £ T} and As = {g £ G ; (s, g) £ A} . Let
us show that for each s £ S , As is a closed subset of G.

Fix s e S and let (gn)n>\ be a converging sequence in G whose limit is
g £ G and such that sg„ e T , for all n > 1. Choose a neighbourhood U
of the identity in G such that

tUnT = {t}   for all teT.
Choose a neighbourhood V of the identity in G suchthat V~XV c U. We

may assume that for all n , g„ £ g V. Then for each n and m, we have

{sgn)(gñlgm) = sgm £ T   and   g-lgm £ (gV)-\gV) = V~lV c U ,
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so sgm = (sg„)(g-lgm) e (sg„)UD T = {sgn}. Thus, for all n and m, we
have s(gmg~x) — s . By [Z4], Corollary 2.1.20, Gs is closed in G, and therefore
gg~] belongs to Gs. Hence s g — sg„ e T which proves that As is closed.

Since G is second countable and locally compact, As is cr-compact for every
s e S. By a standard theorem in Borel selection theory (see [Ka], Proposition
3.1), we may therefore choose a Borel map <j>: S -* G such that

(4>(s),s) e A   for all   seS.
Then for all s £ S ,we have (j>(s) £ As, i.e. s4>(s) £ T.

Let i/0 denote the image of the measure ß on S under the map from S to
T given by s >-> stf>(s).

By [FM], Theorem 1, choose a countable group A and a Borel action of A
on T such that R\T = {(t, tX) \ t e T, X £ A} . Let {X„}n>x be a listing of the
elements of A. Let v>¡ be the image of vo under the map from T to T given
by t ~ tXi. Set v = ¿~,(2-'>;.   D

Lemma 4.5. There is a sequence (<j)n)n>i of Borel functions from S to G such
that, for all s £ S, the set (<t>n(s))n>i is a dense subset of Gs.
Proof. Choose a sequence (U„)„>x of precompact open sets in G such that if
g £ G and if F_is any neighbourhood in G of g, then, for some ¡eN,we
have g £ Ut çui ç V.

Set X = {(s, g) £ S x G ; sg = s}. Let p : S x G -> S denote the
first coordinate projection. Let q : S x G —>_G denote the second coordinate
projection. For all i £ N, set X¡ = Xf)(S x U¡) and set S¡ = p(X¡).

Fix i £ N. By a theorem in Borel selection theory (see, for example [Ka],
Proposition 3.1), it follows that S¡ is a Borel subset of S and that there is a
Borel map x¡ : S¡ -* X¡ such that: for all s £ S¡, we have p(x¡(s)) - s. Let
4>i : S -> G be defined by <f>i(s) = q(x(s)), for all s e S,■, and </>,(s) = Ig , for
all 5 e S \ St:.   D

Let UCBf(G) denote the set of nonnegative functions / e UCB(G) such
that ||/||l»(g) = 1 • Give UCB+(G) QLX(G, p)* the weak »-topology.

Let Y = Í/C5+(G)N denote the countable Cartesian product of copies of
UCBX+(G) and give Y the product topology. Let 1 denote the constant func-
tion on G which is identically equal to 1. Set Yx = {(ßx, ßi, ... ) e Y ; ßx —
!}•

For all ß = (ßx, ß2, ... ) 6 Yx, let E(ß) denote the norm closure in L°°(G)
of the span of {ßn}n>i ■

Lemma 4.6. Let %' ç S1 x Yx denote the set of all (s, ß) such that E(ß) is left
Gs-invariant. Let % denote the set of all (s, ß) £ W such that E(ß) admits a
left Gs-invariant mean. Then I?' and <£ are Borel subsets of S x Yx.
Proof. Let (y/n)n>\ be a norm dense sequence in P(G) and (xn)n>\ be one in
the unit ball of Ll(G, p)).

Set 0„>, Q = {t — (t„)„>i ; xn = 0 for all sufficiently large «} , the direct
sum of copies of the rational numbers. Let (t")«>i be a listing of all the
elements of 0„>,Q.

For all x e 0„>, Q, for all ß = {ßlt ß2,...) e Fi, set t- ß = YZx *ißi ■
Then, for all ß £ Yx, the set {xk ■ ß ; k £ N} is norm dense in E(ß).
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By Lemma 4.5, choose a sequence (<j>n)n>i of Borel functions from S to G
such that, for all s £ S, the set {(f>i(s) ; i £ N} is a dense subset of Gs.

Fix (s, ß) £Sx y,. Then
(s,ß)£ g" if and only if Mi, j £ N , <j>¡(s) • ßj £ E(ß)

if and only if

V/, ;' , « G N , 3k £ N such that ||^-(i) • ß} - xk • ß\\Loo{G) < - ,

if and only if

Vi, j, n £ N , 3k £ N such that V/ £ N , \{<f>¡(s) • ßj - xk • ß, Xi)\ < ~ ■

This shows that W is Borel in 5 x Yx .
Fix (s, ß) £ £?'. By Lemma 4.2 and Lemma 4.3,

(s, ß) £ % if and only if
V/'o, ko, n £ N , 3 m £ N such that Vi = 1, ... , i'o > Vk=l,... , ko ,

\(4>i(s) -y/m-Wm, rkß)\ < -\\xk • ß\\L~{G)

if and only if
Vi'o, fco, n £ N , 3 m e N such that Vi = 1, ... , i0 , Vk= \, ... , ko , 3 / e N

with

K^(í)-^m-^«,t*.^>|<¿|(T*.^,Z|>|.
This shows that §* is Borel in S x Yx .    D

Lemma 4.7. Assume that the G-action on S is amenable. Suppose that the
map from S to Yx given by s i-> ßs is measurable. Suppose, for all g e G, for
a.e. s e S, that E(ßsg) - g-E(ßs). Then, for a.e. s e S, there is a Gs-invariant
mean on E(ßs).
Proof. Let P:L°°(SxG)-+ L°°(S) be as in Theorem 3.4.

For all i e N, for all (s, g) e S x G, let / e L°°(5 x G) be defined by
f(s, g) = ß\{g) ; then ||/||¿oc(SxG) < 1, by definition of Yx .

For all i e N, let c, be a bounded Borel function on S such that c, = P(f)
a.e. on S and such that 0 < c, < 1 on S.

By disintegration techniques (cf. [F], Chapter 5, §4, pp. 107-110]), for a.e. í £
S, there is a unique mean ms on E(ßs) such that: for all i £ N, we have
ms(ßj) = Ci(s). Moreover, for all g £ G, for a.e. s £ S, for all / e E(ßs), we
have msg(g-f) = ms(f).

If E is any separable norm-closed subspace of L°°(G) containing the con-
stant functions, if m is a mean on E, and if g £ G, then we let m.g denote
the mean on g • E defined by (m.g)(f) = m(g~x ■ f). With this notation, for
all g £ G, for a.e. se5,we have ms.g = msg .

Thus, for a.e. s £ S, for a.e. g e G, we have ms.g = msg . So, for a.e. s e S,
for all g' £ G, for a.e.  geG,we have

ms.g — msg,        ms.(gg') - msgg .

Therefore, for a.e. s £ S, for all g' £ Gs, for a.e. g £ G, we have
msg.(g-xg'g) = (ms.g).(g-xg'g) = ms.(g'g) = m«*'*) = ms* .
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Then, for a.e. s £ S, for a.e. g £ G, for a.e. g' e Gsg , we have msg.g' = msg .
Then there exists go e G such that: for a.e. s e S, for a.e. g' e Gsg0 we
have msg0.g = msg0. For a.e. seS, this implies: for a.e. g e Gs, we have
ms.g = ms, i.e., ms is invariant under a conull set in Gx.

So, for a.e. s e S, the set of elements of Gs fixing ms is a conull subgroup
of Gs ; by [Z4], Proposition B.l, ms is G^-invariant.   D

Lemma 4.8. The set of all s e S such that Gs is amenable is a measurable
subset of S.
Proof. Let W, % ç S x Yx be as in Lemma 4.6 ; then g" and W are Borel
subsets of S x Yx. Let nx : S x Yx —> S denote the projection onto the first
coordinate.

By Lemma 4.3, the set of s e S such that Gs is nonamenable is equal to
Tt\(W \ I?). This set is analytic, hence measurable ([A], Theorem 3.2.4). Con-
sequently, its complement, which is the set in question, is also measurable.   D

A. Kechris informs us that the set where stabilizers are amenable is actually
Borel.

Lemma 4.9. Let Sx be a measurable G-invariant subset of S. Then there exists
a Borel G-invariant subset So of S such that So ç Sx and such that ß(Sx\So) =
0.
Proof. Let S[ be any Borel subset of S such that S\ ç Sx and such that
ß(Sx s S[) = 0. Then S[ is essentially G-invariant, in the sense that, for all
g £ G, the symmetric difference (S'jg)AS'j is //-null.

In [M], §6, Theorem 3, it is proved that an essentially G-invariant Borel set
E differs by a null set from a Borel set D which is invariant under G. An
examination of the proof shows that D ç E.

Applying this with E = S[, and taking S0 to be the resulting set D, we
obtain the desired conclusion.   D

Theorem 4.10. Assume that the G-action on S is amenable. Then, for a.e. s £
S, the group Gs is amenable.
Proof. Let g", % ç S x F, be as in Lemma 4.6. Let nx : S x Yx -> S and
7t2 : S x Yx —> Yx be the projections onto the first and second coordinates. By
Lemma 4.3, 7Ti(I" \ J?) is the set of s £ S such that Gs is nonamenable. In
particular, tti(I?'\I?) is G-invariant. Assume that nx(&'\ i?) has positive
measure; we wish to obtain a contradiction.

Using Lemma 4.9, choose a G-invariant Borel set Sq of positive measure in
S such that S0 ç nx (<£' \ f ). Replacing S by S0, we may assume, for all
s e S, that Gs is nonamenable, i.e. we may assume that nx (%' \ f ) = S.

By [A], Theorem 3.4.3, choose a measurable map x:S^W^%>  such that

nx (x(s)) - s,    for all 5 € S .

For s e S and j £ N, let Xj(s) £ UCB^(G) denote the ;'th coordinate of
n2(s(x)) G Yx = UCB+(Gf .

Let T, v, <j>, a be as in Proposition 4.5. Using [FM], Theorem 1, choose a
countable group A and a Borel action of A on T such that, for all t £ T,
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we have (tG) n T = iA. Let {(Xn , jn)}n>i be a listing of all the elements of
AxN.

Let 1 denote the constant function on G which is identically equal to 1.
For all t £ T, for all i £ N, set ßj = Sj,o(tXt, t){tíLi) £ UCB+(G).

For all s £ S, for all i £ N, set ßf = ßf(s)[(f>(s)]-x. For each s £ S,
ßs = (1, ß\, ßj, ...) £ Yx and s i-» ßs is measurable. By Lemma 4.7, for
a.e. s e S, there is a G^-invariant mean on E(ßs), and hence on E(n2(x(s))),
since E(n2(x(s))) ç E(ßs). But then, for a.e. s e S, we have x(s) e I?,
contradicting the definition of x.   D

V. Proof of the implication from (v) to (i)

Let (S, ß) be a G-space and 32G be the equivalence relation induced by
the action of G. For all s e S, the closed subgroup Gs = {g e G; sg = s}
denotes the stabilizer in G of 5 .

Theorem 5.1. If 32G is an amenable equivalence relation on (S, ß) and if the
stabilizer Gs is amenable ß-a.e., then (S, ß) is an amenable G-space.
Proof. Let E be a separable Banach space and E* be the unit ball in the
dual, endowed with the o(E*, £)-topology. Let H(E\) denote the group of
homeomorphisms of E* with the topology of uniform convergence. Let a :
S x G —> Iso(is) be a Borel cocycle and let a* : S x G —» H(E\) denote the
induced adjoint (Borel) cocycle defined by

a*(s,g) = (a(s,g)-xy .

Let {/LJigs bean a-invariant Borel field of nonempty compact convex subsets
of E\, i.e. for each g e G , a*(s, g)Asg = As , for almost all5 e S .

We wish to show that there is an a-invariant section y/ in {Ashes (i.e.
a Borel map y/ : S —► E* such that y/(s) e As a.e. and for each g e
G , a*(s, g)y/(sg) = W(s) a.e.).

By [Z4], Theorem B.9, we may assume that the cocycle a is a strict cocycle.
By Lemma 4.9, we may replace S by a G-invariant conull Borel subset and
assume: for all s e S, for a.e. g e G, we have a*(s, g)Asg = As. Similarly,
we may assume, for all s e S, that Gs is amenable.

Fix s £ S and g £ G. Choose g' £ G such that
a*{s, gg')Asgg> = As       and       a*(sg, g')ASggl = Asg.

Then by the cocycle identity, we have

a*(s, g)Asg = a*(s, g)a*(sg, g')Asgg, = a*(s, gg')ASggl = As .

For all s e S, let Gs act on As by a • g = a*(s, g)a and let Bs = A?s
denote the Gs fixed points in As. By amenability of the stabilizers, for all
seS, Bs¿0.

Choose T, u, (j), a as in Proposition 4.4. By [CFW], there is a i/-conull,
(^Gl^-invariant subset 7b ç T and a Borel Z-action on To such that

32G\To = {(t,t.n)\teTo,neZ} .
By Lemma 4.9, choose a //-conull, Borel, G-invariant subset So of TqG . Re-
placing T by So n T and S by So , we may assume that To = T.
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Define a0 : (32G\T) — Iso(£) by a0(t,t') = a(t, a(t, t')). Let a*Q :
(32G\T) - H(E¡) be defined by

a*0(t, t') = (a0(t, t'))* .

For all t e T, for all t' £ (Gt) n T, we have a*,(i', /)•#« = R,-. Moreover,
for all t£T, for all t', t" £ (tG) n T, for all ¿> G R,, we have

o5(<",0«o(<',0* = a5(<w.i)*.
Let # denote the set of all y/ £ L°°((T, v), E*) such that, for i/-a.e. t £

T, we have y/(t) £ Bt. Then AT is a weak* compact convex subset of
L°°((T,u),E*)^Lx((T, v),E)*. Let Z acton K by the rule

(y/• n)(t) = a*0(t, tn)y/(tn).

Using [A], Theorem 3.4.3, choose ^o G L°°((T, v), E*) such that ^o(0 G
5,, for a.e. t £ T. That is, y/o £ K. For every 7Y e N, set

^JV
1

- £ y/o-n.2JV+_

Let  ^ be an accumulation point in K of {y/^ ; N e N).   For i/-a.e. t £
T,  y/(t) e Bt.   Further, for i/-a.e. t £ T, for all i' G (tG) n 7\ we have
a5(M')^W = 0(O.

Define y/ £ L°°(S, E*) by the rule

y/(s) = a*(s, <j)(s))y/(s<i>(s)).

Then, for a.e. s e S, y/(s) e Bs ç As. Further, for a.e. 5 G S, for all g £ G,
we have a*(s, g)^(i^) = y(s), as desired.   D
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