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ABSTRACT 

American Sign Language (ASL) fingerspelling recognition using marker-less 

vision sensors is a challenging task due to the complexity of ASL signs, self-occlusion of 

the hand, and limited resolution of the sensors. This thesis describes a new method for 

ASL fingerspelling recognition using a low-cost vision camera, which is Microsoft’s 

Kinect. A segmented hand configuration is first obtained by using a depth contrast feature 

based per-pixel classification algorithm. Then, a hierarchical mode-finding method is 

developed and implemented to localize hand joint positions under kinematic constraints. 

Finally, a Random Decision Forest (RDF) classifier is built to recognize ASL signs 

according to the joint angles. To validate the performance of this method, a dataset 

containing 75,000 samples of 24 static ASL alphabet signs is used. The system is able to 

achieve a mean accuracy of 92%. We have also used a publicly available dataset from 

Surrey University to evaluate our method. The results have shown that our method can 

achieve higher accuracy in recognizing ASL alphabet signs in comparison to the previous 

benchmarks. 
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1. INTRODUCTION 

American Sign Language (ASL) is a complete sign language system that is widely 

used by deaf individuals in the United States and the English-speaking part of Canada. 

ASL speakers can communicate with each other conveniently hand gestures. However, 

communicating with deaf people is still a problem for non-sign-language speakers. There 

are some professional interpreters that can serve deaf people by real-time sign language 

interpreting, but the cost is usually high. Moreover, such interpreters are often not 

available. Therefore, an automatic ASL recognition system is highly desirable. 

Researchers have been working on sign language recognition systems using 

different kinds of devices for decades. Sensor-based devices, such as cyber-glove [1, 2], 

can be used to obtain hand gesture information precisely. However, these devices were 

difficult to use outside of laboratories because of unnatural user experience, difficulties in 

setting up the system, and high costs. Vision-based devices can provide natural user 

experience, but the gesture recognition accuracy is always limited. The recent availability 

of low-cost, high-performance sensing devices, such as the Microsoft Kinect, has made 

vision-based ASL recognition potentially. As a result, ASL and other hand gesture 

recognition using such devices has raised high interests in the past few years [6, 7].  

The most common approach to recognize hand gestures using vision-based 

sensors is to extract low-level features from RGB or depth images using image feature 

transform, and then employ statistical classifiers to classify gestures according to the 

features. A series of feature extraction methods have been developed and implemented, 

such as Scale-invariant Feature Transform (SIFT) [8, 9], Histogram of Oriented 

Gradients (HOG) [4, 5, 10], Wavelet Moments [11], and Gabor Filters (GF) [12, 13]. 
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Typical classifiers include Artificial Neural Networks (ANN), Support Vector Machines 

(SVM), and Decision Trees (DT). These methods are robust in recognizing a small 

number of simple hand gestures. For example, in [9], 96.23% accuracy was reported in 

recognizing six custom signs using SIFT-based bag-of-features and a SVM classifier. 

However, when it comes to ASL sings, which are complex and large in number, these 

methods are usually not able to achieve desirable accuracies. In [12], a Gabor Filter based 

method was implemented to recognize 24 static ASL alphabet signs, resulting in only 

75% mean accuracy and high confusion rates between similar signs such as "r" and "u" 

(17% confusion rate).  

Other methods have also been developed and implemented to estimate hand poses 

and recognize hand gestures. Lasonas et al. [16] developed a model-based approach that 

can recover hand pose by matching a 3D hand model to the hand’s image. Yeo et al. [18] 

proposed a contour shape analysis method that can recognize 9 simple custom hand 

gestures with 86.66% accuracy. Qin et al. [19] attempted to recognize 8 direction-

pointing gestures using convex shape decomposition method based on the Radius Morse 

function, which achieved 91.2% accuracy. Ren et al. [21] proposed a part-based hand 

gesture recognition method that parsed fingers according to the contour shape of the 

hand. There were 14 hand gestures containing 10 digits and 4 elementary arithmetic 

symbols recognized with 93.2% accuracy. Dominio et al. [20] combined multiple depth-

based descriptors for hand gesture recognition. The descriptors included the hand 

region’s edge distance and elevation, the curvature of the hand’s contour, and the 

displacement of the samples in the palm region. An SVM classifier was employed to 

classify gestures and achieved 93.8% accuracy in an experiment to reconize 12 static 
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ASL alphabet and digit signs. Still, these above methods can only recognize a small 

number (less than 15) of simple gestures (custom signs, ASL digits, or a small portion of 

ASL alphabet signs). 

Shotton et al. [22] proposed a significant approach that segmented the human 

body pixel by pixel into different parts using depth contrast features and a Random 

Decision Forest (RDF) classifier. This method was successfully implemented in the 

Kinect system to estimate human body poses. Keskin et al. [24] adapted Shotton’s 

method to segment hand into parts, and successfully recognized 10 ASL digit signs by 

mapping joint coordinates to know hand gestures, resulted in 99.96% accuracy. Liang et 

al. [25] improved the per-pixel based hand parsing method by employing a distance-

adaptive feature candidates selecting scheme and super-pixel partition-based Markov 

Random Fields (MRF). The improved algorithm achieved 17% (89% vs 72%) higher 

accuracy in per-pixel classification. 

The recent achievements [22, 24, 25] based on the per-pixel classification 

algorithm have shown a high potential of recognizing a large number of complex hand 

gestures, such as the ASL alphabets. Comparing to the low-level image features [8, 9, 10, 

11, 12, 13], the depth comparison features contain more informative descriptions of both 

the 2D shape and the depth gradients in the context of each pixel. The RDF model is also 

robust in multi-class classification on a large dataset. However, the existing per-pixel 

classification algorithm can only segment a hand’s region into parts but does not have the 

capability to recognize hand gestures. Thus, we developed a method to recognize hand 

gestures according to the pixels’ classification.  
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This thesis study focused on the method of recognizing complex hand gestures 

using pixels’ classifications information. We implemented the depth comparison features 

[22] with distance-adaptive scheme (DAS) [25] and the RDF classifier to segment the 

hand’s region into parts. In addition, we proposed a novel hierarchical mode finding 

method to localize joints under kinematic constraints. Then, a hand gesture recognition 

method using high-level features of joint angles was developed, which achieved high 

recognition accuracy to recognize 24 ASL alphabets (except dynamic gestures “j” and 

“z”). We have also evaluated our method using the public dataset [12].  

The paper is presented as follows. Section 2 introduces the process of hand parts 

segmentation. Section 3 explains the methodology of joint localization and gesture 

recognition. Section 4 presents and discusses the experimental results. Section 5 draws 

the conclusions of the study. 
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2. HAND PART SEGMENTATION 

The per-pixel classification method [22] was adapted to segment the hand into 

parts. The input of this process was the depth image of the hand region (Figure 2.1a), and 

the output was the classification label of each pixel (Figure 2.1b and Figure 2.1c). The 

hand was segmented into 11 parts: the palm, 5 lower finger sections and 5 fingertips. The 

proximal phalanges and the intermediate phalanges are merged for the following reasons: 

 The limited resolution of the Kinect sensor made it difficult to segment 

proximal and intermediate phalanges accurately. 

 The positions of the proximal and intermediate phalanges were constrained by 

the corresponding distal phalange’s (fingertip’s) position and the palm’s position, so it is 

not necessary to segment them. 

 A smaller number of parts will result in higher computational efficiency. 

 

 

                          

                (a)                                                 (b)                                                (c)  

Figure 2.1.  Illurstration of hand part segmentation tasks. (a) Input hand depth image.  (b) 

Labeled hand parts of an open palm.  (c) Labeled hand parts of a closed palm. 
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The hand parts segmentation process contains both off-line training and online 

classification; see Figure 2.2. The data acquisition and pre-processing is briefly described 

in Section 2.1. The method of generating training data is explained in Section 2.2. The 

feature used for per-pixel classification is introduced in Section 2.3. The classifier’s 

training and classifying process is described in Section 2.4. 

 

 

 

Figure 2.2.  Hand part segmentation. The training dataset contains depth images and the 

ground truth configurations of the hand’s parts. The classifier trained using the training 

dataset can segment the input depth image into hand parts pixel by pixel. 

 

 



7 

 

2.1. DATA ACQUISITION AND PRE-PROCESSING 

The raw data obtained from the Kinect sensor via the Natural User Interface 

(NUI) contained 512×424 depth data, 1920×1080 RGB data, and 26-joint body skeleton 

data.  

The hand region in the depth image was described using spatial thresholds in X-

axis direction [𝑇𝑥_𝑚𝑖𝑛, 𝑇𝑥_𝑚𝑎𝑥], Y-axis direction [𝑇𝑦_𝑚𝑖𝑛, 𝑇𝑦_𝑚𝑎𝑥] and Z (depth)-axis 

direction [𝑇𝐷𝑒𝑝𝑡ℎ_𝑚𝑖𝑛, 𝑇𝐷𝑒𝑝𝑡ℎ_𝑚𝑎𝑥]. As illustrated in Figure 2.3, the Kinect depth sensor 

located at position 𝑺 has angles of view 𝛼 (horizontal) and 𝛽 (vertical). The resolution of 

the depth image is 𝑅𝑥 𝑏𝑦 𝑅𝑦 pixels. The position of the “hand” joint 𝐻(𝑥, 𝑦, 𝐷) in the 

depth image can be obtained from the Kinect skeleton data (Figure 2.4a). Thus, the 

spatial thresholds are described as: 

 

                                 [𝑇𝑥_𝑚𝑖𝑛, 𝑇𝑥_𝑚𝑎𝑥] = [𝑥 − 𝑑𝑥2 𝑅𝑥2𝐷𝑡𝑎𝑛 𝛼2 , 𝑥 + 𝑑𝑥2 𝑅𝑥/2𝐷𝑡𝑎𝑛 𝛼2]                           (1) 

                                 [𝑇𝑦_𝑚𝑖𝑛, 𝑇𝑦_𝑚𝑎𝑥] = [𝑦 − 𝑑𝑦2 𝑅𝑦/2𝐷𝑡𝑎𝑛 𝛽2 , 𝑦 + 𝑑𝑦2 𝑅𝑦/2𝐷𝑡𝑎𝑛 𝛽2]                            (2) 

                                      [𝑇𝐷𝑒𝑝𝑡ℎ_𝑚𝑖𝑛, 𝑇𝐷𝑒𝑝𝑡ℎ_𝑚𝑎𝑥] = [𝐷 − 𝑑𝑧2 , 𝐷 + 𝑑𝑧2 ]                                    (3) 

 

where 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧are constant dimensions (in millimeters) of the hand’s region. The 

hand’s region in the depth image is shown in Figure 2.4b. The hand’s region in the color 

image can also be obtained by mapping the hand’s region on top of the color image 

(Figure 2.4c).  
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Figure 2.3.  Illustration of the hand region segmentation: the 𝑑𝑥 × 𝑑𝑦 × 𝑑𝑧 hand region at  𝑯(𝑥, 𝑦, 𝐷) was segmented from the 𝑅𝑥 × 𝑅𝑦 depth image obtained using a depth sensor 

located at the position 𝑺. 

 

 

       

                         (a)                                            (b)                                        (c)    

Figure 2.4.  Illustration of data obtained using Kinect. (a) Kinect body skeleton (b) RGB 

color image of the hand region (c) Depth image of the hand region 
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2.2.TRAINING DATASET 

The dataset to train the per-pixel classifier includes two parts: the hand depth 

image and the ground truth classification for each pixel. The depth image of the hand 

region can be obtained directly from the process discussed in Section 2.1. Obtaining the 

ground truth classification for each pixel, however, is not trivial. Segmenting each depth 

image manually would be a massive work. Generating synthetic data [22, 24] requires 

building a high-quality 3D hand model, and simulating the distortion and noise for 

synthetic data is necessary and challenging. Therefore, a color glove was designed in 

order to generate realistic training data conveniently (Figure 2.5). 

 

 

 

Figure 2.5.  Color glove 

 

 

The glove was painted using 11 different colors according to the configuration of 

hand parts. The glove can fit the human hand’s surface perfectly because it is made from 

an elastic material. In this way, not only RGB images with colored hand parts but also 

precise human hand depth images can be obtained using a Kinect sensor. The RGB 
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images were then processed in a hue-saturation-value color space to segment the hand 

parts according to colors. Therefore, the dataset for hand parsing can be generated 

efficiently by performing various hand gestures wearing the glove (Figure 2.6). 

 

 

 

Figure 2.6.  Illustration of hand part segmentation training data. Row A: Raw color 

images of hand wearing the color glove. Row B: segmented hand parts represented using 

different colors.  

 

 

2.3. FEATURE EXTRACTION 

The depth comparison feature [22] were employed to describe the context 

information of each pixel in the hand depth image. The classification of each pixel can 

therefore be determined by the context information. 

For each pixel 𝒙 in the depth image 𝐼, a feature value was described as: 

                                                              𝑓𝑛(𝐼, 𝒙) = 𝐼(𝒙 + 𝒗𝒏) − 𝐼(𝒙)                                            (4) 
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where the feature 𝑓𝑛 was calculated using the depth value contrast between the pixel 𝒙 

and the offset pixel (𝒙 + 𝒗𝑛). A set of features were extracted for each pixel according to 

a certain feature selecting scheme that contains a set of offset vectors {𝒗𝑛}. A large 

number of features insure a comprehensive description of the pixel’s context, but it also 

may result in considerable computational costs.  

 In order to improve the efficiency of feature usage, the distance adaptive scheme 

(DAS) was employed [25]. The hand region pixels are usually clustered in a relatively 

small area of the whole depth image. Thus, depth value contrasts between hand pixels 

and background pixels which are at far away will typically provide very little useful 

information. The contrasts between closer pixels can, however, provide important 

information. Therefore, a feature selecting scheme was generated randomly using a 

Gaussian distribution kernel to focus on context pixels in a closer area. 

 

 

              

(A)                                                         (B)     

Figure 2.7. Illustration of feature-selecting schemes generated through (A) the use of an 

evenly distribute scheme (EDS) and (B) a distance adaptive scheme (DAS). 
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Figure 2.7 illustrates two feature selecting schemes which were generated using 

an evenly distribute scheme (EDS) and a distance adaptive scheme (DAS), respectively. 

The distance adaptive context points were more focused in the hand region. As a result, 

DAS features were more likely to contain detailed information in hand region than EDS 

features. 

 

 

2.4. PER-PIXEL CLASSIFIER 

Labeling pixels according to their corresponding hand part is a typical multi-class 

classification task. A number of statistical machine learning models can be used, 

including the Artificial Neural Networks (ANN), Support Vector Machine (SVM), 

Decision Tree (DT) and Random Decision Forest (RDF) [26, 27]. The RDF has been 

proven effective [22] for human body segmentation using depth contrast features. It is 

robust to outliers, can avoid over-fitting situations in multi-class tasks, and is highly 

efficient in large database processing. Therefore, RDF was selected as the machine 

learning model in this study (Figure 2.8). 

The RDF classifier consists of a set of independent decision trees. At each split 

node of a decision tree, a feature subset is used to determine the split by comparing the 

feature values to corresponding thresholds. At each leaf node, the prediction is given as a 

set of classification probabilities 𝑃(𝑐|𝒇(𝐼, 𝑥)) for each class 𝑐 (Figure 2.8a). The final 

prediction of the forest is obtained by a voting process of all trees (Figure 2.8b). In the 

training of each tree, the dataset is randomly separated into two subsets. Approximately 

2/3 of the data are used for training while the rest are used for error estimation. The 
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training subset is used to collect a statistical histogram of classifications at each leaf 

node. The histogram can therefore be used to estimate the classification probabilities 𝑃(𝑐|𝒇(𝐼, 𝑥)) for data samples which reach the leaf node. The thresholds are optimized to 

find the best split that can minimize the errors in error estimation. 

 

 

 
Figure 2.8.  Illustration of the RDF classifier. (a) Single-tree classification: The pixel that 

has feature vector {𝑓𝑛} is pushed down the tree from 𝑁00 to 𝑁43. A feature subset (e.g., {𝑓𝑎, 𝑓𝑏 … }) is used to determine the split at each split node (e.g., 𝑁10). At each leaf node 

(e.g., 𝑁43), a histogram illustrates the probabilities of all classes. (b) Multi-tree voting: 

The output probability histogram is determined by a voting process that involves all of 

the trees. 
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Each pixel of the hand’s depth image is assigned a set of probabilities 𝑃(𝑐|𝒇(𝐼, 𝒙)) of all classes using the RDF classifier. The probability distribution maps of 

several different classes are illustrated in Figure 2.9a, b, and c. A sample of hand part 

segmentation result is illustrated in Figure 2.9d, where each pixel is colored according to 

the class that has the highest probability. 

 

 

 

Figure 2.9.  Per-pixel classification results. (a), (b) and (c) Probability distribution maps 

of “palm,” “thumb finger,” and “middle finger” respectively (Darker represents higher 

probability). (d) Pixel classifications on a hand depth image. 
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3. GESTURE RECOGNITION 

The RDF-based per-pixel classification process classifies each pixel by assigning 

classification probabilities 𝑃(𝑐|𝒇(𝐼, 𝒙)) for classes representing different hand parts. In 

[24], the joint positions are obtained by the mean-shift local mode-seeking algorithm [28] 

performed on the probability distribution maps of the classes {𝑐}. The hand gestures are 

then recognized by mapping the estimated joint coordinates to know hand gestures. 

However, both noise and misclassifications in the probability distribution maps make it 

difficult to localize joint positions accurately. Moreover, the joint coordinates not only 

can be determined by different gestures but also can be significantly affected by the 

hand’s size and rotational direction. Thus, joint coordinates are not suitable descriptions 

of the hand gestures. In addition, lacking constraints can result in unjustified joint 

positions that make the joint position information unreliable. 

In this section, the approach to recognize hand gestures that can overcome the 

above problems is introduced. The noisy forearm region is cut precisely in Section 3.1. In 

Section 3.2, the mean-shift mode finding algorithm is improved by adapting the searching 

window size with the target hand part size. A confidence function is also employed to 

evaluate the reliability of the hand part localization. In Section 3.3, the method to 

constrain joint locations based on the hierarchical kinematic structure of the hand is 

proposed. Thus, the joint localization algorithm is more robust to outlier clusters in the 

probability distribution maps. In Section 3.4, the joint angle features are used to describe 

the hand gestures, thus the feature is invariant to the hand’s size and rotational directions. 
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3.1.  FOREARM CUTTING 

As discussed in Section 2.1, the data preparation process segments the hand 

region from the background using spatial and depth thresholds, whereas the forearm 

region usually cannot be partitioned with the hand region precisely. The remaining 

forearm might introduce error in the hand parsing process (Figure 3.1 first row). 

 

 

                      

                                    

Figure 3.1.  Illustration of forearm cutting. First row: noisy hand part segmentation with 

forearm region. Second row: hand region after forearm cutting process 

 

 

Therefore, a forearm cutting algorithm was developed to solve this problem. The 

cutting line between the palm region and the forearm region can be determined using 

three main factors: the position of the palm, the relative direction of the forearm to the 

palm, and the distance from the palm center to the cutting line. 

The cutting line is obtained using the palm region classification probability 

distribution map {𝑃(𝑐|𝒇(𝐼, 𝒙)} (Figure 3.2a). A 2D Gaussian filter with a large standard 



17 

 

deviation is applied to blur the probability distribution map, so that the pixel with the 

maximum intensity can be considered as the palm center 𝑶 (Figure 3.2b). There could be 

multiple local maximum points. In this case, 𝑶 is defined as the maximum point that is 

closest to the “hand” joint given by the Kinect skeleton. Then, a circle with a center 𝑶 

and a certain radius 𝑟 is used to represent the palm region (Figure 3.2c). Next, the 

number 𝑀 of pixels outside the palm region circle is counted at each direction (from 0 to 

2π). Thus, the largest blob (blue) above the threshold 𝑇 can be considered as the forearm 

region, and the peak position “𝑷” is used to determine the direction of the arm (Figure 

3.2d). Finally, the cutting line 𝑙 that is vertical to 𝑶𝑷 and tangent to circle 𝑶 can be 

determined (Figure 3.2e). 

Therefore, the forearm region can be partitioned from the hand region using the 

cutting line (Figure 3.1 second row). 

 

 

 

Figure 3.2.  Illustration of forearm region cutting method. (a) Probability distribution map 

of the “palm” region. (b) The Gaussian-blurred probability distribution map with the 

maximum intensity at  𝑶. (c) Hand region represented using the “palm circle” 𝑶. (d) 

Histogram of pixels outside the “palm circle”. (e) The cutting line is vertical to 𝑶𝑷 and 

tangent to the “palm circle” 𝑶. 
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3.2.  JOINT LOCALIZATION 

The hand part segmentation process assigns the classification probabilities 𝑃{𝑐|𝒇(𝐼, 𝒙)} of each pixel 𝒙 for each class (hand part) 𝑐. Typically, a multi-modal 

probability distribution map would be obtained for each hand part (e.g., the probability 

distribution map of the “thumb” finger in Figure 3.3a) from the per-pixel classification 

algorithm. Thus, the global mass center of the probability distribution map is not suitable 

to represent the joint position. Therefore, the mean-shift local mode-seeking algorithm 

[28] was adapted to estimate the joint positions. The mean function can be described as: 

 

                                                       𝒎(𝒙) = ∑ 𝐾(𝒙𝒊 − 𝒙)𝒙𝑖𝑁𝑖=1∑ 𝐾(𝒙𝑖 − 𝒙)𝑁𝑖=1                                                    (5) 

 

where {𝒙𝑖}𝑖𝜖[1,𝑁] is the set of neighborhood pixels, and 𝑁 is the number of pixels in the 

searching window. The algorithm starts with an initial estimate 𝒙, and sets 𝒙 ← 𝒎(𝒙) 

iteratively until 𝒎(𝒙) converges. A weighted Gaussian kernel 𝐾 is used as follows: 

                                                       𝐾(𝒙 − 𝒙𝑖) = 𝐼(𝒙𝑖)2𝑤𝑖𝑐𝑒−𝜎‖𝒙−𝒙𝑖‖                                         (6)                                                                   𝑤𝑖𝑐 = 𝑃(𝑐|𝒇(𝐼, 𝒙𝑖))                                                      (7) 

 

where 𝜎 is a constant parameter to determine the bandwidth of the Gaussian function, 𝑤𝑖𝑐 

is the weight of the pixel 𝒙𝑖 in the image 𝐼. 𝐼(𝒙𝑖)2 was used to estimate the pixel area in 

the world coordinate system, which is related to the depth of the pixel. 

In order to find the global mode, the dimension-adaptive method is used. The 

searching window is initialized at the center of the probability distribution map with a 
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large size 𝑁0 = 𝑎0 × 𝑏0 (Figure 3.3b). Then, the window shrinks in each iteration (Figure 

3.3c,d) until the size is approximately similar to the size of the hand part (Figure 3.3 e). 

The final window size 𝑁𝑘 = 𝑎𝑘 × 𝑏𝑘 and the shrinking rates 𝑎𝑘𝑎𝑘−1 and 
𝑏𝑘𝑏𝑘−1 are constant 

parameters determined by the size of each hand part. 

 

 

 
Figure 3.3.  Mean-shift based joint localization process. (a) Probability distribution map 

of a hand part. (b) Initial searching window 𝑎0 × 𝑏0. (c), (d) Mean-shift and window 

shrinking process. (e) Final window 𝑎𝑘 × 𝑏𝑘 that localized the global mode. 

 

 

In some cases, some hand joints may be invisible or unreliably classified. 

Therefore, a confidence score 𝑆𝑐 of the hand part 𝑐 is given by averaging all the pixel 

weights 𝑤𝑖𝑐 in the final searching window. Joints that have poor scores will be considered 

as “missing” joints. The location of a “missing” joint is assigned by the location of its 

parent joint. Specifically, the locations of missing fingertips are assigned to the locations 

of their corresponding fingers; and the locations of missing fingers are assigned to the 

location of the palm center. 

The X and Y coordinates 𝑥𝑐, 𝑦𝑐 of the joint  𝑱𝑐 in the world coordinate system can 

be obtained by transforming the center position of the final searching window from the 
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image coordinate system to the world coordinate system. The Z coordinate is defined 

using an average value in the final searching window 𝑊𝑐 as 

 

𝑧𝑐 = ∑ 𝐼(𝒙)𝒙𝜖𝑊𝑐 𝑢(𝐼(𝒙))∑ 𝑢(𝐼(𝒙))𝒙𝜖𝑊𝑐                                                          (8) 

𝑢(𝒙) = {1,     𝐼(𝒙) ∈ [𝑚 − 𝜀, 𝑚 + 𝜀]0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 (9) 

𝑚 = 𝑀𝑒𝑑𝑖𝑎𝑛({𝐼(𝒙)|𝒙 ∈ 𝑊𝑐)                                                         (10) 

 

where 𝐼 is the depth image, 𝒙 is the pixel’s position vector, and 𝜀 is a constant threshold 

value. The function 𝑢(𝒙) is used to determine if the depth of the pixel 𝒙 is valid, where 

the depth values which are larger than  𝑚 + 𝜖 of smaller than 𝑚 + 𝜖 are considered as 

noise. 

 

 

3.3.  KINEMATIC CONSTRAINTS 

As discussed in Section 3.2, the joint positions can be obtained using the mode-

seeking algorithm. However, sometimes the mode-seeking process cannot localize the 

correct joint position because the pixels of neighborhood hand parts are likely to be 

misclassified. For example in Figure 3.3a, besides the global mode located at the “thumb” 

position, there is another significant cluster located at the “index finger” position that is 

possibly to be recognized as the “thumb”. Some other examples of joint localization 

errors are shown in Figure 3.4. 
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Figure 3.4.  Joint localization errors 

 

 

A kinematic constraining method is developed to solve this problem. The concept 

is employing kinematic probability 𝑃(𝑐|𝒙𝑖) to penalize the weights 𝑤𝑖𝑐 of pixels that 

cannot fit the kinematic structure of the hand, i.e., Equation 7 becomes: 

                                                           𝑤𝑖𝑐 = 𝑃(𝑐|𝒙𝑖) ∙ 𝑃(𝑐|𝒇(𝐼, 𝒙𝑖))                                          (11) 

 

The kinematic probability distribution {𝑃(𝑐|𝒙𝑖)} is obtained from the training 

dataset generated by the color glove, which contains a large number of segmented hand 

images (e.g., Figure 2.6 Row B) for different gestures. The probability distribution map is 

obtained by 

 

𝑃(𝑐|𝒙𝑖) ∝ ∑ 𝛿(𝐿(𝒙𝑖,𝑗) = 𝑐)𝑀𝑗=1 𝑀                                              (12) 

 

where 𝐿(𝒙𝑖,𝑗) is the class label of pixel 𝑥𝑖 in the training image j, and 𝑀 is the number of 

training images. The statistical distribution 
∑ 𝛿(𝐿(𝒙𝑖,𝑗)=𝑐)𝑀𝑗=1 𝑀  is obtained by counting the 

number of pixels 𝒙𝑖,𝑗 from all 𝑀 images which belong to class 𝑐 (Figure 3.5a). The 
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kinematic probability distribution map 𝑃(𝑐|𝒙𝑖) (Figure 3.5b and c) is obtained by 

smoothing the statistical distribution. 

 

 

 

Figure 3.5.  Generate kinematic probabilities. (a) Statistical distribution. (b) Kinematic 

probability distribution . (c) Kinematic probability distribution shown in a grey level 

image. 

 

 

The kinematic probability distribution maps are generated hierarchically (Figure 

3.6).  Firstly, the “palm” joint is localized under the constraints by the kinematic 

probabilities 𝑝(𝐶𝑝𝑎𝑙𝑚|𝒙𝑖) (Figure 3.6a). Secondly, the lower fingers’ kinematic 

probabilities {𝑃(𝑐𝑓𝑖𝑛𝑔𝑒𝑟1|𝒙𝑖) … 𝑃(𝑐𝑓𝑖𝑛𝑔𝑒𝑟5|𝒙𝑖)} are obtained on the reference coordinate 

system of the palm, where the origin is the center of the palm, and the x-axis and y-axis 

are taken to be horizontal-right and upright respectively. Then the lower fingers can be 

localized (Figure 3.6b). Thirdly, the kinematic probabilities of five fingertips {𝑃(𝑐𝑡𝑖𝑝1|𝒙𝑖) … 𝑃(𝑐𝑡𝑖𝑝5|𝒙𝑖)} are obtained on the reference coordinates system of the five 

fingers respectively (Figure 3.7), where the origins are the lower finger joints, the y-axis 

are along the directions from the palm to the lower finger joints, the x-axis is 
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perpendicular to the y-axis (Figure 3.6c). Thus, the fingertips can be localized (Figure 

3.6d). 

 

 

 

Figure 3.6.  Hierarchical kinematic constraints. (a) Kinematic probabilities of the palm 

region. (b) Localize palm and obtain kinematic probabilities of the lower fingers. (c) 

Localize the lower fingers and obtain kinematic probabilities of the fingertips. (d) 

Localize fingertips. 

 

 

 

Figure 3.7.  Kinematic probability distribution maps of the fingertips, where the reference 

coordinates are shown in red. (a) Thumb fingertip. (b) Index fingertip. (c) Middle 

fingertip. (d) Ring fingertip. (e) Pinky fingertip. 

 

 

Using the method above, the hand joints can be constrained in a smaller region 

that is kinematically possible. Especially for the fingertip joints, which are highly 
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constrained by the positions and directions of their parent lower finger joints, the 

hierarchical constraints can effectively improve the joint localization accuracy (Figure 

3.8). As the kinematic probabilities 𝑃(𝑐|𝒙𝑖) are obtained by smoothing the statistics 

distribution, the smoothing methods and parameters can affect the results. In general, the 

smoother the kinematic probability distribution maps are, the more likely the joints may 

be localized at wrong positions. However, less smooth kinematic probability distribution 

maps result in poor gesture classification accuracy because the kinematic probabilities 𝑃(𝑐|𝒙𝑖) could overwhelm the effects of the classification probabilities 𝑃(𝑐|𝑓(𝐼, 𝒙𝑖). 

 

 

 
Figure 3.8.  Joint localization results. (Row A) Localized joints without constraints (Row 

B) Localized joints with constraints 
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3.4.  GESTURE RECOGNITION 

The 3D joint positions  {𝑱𝑐1 , 𝑱𝑐2 … 𝑱𝑐11} in the world coordinate system can be 

obtained by using the joint localization method discussed in Section 3.2. Thus, the hand 

gesture can be described using a joint angle feature vector (see Figure 3.9). 

 

 

 

Figure 3.9. Joint angle features 

 

 

The feature vector contains the angles between neighborhood lower 

fingers {𝜃1, 𝜃2, 𝜃3, 𝜃4}, the angles between each pair of lower and upper fingers {𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9}, and the angles between neighborhood upper fingers {𝜃10, 𝜃11, 𝜃12, 𝜃13}. Using the feature vector {𝜃1, 𝜃2 … 𝜃11} as the input, the hand gesture 

as the ground truth, a hand gesture classifier can be trained to recognize pre-defined hand 
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gestures. The 24 ASL alphabet signs recognized using our RDF gesture classifier is 

shown in Figure 3.10 as examples.  

 

 

 

Figure 3.10.  Examples of ASL alphabet recognition. For each hand gesture, the localized 

joints and the “skeleton” are shown using different colors on the grey background of the 

hand’s silhouette. 
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4. EXPERIMENTAL RESULTS 

In order to evaluate the developed method, we have done three parts of 

experiments as described. First, the RDF-based per-pixel classification results are shown 

in Section 4.1. We tested the per-pixel classifier using the dataset generated using the 

color glove. Second, in Section 4.2, we compared our method with the method developed 

by Keskin et al. [24] on our dataset. Third, we used the public dataset from Surrey 

University [12] to compare our method with other benchmark methods under the same 

conditions in Section 4.3. 

 

 

4.1.  PER-PIXEL CLASSIFICATION 

Our training dataset contains 3,000 images generated using the color glove, of 

which 2,000 images were picked randomly for training and the rest were used for 

validation. The resolution of the training image was normalized to 256×256. For each 

pixel, 100 depth comparison features were extracted. In order to reduce the unnecessary 

memory storage cost, only pixels with valid depth value were used for training, so the 

total number of training vectors was about 10 million. Still, it cost 28.3 gigabytes RAM 

to perform the training process. Three random trees that had 20 levels each were 

generated. The training process took about 3 hours using a workstation with the E5 

processor and 32 GB RAM. We tested the EDS and DAS feature selecting methods on 

different datasets varying in size. The accuracy corresponding to the training sample 

amount is shown in Figure 4.1. 
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The accuracy on the 10 million dataset experiment using distance adaptive feature 

selecting scheme (DAS) was 88.96%, comparing to 81.34% using the evenly distribute 

feature selecting scheme (EDS). These results shows that the adaption of DAS have 

significantly improved the accuracy of per-pixel classification.  

In addition, according to the graphic curve, the classification accuracy could still 

increase if the size of training database were expanded. However, because of the 

limitations of the resource and time, and considering the high accuracy we have already 

achieved, there were no further attempts done to increase the size of the dataset. 

 

 

 

Figure 4.1.  Classification accuracy corresponding to database size (log scale) 

 

 

4.2.  ASL FINGERSPELLING RECOGNITION 

In order to evaluate the performance of the developed system for ASL sign 

recognition, 72,000 depth images of a hand were generated using the Kinect, of which 
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48,000 of the data were used for training and the rest 24,000 were used for testing. The 

gestures included 24 alphabet gestures (excluding the dynamic signs “j” and “z”). The 

signed alphabets followed the standard from the ASL University website [14] (Figure 

4.2) with a variety in distances and view angles from the Kinect sensor.  

 

 

 
Figure 4.2.  ASL Fingerspelling Alphabets 

 

 

The experiments contained the cross validation results using multiple methods. 

Firstly, the joint was localized using the dimension-adaptive mean-shift method without 

constraints. The gestures were classified using a RDF classifier according to the feature 

vector of the 13 joint angles (RDF-A). Secondly, the hierarchical kinematic constrains 
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were implemented to evaluate the improvements (RDF-A+C). Thirdly, the method 

introduced in [24] was also implemented to compare with our method. The joints were 

localized using the basic mean-shift algorithm. The searching windows were initialized at 

different positions to obtain several local modes. Thus, the local mode with the highest 

maximum is regarded as the joint. The hand gestures were recognized by mapping the 

joint position coordinates to the known gestures (RDF-P). The results obtained using the 

above three methods above are shown in Figure 4.3. 

 

 

 

Figure 4.3.  ASL alphabets recognition results 

 

 

As the size of training dataset increases, the accuracy of alphabet recognition 

keeps increasing and then approaches a constant after the training samples exceed 1,000 

images for each ASL sign (24,000 in total).  
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The accuracy using the RDF-P method was 66.32%, the accuracy using the RDF-

A method was 83.65%, and the RDF-A+C method achieved an overall accuracy of 

91.85%. The system can recognize hand gestures at 7 fps without parallel computing, 

while the per-pixel classification took about 90ms to process each frame. According to 

the experimental results in [22], it is clear that GPU aided parallel computing will 

significantly improve the performance of per-pixel classification. Therefore, the system 

has a high potential of meeting the requirements of real-time applications. 

 

 

Table 4.1.  Confusion matrix obtained using the RDF-A+C method. Each column of the 

matrix represents the instances in a predicted class, while each row represents the 

instances in an actual class. 

 

 

 

A B C D E F G H I K L M N O P Q R S T U V W X Y

A 0.96 0.01 0.01 0.01 0.01

B 0.91 0.02 0.01 0.02 0.01 0.01 0.01

C 0.01 0.89 0.01 0.01 0.02 0.02 0.01 0.01 0.02

D 0.01 0.91 0.01 0.01 0.01 0.01 0.01 0.01 0.01

E 0.01 0.92 0.05 0.01

F 0.02 0.95 0.01 0.01

G 0.02 0.85 0.04 0.01 0.01 0.02 0.01 0.01 0.01 0.01

H 0.01 0.01 0.05 0.87 0.01 0.01 0.01 0.01 0.01

I 0.02 0.93 0.01 0.03

K 0.01 0.01 0.01 0.89 0.02 0.01 0.01 0.01 0.01 0.01

L 0.01 0.95 0.01 0.01 0.01

M 0.01 0.04 0.01 0.87 0.02 0.01 0.02

N 0.01 0.01 0.01 0.02 0.88 0.01 0.01 0.04

O 0.01 0.01 0.02 0.94 0.01

P 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.80 0.02 0.01 0.01 0.01

Q 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.89

R 0.01 0.01 0.01 0.95 0.01

S 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.91

T 0.02 0.02 0.01 0.01 0.01 0.01 0.90

U 0.01 0.01 0.96

V 0.01 0.01 0.95 0.02

W 0.01 0.01 0.01 0.96

X 0.01 0.01 0.95

Y 0.02 0.96
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4.3.  EXPERIMENTS ON A PUBLIC DATASET 

To evaluate and compare our method with previous method by other researchers, 

a public dataset [12] was used. The dataset contained 24 ASL fingerspelling signs (not 

including “J” and “X”) performed by 5 subjects, where 500 samples of each sign were 

recorded for every subject. The subjects were asked to sign facing the sensor and to move 

their hand around while keeping the hand shape fixed. This dataset was generated using 

Kinect V1 and had high variability.  

Since the dataset contained some very noisy data, and the hand region was not 

segmented from the background, some pre-processing of the data was necessary. Firstly, 

the hand region was segmented from the background using depth thresholds, and smaller 

noisy regions were deleted. Secondly, the depth images were normalized using the depth 

value of the palm’s center, and then all depth images were converted to 256×256 in data 

size. Since the lenses of Kinect V1 and Kinect V2 are different, the normalize parameters 

was then adjusted so that the hand sizes in the public dataset and in our dataset are 

similar. The normalized parameters for the 5 subjects are the same to keep the variety of 

hand sizes. The dataset did not contain hand segmentation configurations, thus, we used 

the same per-pixel classifier trained using our dataset.  

Then, following the evaluation method in [12], the hand pose classifier was 

trained using half of the public dataset, and the rest data were used for validation.  

Figure 4.4 illustrates the comparison of the recognition accuracy for each alphabet 

between the results obtained using the Gabor filter-based hand shape feature and random 

forest classifier (GF+RF) [12] and the results obtained using the RDF-A+C method we 

developed. The recognition accuracy has been significantly improved by using our 
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method especially for complex and confusing gestures such as “m”, “e”, “n” ,”o” and “s”, 

“t”.  The mean accuracy of RDF-A+C method was 88% versus 75% using the GF+RF 

method reported in [12]. 

We compared our results obtained using RDF-A+C with the results obtained by 

implementing the ensemble of shape function descriptor (ESF) and multi-layer random 

forest (MLRF) (ESF+MLRF) [29]. The RDF-P method is also compared on the public 

dataset. The comparison of mean accuracy achieved using the different methods is shown 

in Table 4.2. The confusion matrix using the RDF-A+C method on the public dataset is 

shown in Table 4.3. 

  

 

 

Figure 4.4.  Comparison of the precision for each alphabet sign using the RDF-A+C 

method (Red) and the Gabor Filter-based method [12] (Blue). 
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Table 4.2. Accuracy comparison on Surrey University’s dataset 

Method Mean Accuracy 

GF+RF [12] 75% 

ESF+MLRF [29] 77% 

RDF-P [24] 59% 

RDF-A+C (our method) 88% 

 

 

 

Table 4.3.  Confusion matrix obtained using RDF-A+C method on the public dataset 

[12]. Each column of the matrix represents the instances in a predicted class, while each 

row represents the instances in an actual class. 

 

 
 

  

A B C D E F G H I K L M N O P Q R S T U V W X Y

A 0.83 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.07

B 0.88 0.01 0.03 0.02 0.01 0.01 0.01 0.02

C 0.90 0.01 0.01 0.01 0.01 0.01 0.01 0.01

D 0.93 0.02 0.02

E 0.01 0.01 0.02 0.78 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.04 0.01 0.01

F 0.05 0.90 0.01 0.01

G 0.01 0.01 0.02 0.73 0.08 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01

H 0.01 0.08 0.82 0.01 0.01 0.01 0.02 0.01 0.01

I 0.01 0.01 0.90 0.01 0.01 0.01 0.03

K 0.02 0.01 0.01 0.01 0.03 0.02 0.74 0.01 0.01 0.02 0.01 0.03 0.03 0.01 0.01 0.01 0.02

L 0.01 0.01 0.95 0.01 0.01

M 0.01 0.01 0.01 0.01 0.01 0.76 0.08 0.01 0.01 0.05 0.03

N 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.08 0.71 0.01 0.02 0.02 0.08

O 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.85 0.02 0.02 0.01 0.01 0.01

P 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.69 0.09 0.01 0.01 0.01 0.01 0.04

Q 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.08 0.80 0.01 0.01 0.01 0.01

R 0.01 0.01 0.01 0.02 0.82 0.05 0.02 0.01 0.02

S 0.02 0.01 0.03 0.01 0.01 0.01 0.05 0.02 0.01 0.01 0.77 0.04

T 0.08 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.09 0.01 0.01 0.04 0.64 0.01

U 0.01 0.06 0.85 0.06 0.01

V 0.00 0.01 0.03 0.04 0.88 0.03 0.01

W 0.03 0.01 0.01 0.01 0.04 0.89

X 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.02 0.02 0.01 0.84

Y 0.04 0.01 0.92
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5. CONCLUSION 

This paper describes a new method that we have developed for American Sign 

Language (ASL) recognition. By using data obtained from the depth-based Kinect sensor, 

the per-pixel classification algorithm was used to segment a human hand into 11 parts. 

We employed a latex color glove instead of a commonly used synthetic 3D hand model 

in order to generate realistic per-pixel training data. The joint positions were obtained 

using a dimension-adaptive mean-shift mode-finding algorithm. To improve the joint 

localization accuracy, we employed kinematic probabilities in the mode-finding 

algorithm to constrain joints within possible motion ranges. The assemblies of 13 key 

angles between the finger joints were used as the feature vectors to represent hand 

gestures. An RDF gesture classifier was implemented in the end to recognize ASL signs. 

The system achieved a mean accuracy of 92% on a new dataset containing 75,000 

samples of 24 static alphabet signs after training with 50,000 samples of these alphabet 

signs. In comparison with a method developed at Surrey University using the same 

dataset that is publically available, our method was shown to have higher mean accuracy 

(88% vs. 75%) in recognizing ASL signs. Since ASL signs represent complex hand 

gestures, the capability of ASL fingerspelling implies that our method has a great 

potential of being applicable to other applications that involve use of hand gestures and 

their recognition by low-cost vision cameras, such as commanding industrial robots on a 

factory floor or remote communication with healthcare assistants from a hospital room. 
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