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Abstract 

Background: The most severe bacterial disease of honeybees is American foulbrood (AFB). The epidemiology of 

AFB is driven by the extreme spore resilience, the difficulty of bees to remove these spores, and the considerable 

incidence of undetected spore-producing colonies. The honeybee collective defence mechanisms and their feedback 

on colony development, which involves a division of labour at multiple levels of colony organization, are difficult to 

model. To better predict disease outbreaks we need to understand the feedback between colony development and 

disease progression within the colony. We therefore developed Bayesian models with data from forty AFB-diseased 

colonies monitored over an entire foraging season to (i) investigate the relationship between spore production and 

symptoms, (ii) disentangle the feedback loops between AFB epidemiology and natural colony development, and (iii) 

discuss whether larger insect societies promote or limit within-colony disease transmission.

Results: Rather than identifying a fixed spore count threshold for clinical symptoms, we estimated the probabili-

ties around the relationship between spore counts and symptoms, taking into account modulators such as brood 

amount/number of bees and time post infection. We identified a decrease over time in the bees-to-brood ratio 

related to disease development, which should ultimately induce colony collapse. Lastly, two contrasting theories pre-

dict that larger colonies could promote either higher (classical epidemiological SIR-model) or lower (increasing spatial 

nest segregation and more effective pathogen removal) disease prevalence.

Conclusions: AFB followed the predictions of the SIR-model, partly because disease prevalence and brood removal 

are decoupled, with worker bees acting more as disease vectors, infecting new brood, than as agents of social immu-

nity, by removing infected brood. We therefore established a direct link between disease prevalence and social group 

size for a eusocial insect. We furthermore provide a probabilistic description of the relationship between AFB spore 

counts and symptoms, and how disease development and colony strength over a season modulate this relationship. 

These results help to better understand disease development within honeybee colonies, provide important estimates 

for further epidemiological modelling, and gained important insights into the optimal sampling strategy for practical 

beekeeping and honeybee research.
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Background
Honeybees are important pollinators in agricultural [1] 

and natural habitats [2]. �e demand for managed pol-

linators in agriculture has steadily increased during 

the past decades due to changing diets and an alarming 
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decrease in natural pollinators in cultivated landscapes 

[3]. At the same time, beekeepers worldwide are experi-

encing increased winter and seasonal colony losses [4–7]. 

Such losses stem from a combination of parasites and 

diseases, poor nutrition, inadequate beekeeping manage-

ment practices and pesticide exposure; both individually 

and synergistically [8–16].

One of the major threats to colony health and beekeep-

ing viability is American foulbrood (AFB); a contagious, 

lethal bacterial disease of honeybee brood that is widely 

distributed across the world. �e disease causes great 

economic losses during outbreaks due to reduced pro-

ductivity and material turnover [17–20]. American foul-

brood is caused by Paenibacillus larvae, a spore-forming 

bacterium that produces extremely resilient spores which 

can remain viable for decades [21]. Within a colony, P. 

larvae spores are spread by nurse bees performing in-

hive tasks, such as cleaning, but especially through the 

feeding of young larvae with spore-contaminated food 

[22]. Billions of spores are produced in the dying lar-

vae [20]. �e dried larval remains (scales) are difficult 

to remove by workers and are a continuous source of 

infection for new brood. �e lethality and epidemiology 

of AFB are driven by the resilience of the spores and the 

fact that the removal of diseased brood, a communal bee 

hygienic behaviour [23, 24], is not sufficient to remove 

this source of infection [20, 25]. �e spores are distrib-

uted between colonies by swarming, robbing and in 

particular by beekeepers moving contaminated material 

between colonies [26, 27].

One major problem for the control of American foul-

brood is that even though clinical symptoms are highly 

characteristic for the disease, they tend to appear late 

during the epidemic, when the colony’s hygienic behav-

iour to remove infected larvae before they produce 

spores, can no longer keep up with the epidemic. Estima-

tions have been made that as much as 25% of spore-pro-

ducing colonies remain undetected [28]. Infections are 

therefore enzootic, since they remain in the population 

without external inputs [29], and occult, since they are 

present but largely visually undetected [27]. Colonies can 

produce large amounts of infectious P. larvae spores with 

relatively few cases of symptomatic brood, thus escap-

ing detection during routine beekeeper inspections while 

continuing to be a source of infection both within a bee-

keeping operation, between beekeepers (through sale of 

bees and equipment) and to feral and managed colonies 

within flight range through drifting and robbing [30].

One way to address the risk of pre-clinical infectious 

colonies for epidemic spread at multiple scales (local, 

regional, national) is to determine this risk directly from 

P. larvae spore levels in material sampled from the col-

ony, thereby unambiguously identifying all infectious 

colonies rather than just those presenting detectable 

symptoms. It has been shown that adult bees provide 

most reliable samples for relating P. larvae spore levels to 

AFB symptoms, superior to either colony debris or honey 

samples [28, 31–33]. �e spore load of individual bees is 

positively correlated to the likelihood of clinical symp-

toms [31, 34]. Since the spores are heavily concentrated 

in the brood frames and hive material, beekeepers can 

remove much of the colony-level spore burden by shak-

ing the adult bees and queen into new, clean hives and 

frames with fresh wax foundation [35]. Attempts have 

been made previously to predict clinical symptoms from 

the number of spores in a colony [36, 37]. However these 

attempts lacked two important elements for improving 

the reliability of such a calibration curve, namely an esti-

mation of uncertainty and the usage of the recommended 

standardised grading of the severity of AFB symptoms.

We therefore included standardised AFB symptom 

grading scales [38] and multilevel Bayesian linear models 

to rectify these deficiencies, in order to identify more reli-

ably the probability of AFB symptoms given a particular 

spore count. �e results obtained are therefore directly 

applicable to practical beekeeping, as well as to research 

and epidemiological modelling. For example, the results 

can be used to parameterize other Bayesian models, by 

using the posterior probability predicted by these models 

as prior probability estimates for other Bayesian analy-

ses, e.g. for predicting or analysing AFB transmission, 

infectivity, epidemiology, or symptoms in various actual 

or theoretical scenarios. Predicting AFB symptoms from 

spore counts follows a causational logic. However, from 

a practical perspective it would also be useful to explore 

the reverse relationship, i.e. to predict the colony spore 

levels from observed symptoms since the primary data 

obtained from colony inspections is the presence and 

severity of symptoms, which are then followed up with 

laboratory spore analyses of adult bee samples. �is fur-

thermore also serves as a quality control of the standard-

ised AFB symptom grading system.

Our second objective was to disentangle the natural 

colony development and the colony-level disease devel-

opment over a season. While both the development of 

P. larvae infection in larvae [20], and AFB disease epi-

demiology between colonies using colony infection data 

[18, 27] have been described, the factors shaping AFB 

virulence at the colony level are still largely unknown. 

We focused on the onset and the development of the dis-

ease, which are the most relevant disease stages from a 

practical as well as an epidemiological perspective. AFB 

can kill a colony within a single season, which in temper-

ate regions of the northern hemisphere ranges from the 

beginning of April to end of September. Although one 

previous attempt at modelling AFB development suggests 
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that the onset of symptoms is rather sudden [39], there 

has been no controlled study to evaluate the time course 

of AFB progression during a full season. In addition, hon-

eybee colonies are complex entities (super-organisms) 

where most of the colony dynamics are driven by social 

interactions and decision making between its members, 

based on sensory input from within the colony and the 

environment, which makes it very difficult to predict the 

course of any disease [26]. Particularly collective defence 

components, such as hygienic behaviour, and its feedback 

on colony development are difficult to model reliably, 

since it involves both brood and adult bees and affects 

role allocation and decision making at multiple levels in 

colony organization [24, 40].

Our last objective concerned whether larger honeybee 

colonies limit or accelerate the epidemiology of AFB. For 

example colonies that have naturally adapted to survive 

uncontrolled Varroa destructor infestation display unique 

and characteristic colony development traits, including 

smaller overall size, reduced drone brood production 

and lower brood-to-adult bee ratios, all of which are pre-

dicted to limit the reproductive potential for this mite 

[41]. �e classical deterministic epidemiological model, 

based on Susceptible, Infected and Resistant Hosts (the 

SIR-model [42]) would predict that larger colonies (more 

brood) should increase the spread of disease. However, 

living in social groups is clearly beneficial with regard to 

predation risk [43] and social hygiene, which may out-

weigh the higher infection risks [44]. For eusocial insect 

societies in particular, larger colonies may be more able 

than smaller colonies to deploy counter measures to epi-

demic disease spread, such as removing diseased brood 

(hygienic behaviour) [45]. Additionally, the increased 

spatial separation in larger colonies may delay the spread 

of infection [40]. Considerable research has been con-

ducted to understand how larger social groups cope with 

higher infection risk, and factors such as genetic diversity 

[46], group size [47, 48] and the structure of the social 

network [49] have been shown to be important for affect-

ing the colony-level effects of infection and disease. Most 

of these studies aim at the mechanisms social animals use 

to minimize infection risk (e.g. the ability to detect and 

remove fungal diseases [50] or the effectiveness of cuticu-

lar antimicrobial defences in relation to colony size [51]). 

However, such an approach is contingent on the assump-

tions related to these biological mechanisms. Here we 

approach the relationships between disease severity 

and colony size directly, and therefore independent of 

mechanistic assumptions. For example the variation in 

the number of susceptible hosts (i.e. the amount of larval 

brood, for AFB) over a season depends on many intrinsic 

and external factors [52, 53]. Since American foulbrood 

kills the brood, a shift in the brood-to-worker ratio can 

be expected, but it is unclear whether larger honeybee 

colonies are better than smaller colonies at handling such 

a shift. In this study we will therefore attempt to describe 

how AFB affects colony strength parameters (amount of 

brood and number of adult bees) and how these parame-

ters feed back to the epidemiology in the colony, in order 

to understand the relevance of colony size itself, inde-

pendent of colony-level mechanisms, on disease spread.

Results
�e results describe the importance of a particular pre-

dictor for predicting a response variable, the direction 

of the predicted effect on the response variable, and the 

extent to which the primary relationship is modulated by 

secondary and tertiary predictors. Within each figure, the 

central subfigure shows the relationship between the pri-

mary predictor and the response variable if the influence 

of the other two secondary predictors (top and right) is 

neutral. Because these secondary predictors mostly co-

vary (i.e. Fig. 1: Brood 80 at Time 20 is more likely than 

Brood 200 at Time 20) the three subfigures on the lead-

ing diagonal are the most likely outcomes, while the 

remaining six subfigures are primarily for explaining and 

understanding the interactions. A summary of the origi-

nal data can be found in Additional file 1: (Figure S1 and 

Table  S1). �roughout the results variables have capital 

letters.

Predicting clinical symptoms from spore counts

All response variables were relevant for predicting 

Symptoms (Table  2: P[effect > 0] = 100% for all predic-

tors). Spores were a strong predictor of the Symptoms 

in all four models, both directly and through its inter-

action with the other variables (Table  1: M1–M4), and 

because subtracting the effect of secondary predic-

tors from the Spores predictor left a high probability of 

an effect size larger than zero (Table  2: Spores-Brood 

P[effect > 0] = 91.3%; Spores-Time P[effect > 0] = 94.3%). 

Brood and Time were equally predictive for Symptoms 

(Table 2: Brood-Time P[effect > 0] = 55.6%), though much 

less so than Spores. �e Symptoms increased first slightly 

and then strongly with increasing Spores, regardless of 

the time and brood (Fig. 1: Time 50/Brood 130). Symp-

toms increased over Time, both in absolute terms and in 

relation to a given spore count level (see also Additional 

file  2: Figure S2), and Symptoms also increased with 

increasing Brood (see also Additional file 2: Figure S3). 

Brood was a stronger modulator of the Spores-Symp-

toms relationship than Time since the Spores × Brood 

interaction received more weight than the Spores × Time 

interaction (Table  1: M2 includes Spores × Brood and 

not Spores × Time). �is is also illustrated by a stronger 
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change of the Spores-Symptoms relationship along Brood 

than along Time (Fig. 1).

Lastly we calculated the probability of encountering 

Symptoms if no Spores are detected in an adult bee sam-

ple (Spores = 0), which resulted in a probability around 

0.22.

Predicting spore counts from clinical Symptoms

All response variables were relevant for predicting Spores 

(Table  2). Symptoms were the strongest predictors of 

Spores, both directly and through its many significant 

interactions with other predictors; three out of the four 

selected models (Table  1), and since subtracting the 

effects of secondary predictors from symptoms left a high 

probability of an effect size larger than zero (Table  2). 

Bees seemed more important than Time for predicting 

Spores (Table 2).

Regardless of Time and Bees, Spores increased with 

increasing clinical symptoms (Fig. 2: Time 50/Bees 9; see 

also Additional file 2: Figure S4 for the full range of spore 

counts). In general though, Spores decreased over Time, 

as is illustrated by the decrease over Time for any given 

level of Symptoms (see also Additional file 2: Figure S5). 

Spores also decreased with increasing Bees irrespective 

of Time or Symptoms (Additional file 2: Figure S6). How-

ever, early in the season Spores increased with increasing 

number of bees.

Time was a stronger modulator of the Symptoms-

Spores relationship than number of bees, since the model 

including only the Symptoms × Time interaction received 

50% of the Akaike weight (Table 1). �is is illustrated by 

Fig. 1 Clinical symptoms depending on spore counts, time of the season, and brood size within the colony. Shown are median (with 97, 89, 

and 67% credible intervals) posterior distributions along the full range of observed spore counts. The remaining continuous predictors are held 

approximately at their mean (brood: 132.6; time: 48.4), their 1st quantile (brood: 78; time: 21), and their 3rd quantile (brood: 191; time: 79)
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a greater change in the slope of the Symptoms-Spores 

relationship in relation to Time than in relation to Bees 

(Fig. 2, Additional file 2: Figure S4).

We furthermore estimated the number of expected 

spores in an adult bee sample if symptoms are at level 

zero or level one, which resulted in around 158 and 228 

spores, respectively. Lastly, we calculated the posterior of 

the difference for extreme and likely values of Spores in 

order to investigate a dilution effect of sampling 100 bees 

while colony size differed (see Additional file 2).

Predicting the e�ect of AFB disease on colony strength

All response variables were relevant for predicting the 

first variable of colony size, the number of adult bees 

(Table 2). Brood was the strongest predictor of Bees, as 

revealed by the importance of its interactions with the 

other variables in all four selected models (Table 1). �is 

importance is further illustrated by the high probability 

of an effect larger than zero after subtracting the effect of 

Spores or Time as a co-predictor. �e time post-infection 

seemed to be a much more important co-predictor of the 

number of bees than the number of spores (Table 2).

Regardless of Time or Brood the number of bees 

increased with increasing spore numbers (Fig.  3: Time 

50/Brood 130). Similarly, regardless of Spores and Brood, 

Bees increased with Time (Fig. 3: see at zero spore count 

and in Additional file 2: Figure S7 at Spores 850) and Bees 

increase with increasing Brood if the other predictors 

Table 1 Models used to average posteriors by multiplication with the model weight

Shown are e�ective Number of Parameters (pWAIC), Widely Applicable Information Criterion (WAIC), standard error of WAIC estimate (SE), and Akaike weight based on 

WAIC (weight). Remaining models (with di�erent combinations of interactions; not shown) received lower weights and were not used for model averaging

Response Model Explanatory pWAIC WAIC SE weight

Symptoms M1 Spores, Time, Brood
Spores × Time
Spores × Brood
Time × Brood
Spores × Time × Brood

62.6 481.6 34.12 0.51

M2 Spores, Time, Brood
Spores × Brood

62.4 483.3 34.22 0.23

M3 Spores, Time, Brood
Spores × Brood, Time × Brood

63.1 483.8 34.18 0.18

M4 Spores, Time, Brood
Spores × Time, Spores × Brood Time × Brood

63.3 485.4 34.42 0.08

Spores M5 Symptoms, Time, Bees
Symptoms × Time

118.4 2330.6 59.81 0.50

M6 Symptoms, Time, Bees
Symptoms × Time Symptoms × Bees, Time × Bees 

Symptoms × Time × Bees

118.7 2332.4 59.23 0.20

M7 Symptoms, Time, Bees
Time × Bees

118.6 2332.7 59.56 0.18

M8 Symptoms, Time, Bees
Symptoms × Bees, Time × Bees

119.3 2333.4 59.51 0.12

Bees M9 Spores, Time, Brood
Spores × Time, Spores × Brood, Time × Brood
Spores × Time × Brood

78.2 1453.5 30.69 0.54

M10 Spores, Time, Brood
Spores × Time, Time × Brood

81.0 1454.6 28.60 0.30

M11 Spores, Time, Brood
Spores × Brood

80.3 1457.2 29.16 0.08

M12 Spores, Time, Brood
Spores × Time, Spores × Brood

78.4 1457.4 30.95 0.08

Brood M13 Symptoms, Time, Bees
Symptoms × Bees

141.6 1950.5 15.27 0.997

M14 Symptoms, Time, Bees
Symptoms × Time

144.8 1962.8 12.60 0.002

M15 Symptoms, Time, Bees
Symptoms × Time, Symptoms × Bees

146.2 1965.3 12.34 0.0006

M16 Symptoms, Time, Bees
Symptoms × Time, Time × Bees

146.6 1966.0 13.00 0.0004
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are held at their mean/median values (Fig. 3: zero Time 

point; Additional file 2: Figure S8: Spores 850).

Time was a stronger modulator of the Bees-Spores rela-

tionship in the colonies than Brood as the model with the 

Spores × Time interaction was ranked higher than the 

model including the Spores × Brood interaction (Table 1). 

�is is illustrated by the strong change over Time in the 

slope, from a positive to a negative relationship, while the 

changes with respect to Brood are less prominent (Fig. 3).

Regarding the second measure of colony strength, i.e. 

the amount of brood, we saw that all response variables 

were relevant for predicting brood amount (Table  2). 

�e number of bees was by far the strongest predictor of 

brood amount in the first model, which included only the 

Symptoms × Bees interaction, and received 99% of all the 

predictors’ weight (Table 1). �erefore, here we only used 

M13 for the predictions instead of a weighted combina-

tion of all 4 models.

�e importance of Bees for predicting the amount of 

brood is further illustrated by the high portability of an 

effect larger than zero after subtracting the co-predictor 

symptoms or time. Symptoms seemed more important 

than Time for predicting Brood (Table 2).

Regardless of Time and Bees, the Brood increased with 

increasing Symptoms (Fig. 3: Time 50/Bees 9). Similarly, 

Brood decreased with Time irrespective of the Symp-

toms and Bees (Fig. 4 and Additional file 2: Figure S9, any 

symptom score). Brood also increases with Bees (Fig. 4), 

although at very high symptoms, more bees did not lead 

to more brood anymore.

Bees was an overwhelmingly stronger modulator of 

the Brood-Symptoms relationship relative to Time since 

Symptoms × Bees was the only relevant interaction 

(Table 1). �is is illustrated by the strong change in the 

slope of the brood-symptoms relationship in relation to 

the number of Bees, relative to the slope in relation to 

Time (Fig. 4).

Discussion
�e primary objective of our study was to determine the 

probability distribution for encountering colony-level 

AFB symptoms from P. larvae spore counts, as a superior 

approach to identifying a threshold. By taking a proba-

bilistic approach, other factors affecting the relationship 

between spore counts and symptoms, such as colony size, 

brood availability and stage of the infection process were 

explicitly accounted for, something which is not possible 

with simple threshold values.

While we could describe the relationship between 

spore levels and symptom independent of the effects of 

time of the season and the amount of brood (by keep-

ing these at their mean value), questions remain about 

the generality of the results. Other possible factors that 

may change the spore-symptom relationship are vari-

ability in bacterial virulence (an innate genetic prop-

erty of different P. larvae strains [54]), colony genetics 

[46], resistance against P. larvae [55], and hygienic 

behaviour [23]. All colonies in the study were placed 

in the same isolated apiary and were experimentally 

infected with sufficient Paenibacillus larvae spores to 

precipitate AFB disease. All colonies were therefore 

under the same infection pressure. �is means that 

Table 2 Posterior distributions for  the  main parameters 

on original scale

Show are mean ± standard deviation (with 97% credibility intervals) of the 

main e�ects and the e�ect probability. Posteriors are weighted based on the 

four selected models (except for brood as response variable, see Table 1 and 

text). Italic rows specify the importance of one predictor in relation to another 

(posterior distribution of one parameter minus the other). We also show 

posteriors for speci�c values (Spores/Symptoms = 0; Symptoms = 1; see text for 

further explanations)

Response Parameter Posterior distribution P[e�ect > 0]

Symptoms Intercept 0.29 ± 0.06 (0.16, 0.43) 100

Spores 2.13 ± 0.33 (1.47, 2.91) 100

Time 1.58 ± 0.15 (1.26, 1.91) 100

Brood 1.61 ± 0.19 (1.28, 2.10) 100

Spores-Brood 0.51 ± 0.40 (− 0.26, 1.45) 91.3

Brood-Time 0.03 ± 0.22 (− 0.46, 0.52) 55.6

Spores-Time 0.55 ± 0.39 (− 0.24, 1.4) 94.3

Spores = 0 0.22 ± 0.05 (0.12, 0.34) 100

Spores Intercept 286.08 ± 65.68 (159.83, 432.0) 100

Symptoms 3.51 ± 0.68 (2.20, 5.06) 100

Time 0.63 ± 0.08 (0.46, 0.81) 100

Bees 1.08 ± 0.15 (0.78, 1.46) 100

Symptoms-Bees 2.43 ± 0.74 (0.97, 4.17) 100

Bee-time 0.45 ± 0.19 (0.04, 0.87) 99.5

Symptoms-Time 2.88 ± 0.71 (1.57, 4.49) 100

Symptoms = 0 158.26 ± 36.58 (92.63, 241.76) 100

Symptoms = 1 228.13 ± 53.04 (123.54, 349.12) 100

Bees Intercept 17.27 ± 0.40 (16.41, 18.08) 100

Spores 1.04 ± 0.02 (0.99, 1.10) 100

Time 1.13 ± 0.01 (1.10, 1.17) 100

Brood 1.25 ± 0.01 (1.21, 1.29) 100

Brood-Spores 0.20 ± 0.03 (0.13,0.29) 100

Brood-Time 0.11 ± 0.02 (0.06, 0.15) 100

Time-Spores 0.09 ± 0.03 (0.02,0.166) 99.7

Brood Intercept 88.11 ± 17.36 (58.69, 127.88) 100

Symptoms 1.30 ± 0.10 (1.10, 1.59) 100

Time 0.52 ± 0.03 (0.44, 0.61) 100

Bees 1.89 ± 0.15 (1.60, 2.29) 100

Bees-Symptoms 0.58 ± 0.19 (0.16, 1.02) 99.9

Bee-Time 1.37 ± 0.16 (0.97, 1.71) 100

Symptoms-Time 0.78 ± 0.12 (0.53, 1.07) 100
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any additional contagion contributed by bees drifting 

between the colonies will be miniscule compared to the 

contagion developed within each colony, and will not 

have affected the results. Although proximity and con-

nectedness (beekeeping and geolocation) are important 

determinants of the disease pressure in a colony [27] 

this is not applicable to the current study which was 

conducted in complete isolation from other beekeeping 

operations, as required by sanitary regulations.

From an applied perspective, it may be more interest-

ing to get an idea of the spore counts given a symptom 

score. We found even for colony symptom scores of 

0 (i.e. no disease), there is a 100% probability that the 

spore count is larger than zero, averaging around 158 

Spores per bee (Table  2: Symptoms = 0). Symptomatic 

colonies with an AFB score of 1 corresponded to 

around 228 Spores per bee (Table  2: Symptoms = 1). 

�is is considerably lower than the previously esti-

mated threshold of 3000 spores per bee for AFB symp-

toms [37], but higher than the estimate of Lindström 

[36].

Scoring clinical symptoms may be biased given that 

symptoms may not be visible at an early stage of infec-

tion [56] and that symptoms in larger colonies with 

many brood frames to inspect may be underestimated by 

human eye [57, 58]. Regardless of the season or the spore 

levels, clinical symptoms increased with brood size in our 

study. It remains unclear if, and to what extent, the pre-

cision of the prediction of AFB symptoms suffers from 

increasing colony size. However, the AFB disease scoring 

Fig. 2 Spore counts depending on clinical symptoms, time of the season, and number of bees within the colony. Shown are median (with 97, 

89, and 67% credible intervals) posterior distributions along the full range of observed AFB scores, but only until a maximum of 3000 Spores (see 

Additional file 2: Figure S4 for whole range of observed spore counts). The remaining continuous predictors are held approximately at their mean 

(Bees: 9.2; Time: 48.4), their 1st quantile (Bees: 6.0; Time: 21), and their 3rd quantile (Bees: 12.0; Time: 79)



Page 8 of 14Stephan et al. BMC Ecol           (2020) 20:15 

is very sensitive at the lower range and any number of 

diseased cells above 100 corresponds the highest AFB 

symptom score, which would probably guard against 

such overestimation. Another result of our probabilistic 

approach is evidence that the AFB scoring method seems 

not to produce false positives, since for a spore count 

of 0, the probabilistic estimate for AFB symptoms does 

not reach 1, which is the minimum AFB-positive score 

(Table 2: Spores = 0: 0.22 ± 0.05). �is confirms the accu-

racy of the scoring scale and previous findings that high 

spore levels will be detected in symptomatic colonies 

[28].

Our second objective was to clarify the interactive rela-

tionship between colony development and disease devel-

opment. Brood amount and the time post infection were 

similarly important secondary predictive factors affecting 

the relationship between spore counts and symptoms. 

Both are important for the epidemiology of the disease: 

the amount of brood representing new, uninfected hosts 

and time being an obvious important factor in any epi-

demiological disease progression. Symptoms increased 

slowly with increasing brood size and over time. Includ-

ing data from symptomatic colonies only would have 

shown a faster increase. However, we were also interested 

in predicting from the spore counts the probability of 

symptoms developing in colonies that passed visual AFB 

inspection. �e presented models therefore investigated 

the disease development in infected colonies, rather than 

just in symptomatic colonies.

AFB kills progressively more brood as the epidemic 

intensifies, and the consequent shortage of new adult 

bees leads to progressive dwindling and eventual demise 

Fig. 3 Colony size depending on spore count, time of the season, and brood size. Shown are median (with 97, 89, and 67% credible intervals) 

posterior distributions along the full range of observed spore counts. The remaining continuous predictors are held approximately at their mean 

(Brood: 132.6; Time: 48.4), their 1st quantile (Brood: 78; Time: 21), and their 3rd quantile (Brood: 191; Time: 79)
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of the colony. �is study describes this process in greater 

detail, including the behavioural responses of the col-

ony. During normal colony development, and as long as 

there is forage available, more brood leads to more adult 

bees, which then leads to more brood and so on. In these 

experiments however, the amount of brood decreased 

throughout the entire season, rather than being restricted 

to the autumn (which is when the colonies normally 

transition to broodless winter colonies [59]). Admittedly 

we did not had uninfected control colonies the develop-

ment of the brood could be compared to, which would 

have enabled us to estimate the brood loss over the sea-

son entirely attributed to AFB. Nevertheless, since no 

swarming occurred in these colonies during the season, 

we believe this decrease could therefore be (mostly) 

attributed to AFB. However, early in the season the col-

onies responded to AFB symptoms by increasing their 

brood production, shown by a greater increase in smaller 

colonies than in larger colonies (Fig.  4: steeper slope at 

Bees 6 than Bees 12). Nevertheless, later in the season 

this compensation attempt failed and the number of bees 

decreased with increasing bacterial spore levels (Fig. 3). 

�is decrease may have been partly overestimated, due 

to the dilution effect in larger colonies, where the spore 

count per adult bee sample is shared between larger 

numbers of adult bees (see Additional file  2 for more 

explanations and implications for sampling strategy). 

�e compensation failure can be seen more clearly by 

slower increase in brood amount with increasing symp-

toms severity (Fig.  4). Larger amounts of brood fail to 

Fig. 4 Brood size depending on spore count, time of the season, and colony size. Shown are median (with 97, 89, and 67% credible intervals) 

posterior distributions along the full range of observed clinical symptoms. The remaining continuous predictors are held approximately at their 

mean (Bees: 9.2; Time: 48.4), their 1st quantile (Bees: 6.0; Time: 21), and their 3rd quantile (Bees: 12.0; Time: 79)
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hatch into adult workers, which is most clearly illustrated 

by the brood-to-bee ratio. At later time points, the same 

brood amount predicts a larger number of bees (Addi-

tional file 2: Figure S8) and the same number of bees pre-

dicts less brood (Additional file 2: Figure S10).

�e observed increase in the amount of brood in 

response to a stressor has previously been described for 

Varroa destructor infested colonies [14], where larger 

colonies in the autumn were more likely to die the fol-

lowing year. A bee colony is an adaptable unit that uses 

brood rearing as one of the mechanisms to respond to 

external and internal stimuli, through both positive and 

negative feedback loops [60]. A (perceived) deficit in 

either adults or healthy brood can be one of such inter-

nal stimuli, resulting in an elevated brood rearing effort 

in smaller colonies, and thus an elevated brood-to-adult 

ratio. We observed such a compensation attempt, at the 

most relevant time point of the life cycle for the colony 

development (spring), and we could show that this effect 

subsequently carried over to the adult (worker) bee stage. 

Although external factors such as foraging availability 

and quality, determined by the surrounding landscape, 

are also highly influential for brood rearing and overall 

colony strength [61, 62], all colonies in this study were 

located in the same apiary and therefore exposed to the 

same landscape and foraging conditions. Since the num-

ber of bees declined due to the disease we can also expect 

a feedback of lower food intake to further increase dis-

ease prevalence that creates a cycle of stress [63].

Our final objective was to investigate the epidemio-

logical aspect of AFB. In these experiments we verify the 

expectation of the SIR model of epidemiology, but also 

identified peculiarities for the spread of AFB within a 

colony. �e epidemic potential (given by the reproductive 

number  R0) of a disease increases with increasing trans-

mission rates and number of susceptible hosts [42]. �e 

particularities of disease epidemiology in social animals 

was reviewed recently [45]. One theoretical prediction is 

that, contrary to the SIR model, disease prevalence may 

decrease with increasing group size, if the behavioural 

responses limiting disease prevalence or transmission 

become more effective with increasing group size, such 

as grooming behaviour in termites [64]. �e hygienic 

behaviour of honeybees that involves detecting and 

removing infected and asymptomatic brood would also 

affect the SIR model [56], since it systematically reduces 

the amount of infectious material in the colony, while the 

disappearance of brood would of itself act as a stimulus 

for rearing new (uninfected) brood, both of which are 

important parameters for the SIR model. In these experi-

ments, clinical symptoms always increased with brood 

size (Additional file  2: Figure S3), thus favouring the 

traditional SIR model of epidemiology as explanation. 

Although small colony size due to poor nutrition may 

amplify disease susceptibility [63], we do expect that the 

disease will be more severe and increase more over the 

season in larger colonies. �is would mean larger colo-

nies are not more resilient against AFB and will decrease 

in size stronger than smaller ones. Smaller colonies have 

lower expected overwintering survival [65] which could 

lead to an additional colony loss in the next spring.

Contrary to the positive effects of hygienic grooming 

behaviour on disease in termites, our study found a posi-

tive relationship between colony size and disease symp-

toms, implying the hygienic behaviour of brood removal 

is perhaps ineffective at breaking this relationship. In 

fact, the adults carry bacterial spores and serve as vec-

tors infecting new brood. �e broader implication here 

is whether group size facilitates or hinders disease trans-

mission in social animals will depend on what life stage 

is affected by the disease and how this effect translates 

to the other life stages or affect the task allocation [66] 

within eusocial insects.

Conclusions
We provide a novel, and potentially more reliable method 

for quantifying the relationship between P. larvae spore 

counts and AFB symptoms. Furthermore, we showed how 

AFB-caused brood mortality led to progressively fewer 

adult worker bees, eventually tipping the colony into a 

deadly negative spiral from which it could not escape. We 

identified that AFB disease epidemiology in honeybees 

follows the more traditional SIR model of epidemiology. 

We found little evidence of any beneficial effects of the 

hygienic behaviour of brood removal on containing the 

epidemic, especially since adult bees simultaneously also 

act as vectors of the disease. We extend the discussion fur-

ther to larger eusocial societies exhibiting stronger social 

immunity by showing this seems not to apply for American 

foulbrood in honeybees as workers are removing diseased 

brood but also vectoring the disease. �e study therefore 

emphasizes to consider how certain defence strategies 

will manifest themselves in other life stages of the eusocial 

society and shows the direct feedbacks between the epi-

demic over a season and the colony size.

Methods
Experimental design

On March 24th 2014, forty honeybee colonies located in 

an isolated apiary with a history of AFB in Beltsville, MD, 

USA were selected for the experiment (colonies owned 

by USDA-ARS Bee Research Lab). �e experiment was 

originally designed to test the efficacy of a commercial 

honeybee specific lactic acid bacteria preparation against 

AFB relative to two negative controls (a placebo prepara-

tion and a no treatment control) and a positive control 
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(the antibiotic Tylosin) (Additional file 3, [67]). �e colo-

nies were arranged in four rows of ten colonies each, with 

1.5  m distance between individual colonies in each row 

and 1.5 m distance between rows and all entrances facing 

the same direction [68]. All colonies were experimentally 

inoculated with the same dose of Paenibacillus larvae 

spores at to precipitate AFB epidemics with the four treat-

ment groups distributed randomly among the 40 colonies. 

Although no active measures were taken to prevent drift-

ing between the 40 colonies, the uniform inoculation of 

all colonies in the apiary and the spatial randomization of 

the treatment groups means that the effect of drifting bees 

on the AFB development in colonies is both minimal, and 

randomly distributed between the treatment groups. �e 

randomization also means that any potential variability in 

the data caused by the treatment groups can be accounted 

for statistically in our modelling (Additional file  2). �e 

colonies were assessed and adult bees sampled on April 

23rd, and then 21, 37, 51, 79, and 105 days after the first 

assessment. On each sampling occasion approximately 

200 adult bees were collected from the brood chamber per 

colony and the samples were stored at − 20 °C until spore 

estimation in the lab.

Colony assessments, AFB scoring, and spore counting

On each of the six sampling occasions, total colony size, 

the amount of brood and the severity of AFB symptoms 

were evaluated using standard protocols. Colony size 

(hereafter: Bees; with capital first letter) was estimated 

by a cumulative score of the proportion of each frame 

side that was occupied by adult bees [69]. �e amount 

of brood in the colony (hereafter: Brood) was estimated 

by a cumulative score of the number of 5 × 5 cm squares 

on each frame that were occupied by brood [70]. �e 

colony-level severity of AFB (hereafter: Symptoms) was 

estimated by a cumulative score of the visual inspection 

of each brood frame for signs of the disease [38, 71]. Each 

frame was rated using the recommended scale of 0 (no 

visible signs), 1 (fewer than 10 diseased cells), 2 (11–100 

diseased cells), and 3 (more than 100 diseased cells). Sam-

ples of diseased cells were tested in the laboratory to con-

firm the diagnoses. �e spore levels (hereafter: Spores) 

were determined from samples of 100 adult worker bees, 

as described previously [32, 38]. �e raw data consisted 

of P. larvae colony forming units (CFU) and the data are 

presented as CFU per bee (see also Additional file 3). �e 

effect of colony or disease development during the sea-

son is represented in the models by Time.

Data modelling

�e data was obtained from 40 colonies, sampled once 

a month for 6  months during a single bee season (see 

Additional file 1 for original data overview). A Bayesian 

approach was used for the statistical modelling and anal-

yses [72–74]. All variables were continuous counts and 

the analysis is similar to a multiple regression. �e mod-

els were constructed in two steps (see Additional file  3: 

Model building and validation). First, two similar mod-

els with different random structures were compared. In 

step two, we compared eight models for each of the four 

response variables. Each model included the three main 

effects and all combinations of their interactions. �e 

four most important models from step two were then 

used in the analysis by weighting the predictions in order 

to include modulations of one predictor by the other 

two predictors. To understand the effect of each predic-

tor we calculated the posterior of the response variable 

along the full observed range of one explanatory variable 

while keeping the remaining two explanatory variables 

constant, conventionally at their mean/median value. 

For a better understanding of the complex interaction 

between the three continuous predictors two additional 

values were selected for each of the 4 models to investi-

gate interactive effects. For example approximately the 

mean (132.6), 1st (78) and 3rd (191) quantile were used 

for brood (hereafter: Brood 130, Brood 80, Brood 200, 

respectively; see also Additional file  3: Model building 

and validation). Furthermore we selected specific val-

ues of a predictor and summarized the posterior of the 

response variable in order to answer specific questions 

(e.g.: Table 2: Symptoms at Spores level zero: Spores = 0). 

We also calculated three scenarios (Extreme dilution, 

Likely dilution 1, and Likely dilution 2) by subtracting 

the posterior of one set of values from the posterior of 

another set. �e resulting posteriors can be seen as pair-

wise comparisons among these sets. In order to further 

investigate the predictiveness of each main effect com-

pared to the other we subtracted the posteriors from 

each other [72]. �e posterior of each main effect was 

weighted the same way as for the predictions and the 

smaller was subtracted from the larger in order to calcu-

late the posterior of the difference. In all models we used 

minimal informative priors and the posterior was gener-

ated as a Monte Carlo sample (2000 iterations; Hamilton 

Monte Carlo; 1000 warm up, 1000 sampling the chains) 

using STAN [75] handled from R [76] using function 

from McElreath [73].
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