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Abstract. Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos

software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a

common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices

and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type,

enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large

sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples the

algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without

changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and

sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-

precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.
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1. Introduction

Amesos2 and Belos are packages in the Trilinos

project [31] written in ANSI C++. Together they

provide a complete suite of parallel solvers for large

sparse linear systems. Amesos2,1 a direct methods

package, leverages the software investment of several

third-party sparse matrix factorization codes by of-

fering an easy-to-use, run-time – configurable inter-

face to all of them. It supersedes Trilinos’ Amesos

package [49,50]. It improves on Amesos by decou-

pling the interface whenever possible from the lin-

ear algebra objects, so that it accepts arbitrary sparse

matrix and vector types. Amesos2 also includes its

own “type-generic” factorization for matrices whose

entries have any type satisfying a minimal “Scalar”

interface. This includes real and complex types, as

well as extended-precision floating-point types such

as double-double, quad-double [33] and ARPREC [4].

This lets users compute highly accurate factorizations

of ill-conditioned matrices.

*Corresponding author: Mark Hoemmen, Sandia National Lab-

oratories, P.O. Box 5800, Albuquerque, NM 87185-1320, USA.

E-mail: mhoemme@sandia.gov.
1Amesos (αµεσoς) is a Greek word that means “direct”.

Belos2 supersedes Trilinos’ AztecOO package [30],

which in turn wraps the Aztec library of iterative

solvers [58]. Unlike Aztec and many similar libraries,

Belos completely decouples the numerical algorithms

from the underlying linear algebra objects. This de-

coupling makes Belos algorithms agnostic of data lay-

out in memory, the distribution of data over proces-

sors, and invocations of parallel operations such as re-

ductions. As a result, Belos’ performance can track

today’s rapidly evolving computer architectures with-

out effort. Using Trilinos’ Tpetra package to imple-

ment linear algebra operations, Belos can already ex-

ploit hybrid distributed-memory (via MPI) and shared-

memory parallelism, using either CPU-based or GPU-

based compute nodes.

Belos implements both application-aware and ar-

chitecture-aware algorithms. Application awareness

means making the algorithm faster by changing the

problem, to one that applications want to solve: linear

systems with multiple right-hand sides, or sequences

of closely related linear systems. Architecture-aware

means that the algorithms reflect how computer ar-

chitectures have changed: rather than floating-point

2Belos (βελoς) is a Greek word that means “arrow”, symbolizing

“straight” or “linear”.
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arithmetic operations, the most expensive operations

in terms of performance and energy consumption are

communication and data movement [38,60]. This, in

part, also involves changing the problem: “block” al-

gorithms for solving multiple right-hand sides simulta-

neously enable use of faster computational kernels that

amortize communication and data movement costs.

Furthermore, applying mixed-precision algorithms to

solve the problem promises equivalent accuracy but

better performance, due to reduced memory bandwidth

requirements [12].

This paper gives an overview of the capabilities of

the Amesos2 and Belos packages. It explains how their

modular software architecture makes it easier for their

developers to provide application- and architecture-

aware algorithms with maximal code reuse. Amesos2

and Belos rely almost entirely on other Trilinos pack-

ages or on third-party libraries for implementations of

basic distributed linear algebra operations, precondi-

tioners, and sparse factorizations. Thus, we do not in-

clude performance data in this paper, but refer readers

to the bibliography for details on the performance of

the various Trilinos packages and third-party software.

Section 2 of this paper motivates the development

and features of Amesos2 and Belos. The following

Section 3 outlines some ways in which Amesos2 and

Belos can and do cooperate. In Section 4, we sum-

marize the sparse factorization codes which Amesos2

makes available. We describe Amesos2’s software ar-

chitecture in Section 5. Likewise, in Section 6, we sum-

marize new Krylov subspace algorithms implemented

in Belos, and in Section 7, we describe Belos’ software

architecture. Finally, in Section 8, we discuss future

work.

2. Motivation

Amesos2 and Belos both implement functionality

which partially exists in the Trilinos packages Ame-

sos and AztecOO, respectively. Thus, it is important

for us to justify our effort, both in software engineering

and performance terms. In this section, we show how

these improvements justify one another: better soft-

ware engineering makes continuing performance im-

provements easier.

2.1. Independence from the linear algebra library

Many numerical algorithms can operate abstractly

on data objects, without needing to know their inter-

nal details. This is, in fact, a main attraction of Krylov

subspace methods. They do not need to read or mod-

ify the entries of the matrix A, preconditioners, or vec-

tors; they only need to apply A or a preconditioner to

a vector, compute dot products, and compute weighted

sums of vectors. However, many implementations of

Krylov subspace methods do not exploit this flexibility.

For example, Aztec and its C++ wrapper, AztecOO,

allow a user-defined matrix or preconditioner, but im-

pose specific requirements on the representation and

layout of entries in the vectors. Similarly, the “reverse

communication” interface that was described in [25],

only abstracts away the operation of the matrix A or

a preconditioner on a vector, but still requires direct

access to the vector’s elements. This imposition not

only limits software flexibility, it limits performance,

because it prevents the linear algebra library from op-

timizing the representation of data and the compu-

tation of basic operations. This is especially impor-

tant in this time of rapidly evolving computer archi-

tectures, as exploiting intranode parallelism and man-

aging data placement become increasingly important

(see, e.g., [3,38]). Separating linear algebra data repre-

sentation and computational kernels from the abstract

numerical algorithm frees mathematicians from track-

ing rapid developments in computer architectures, and

gives their software a longer useful life. For a more de-

tailed discussion of the value of separating linear alge-

bra objects from abstract numerical algorithms, see [7].

2.2. Maximize code reuse

Popular scientific codes such as LAPACK [2] stay in

use for decades, and take generations of highly trained

scientific programmers to maintain. This suggests that

design practices should favor code reuse, modularity,

and generality. Amesos2 and Belos have followed this

principle in their modular software architecture, de-

scribed in Sections 5 and 7, respectively. Learning how

to specialize Amesos2’s or Belos’ C++ traits inter-

face takes much less time than reimplementing numer-

ical algorithms for each linear algebra library. The ab-

stract traits interface lets Amesos2 and Belos develop-

ers express algorithms in as mathematical a language

as possible, since scientific programmers prefer “de-

scrib[ing] the algorithms in a mathematical language

as opposed to a computer language” [9]. The use of

C++ traits classes with compile-time specializations

to access basic linear algebra operations means that the

“abstraction penalty” per kernel invocation at run time

may be zero (with successful inlining), and is at most
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one function call (for the entire kernel). Compile times

do increase with C++ templates. However, a few min-

utes suffice to build and link an entire solver stack

(including multiple distributed linear algebra imple-

mentations, solvers, and preconditioners) from scratch,

with full optimization enabled, including a complete

suite of tests. Writing code that works without changes

for data of any Scalar type takes a little extra care,

but saves effort over maintaining N copies of the code

for each of N Scalar types. Finally, the run-time cus-

tomization capability of Amesos2 and Belos helps pro-

grammers avoid programming. Zero lines of code have

zero bugs.

2.3. Application- and architecture-aware algorithms

Many users might ask for a routine that solves a sin-

gle linear system Ax = b. However, their application

actually calls for solving many linear systems, either:

• with the same matrix, but many right-hand sides

at once (AX = B, i.e., A[x1, . . . ,xn] = [b1,

. . . , bn]),

• with the same matrix, but many right-hand sides,

only available in sequence (Axi = bi, i =

1, 2, . . .), or even

• sequences of closely related linear systems (A +

∆Ai)xi = bi, i = 1, 2, . . .).

This is often the case in applications performing pa-

rameter studies, propagation of uncertainty in forc-

ing terms, and nonlinear time-dependent analysis [45].

Solving these higher-level problems, instead of just

solving one linear system at a time, often results in

more efficient algorithms. We call such algorithms ap-

plication aware. Belos implements application-aware

algorithms for solving the above problems: block and

pseudoblock iterative methods for AX = B, and recy-

cling iterative methods for sequences of closely related

linear systems Axi = bi or (A + ∆Ai)xi = bi. For

more details, see Section 6.

Architecture-aware algorithms, in turn, have a de-

sign influenced by an understanding of how much dif-

ferent operations cost on modern computer architec-

tures. Data movement and communication between

parallel processors is much slower than floating-point

arithmetic on modern machines, and also consumes

much more energy. Block and pseudoblock solvers are

more architecture-aware than standard iterative meth-

ods, because they can use more efficient computa-

tional kernels that amortize communication costs over

multiple vectors. Standard algorithms are stuck with

slower kernels, such as SpMV (sparse matrix–vector

multiply) and vector–vector operations. Block meth-

ods can use kernels like SpMM (sparse matrix times

multiple dense vectors) and block vector operations.

SpMV has performance dominated by data movement,

in particular by reading the entries of the sparse ma-

trix; SpMM amortizes this cost over multiple vectors

(see, e.g., [27,36,37,39,42]). The cost of vector–vector

operations (vector sums and inner products) is domi-

nated by global parallel reductions and by reading and

writing the vector entries. Blocking up the vector oper-

ations amortizes the communication cost and enables

use of faster BLAS 3 operations (see, e.g., [14,24,34,

54,55]). In the case of block solvers, architecture and

application awareness coincide happily.

Another way in which Amesos2 and Belos are archi-

tecture aware, is in mixed-precision algorithms. Mem-

ory bandwidth is a scarce resource on modern pro-

cessors. Reading and writing lower-precision floating-

point numbers takes less bandwidth, but can sacri-

fice accuracy. Mixed-precision algorithms can regain

much of this accuracy, by using more precise floating-

point types to improve the result of lower-precision

computations [12]. Amesos2 and Belos support mixed-

precision computation natively. Both packages’ inter-

faces accept matrices and vectors with entries of arbi-

trary “Scalar” type. Furthermore, they allow linear al-

gebra objects and solvers with different Scalar types

to coexist in the same program. Many solver libraries

are written “abstractly” on the data type, but that ab-

straction is implemented via a C typedef rather than

by a C++ template parameter. Using a typedef means

that Scalar is fixed to a single type when the library

is built. Amesos2 and Belos have no such restriction.

This enables mixing objects and algorithms of different

floating-point precisions in the same execution unit.

This can be exploited for the development of novel

“adaptive-precision” algorithms. We describe an ex-

ample of this in Section 7.5.

2.4. Package-specific motivations

Amesos2 inherits the same motivations as Amesos,

namely to provide an interface that makes it easy to

call any of several sparse direct factorization codes

[50]. No one direct linear solver is best overall, even

for problems in the same class. For example, see

[21] for one comparison between supernodal and non-

supernodal direct solvers. Each direct solver has many

configuration options, which are represented in incom-

patible ways. Most importantly, sparse factorizations



244 E. Bavier et al. / Amesos2 and Belos: Direct and iterative solvers for large sparse linear systems

are some of the most complicated codes to implement
because of their intrusive manipulation of sparse ma-
trix structure. A reasonable description of these manip-
ulations, even with minimal optimization, takes most
of a recently published book [18]. Thus, it is better to
leverage that software investment, rather than reimple-
ment sparse factorizations with the desired interface
and features. Nevertheless, sparse factorizations have
the potential for abstractness, since they interact with
the structure and entries of the sparse matrix in limited
ways. Amesos2 exploits this via its C++ traits inter-
face that allows the library to accept any sparse ma-
trix data type, with high-performance specializations
for certain types.

Belos inherits many of the same motivations as
AztecOO, in that it provides a suite of iterative lin-
ear solvers. However, Belos distinguishes itself from
AztecOO in that these solvers are implemented in a
framework that promotes interoperability, extensibility
and reusability. A basic implementation of any Krylov
subspace method rarely takes more than half a page
to describe (see, e.g., [6]). A more abstract view of
any Krylov subspace method can break down this im-
plementation into several components: subspace gen-
eration (iteration), orthogonalization, stopping crite-
ria (status testing), and the linear problem. An appro-
priately designed framework enables a user or devel-
oper to vary any of these components with little or no
need to rewrite an entire solver. Belos’ framework pro-
vides these algorithmic components (see Section 7.4)
and a C++ traits interface for linear algebra (see Sec-
tion 2.1) to address the needs of today’s user and adapt
to the needs of tomorrow’s user.

3. Cooperation of Amesos2 and Belos

The most common way in which sparse direct and
iterative solvers cooperate involves using the former
to construct preconditioners for the latter. Amesos2’s
complete and incomplete factorizations can be used di-
rectly as preconditioners, as the block solver in a do-
main decomposition preconditioner, such as block Ja-
cobi, or as smoothers within a multilevel algebraic pre-
conditioner. Plugging any preconditioner into Belos re-
quires minimal effort to implement the traits interface.
Amesos2 and Belos can also cooperate in novel ways,
for example in the new “hybrid” direct-iterative Schur
complement-based block solver ShyLU [46]. Finally,
Amesos2 and Belos can use the same linear algebra ob-
jects (sparse matrices and vectors). This makes it easy
to compare direct and iterative solvers, or even to use
a direct solver as a “backup method” for robustness.

4. Algorithms provided by Amesos2

Amesos2’s users have different application-specific
use cases for direct solvers. The three common use
cases come from parallel scalability considerations.
First, users with large ill-conditioned matrices require
distributed-memory parallel direct solvers in order to
solve the problem accurately. Second, hybrid direct-
iterative solvers like ShyLU [46] require a shared-
memory parallel direct solver. Finally, smoothers
within a multilevel preconditioner require a sequen-
tial direct solver. In order to meet the needs of all
users, Amesos2 supports all three direct solvers from
the SuperLU family: sequential SuperLU [22], mul-
tithreaded SuperLU-MT [23] and distributed-memory
parallel SuperLU-Dist [40]. We also provide an inter-
face to the multithreaded direct solver PARDISO [51].
In addition, Amesos2 includes the direct solver KLU
[21]. KLU is particularly effective for matrices on
which supernodal factorizations do not perform well,
such as matrices from circuit simulations. It also serves
as a fall-back in case no external solvers are available.

Amesos2 provides access to mixed-precision algo-
rithms in two ways. First, its native KLU solver is tem-
plated on the type of matrix entries, so it can factor
and solve sparse linear systems whose entries have any
Scalar type. Second, Amesos2’s interface exposes the
Scalar types supported by each third-party solver li-
brary, by mapping the user’s data type to a compati-
ble type of equal or greater precision which the library
supports. Amesos2 allows users to access solvers for
different precisions at the same time, without requiring
recompilation.

5. Amesos2 software architecture

5.1. Amesos2 design assumptions

Amesos2’s primary design goal is to be a single in-
terface for multiple third party direct solvers. Ame-
sos2 assumes that the direct solvers implement four op-
erations: preordering, symbolic factorization, numeric
factorization and triangular solve. While this does not
require that the direct solver provide a separate inter-
face to all four stages, Amesos2 may exploit a four-
stage interface to improve performance. For example,
while some direct solvers combine the preordering and
the symbolic factorization into one phase, Amesos2
can replace the solver’s native preordering with a more
efficient method. For example, Zoltan’s hypergraph
partitioning [11] is useful as a fill-reducing ordering for
unsymmetric matrices. When the direct solvers have
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the preordering as an option, it may be more efficient to
use our ordering methods and skip the native ordering
of the solvers.

Amesos2 is designed to be used with different types
of sparse matrices and dense vectors. Amesos2 as-
sumes that the matrices and vectors are heavyweight
objects, which the user passes in either by pointer or by
reference-counted pointers from the Teuchos memory
management classes [8]. Depending on the third-party
direct solver being used, Amesos2 might copy the ma-
trix and vector once into the format required by the
direct solver. It holds the symbolic and numeric fac-
torization and the internal data structures of the direct
solver, until the input matrix itself is reset to a new ma-
trix or the Amesos2 Solver object itself is destroyed.

5.2. Typical Amesos2 usage

The flowchart in Fig. 1 summarizes several differ-
ent use cases for Amesos2 solvers. Amesos2 supports
many different use cases, in part because it is designed
with both novice and expert users in mind. Novice
users usually have one relatively small linear system
and want to solve it with a direct linear solver. This
simple case can be achieved with two lines of code
in Amesos2: Create a solver instance of specific type
with the matrix, left-hand side (solution) vector and the
right-hand side vector, then call the solve() method
on the solver instance. Amesos2 does the local or-
dering and the symbolic and numeric factorization if
needed.

Assuming that a sparse matrix A of type MAT and
input and output vectors X , respectively, B of type
MV already exist, here is code illustrating the simplest
solve case, using SuperLU as the underlying solver.

Teuchos : : RCP<Amesos2 : : So lve r <MAT,MV>> s o l v e r =

Amesos2 : : c r e a t e <MAT,MV> ( " S u p e r l u " ,A, X, B ) ;

s o l v e r −>s o l v e ( ) ;

RCP, one of the Teuchos Memory Management
classes, represents a reference-counted “smart” point-
er. Both Amesos2 and Belos depend heavily on these
classes to manage shared ownership of heavyweight
data safely and efficiently. From now on, all examples
will begin with the following code:

us ing Teuchos : : RCP ;

RCP<Amesos2 : : So lve r <MAT,MV> > s o l v e r =

Amesos2 : : c r e a t e <MAT,MV> ( " S u p e r l u " ,A, X, B ) ;

More sophisticated users can separate the preorder-
ing and symbolic and numeric factorization steps.

After each step, the solver can report useful infor-

mation, like the total number of stored (structurally

nonzero) entries in the L and U factors. This is useful

for computing memory usage and comparing the ef-

fectiveness of different preorderings and solver algo-

rithms.

s o l v e r −>n u m e r i c F a c t o r i z a t i o n ( ) ;

Amesos2 : : S t a t u s s o l v e r _ s t a t u s =

s o l v e r −> g e t S t a t u s ( ) ;

s t d : : c o u t

<< " Number o f e n t r i e s s t o r e d i n L+U: "

<< s o l v e r _ s t a t u s . getNnzLU ( )

<< s t d : : e n d l ;

s o l v e r −>s o l v e ( ) ;

Expert users of Amesos2 require finer-grained con-

trol of local ordering, symbolic and numeric factor-

ization. They will often compute the preordering and

symbolic factorization once for a sequence of matri-

ces with the same nonzero pattern. When the matrix

values have changed, the numeric factorization is then

computed and used, one or more times, to solve the

linear problem. Almost all direct solvers support this

use case without any changes. Amesos2 supports this

as well; its interface lets users change the matrix and

specify that the next call to solve() will perform the

numeric factorization on the new matrix using the ex-

isting preordering and symbolic factorization. Further-

more, individual steps of a direct solve can be called

explicitly for this new matrix. Most direct solvers sup-

port using the same solver instance for solving multiple

linear systems. For examples, see the Amesos2 source

directory.

Amesos2 accepts two optional sets of parameters.

The first set of parameters controls Amesos2 itself and

supports the most common options among the direct

solvers. The second set of parameters correspond to

the specific solver to use. While it is not a simple

task to support every option supported by every direct

solver and maintain that across multiple versions of the

solvers, the infrastructure is in place to do that. The list

of parameters will be maintained based on the needs of

Amesos2 users. Here is an example of a simple solve

with SuperLU that sets parameters:

us ing Teuchos : : P a r a m e t e r L i s t ;

us ing Teuchos : : p a r a m e t e r L i s t ;

/ / C r e a t e a P a r a m e t e r L i s t t o ho ld s o l v e r

/ / p a r a m e t e r s

RCP< P a r a m e t e r L i s t > amesos2Params =

p a r a m e t e r L i s t ( " Amesos2 " ) ;
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Fig. 1. Flowchart of different Amesos2 use cases for solving linear systems. Dotted connectors denote optional steps. We write AX = B, rather

than Ax = b, to show that each “solve” invocation may be applied to multiple right-hand sides.

P a r a m e t e r L i s t& s u p e r l u P a r a m s =

amesos2Params−> s u b l i s t ( " SuperLU " ) ;

s u p e r l u P a r a m s . s e t ( " Trans " , "TRANS" ) ;

/ / S o l v e w i t h A^T

/ / Don ’ t e q u i l i b r a t e t h e s y s t e m b e f o r e s o l v e .

s u p e r l u P a r a m s . s e t ( " E q u i l " , f a l s e ) ;

/ / Use t h e " n a t u r a l " column o r d e r i n g .

s u p e r l u P a r a m s . s e t ( " ColPerm " , "NATURAL" ) ;

s o l v e r −>s e t P a r a m e t e r s ( amesos2Params ) ;

s o l v e r −>s o l v e ( ) ;

5.3. Interface to matrix and vector types

Amesos2 maximizes code reuse with compile-time
polymorphism. One way in which Amesos2 does so

is in its support for various sparse matrix and dense
vector types. Amesos2’s Solver interface has two tem-

plate parameters: Matrix and Vector. The former rep-

resents a sparse matrix, and the latter a collection of
one or more dense vectors, which are the right-hand
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side(s) and solution vector(s). Amesos2 accepts dif-

ferent matrix and vector types via compile-time spe-

cializations of adapters: MatrixAdapter for Matrix, and

MultiVecAdapter for Vector. Solvers in turn use these

adapters to access the data, either directly if the solver

supports Matrix and Vector’s native data structures, or

by copy otherwise.

One important motivation for Amesos2’s compile-

time polymorphic architecture is to support linear sys-

tems with more than two billion unknowns, as that was

a significant limitation of Amesos. This requires sup-

port for integer indices larger than 32 bits. Another

motivation for Amesos2 is support for mixed-precision

computations. Trilinos’ Tpetra package of distributed

linear algebra objects helps Amesos2 achieve both

goals. Tpetra templates its matrix and vector classes on

both the “Scalar” (type of matrix or vector entries) and

“Ordinal” (integer index) types. Tpetra objects may

have several template parameters, but Amesos2 hides

this complexity by templating its Solver interface on

only the Matrix and Vector types.

This feature also simplifies adding support for new

matrix and vector types. For example, a PETSc sparse

matrix [5] can be supported just by specializing the

MatrixAdapter template class. The matrix adapter

only requires methods to access a compressed row

(or column), matrix attributes like the dimensions,

a method for describing the matrix’s distribution over

distributed-memory processes, and an “import” meth-

od to redistribute the matrix if the solver requires

it. Once this adapter is written all solvers supported

by Amesos2 will work with the adapter. Amesos2

currently includes adapters for the following Trilinos

sparse matrices:

• Epetra_CrsMatrix and Epetra_Row-

Matrix,

• Tpetra::CrsMatrix and Tpetra::Row-

Matrix

and the following Trilinos dense vectors:

• Epetra_MultiVector,

• Tpetra::MultiVector.

5.4. Interface to solvers

Adding an adapter for a new solver in Amesos2

takes about as much effort as adding a new matrix or

vector adapter. The third party solver’s interface must

at least separate the numeric factorization and solve

into two steps. Even LAPACK’s dense LU factoriza-

tion does this with the GETRF, respectively, GETRS

routines, and Amesos2 thus even offers an LAPACK

interface. (It first makes the sparse matrix dense, which

might be a reasonable choice for a sufficiently small

matrix.) However, Amesos2 can expose more opti-

mizations if the third party solver provides a separate

interface for all four steps mentioned above. In addi-

tion, the third-party solver must have a way to get and

set the solver-specific parameters and to check if the

matrix type is compatible with the solver. Amesos2

Solver objects must be templated on the matrix and

vector types and use the matrix and vector adapters

to convert the matrix and vector objects to the data

structures required by the third-party direct solver. As

a result, the latter will support all the matrices and

vectors Amesos2 supports without any specializations

(provided the third party solver is able to handle all the

“Scalar” and “Ordinal” types).

6. Algorithms implemented in Belos

Belos provides implementations of several Krylov

subspace methods, listed in Table 1 along with the

C++ class that exposes each method to users. For

symmetric positive definite systems, Belos implements

several variants of CG (the Method of Conjugate Gra-

dients of Hestenes and Stiefel [32]). For symmetric

indefinite linear systems, Belos offers MINRES, the

Minimum Residual method of Paige and Saunders

[43]. Belos includes many variants of GMRES (the

Generalized Minimal Residual method of Saad and

Schultz [48]), Flexible GMRES [47] and a Transpose-

Free Quasi-Minimal Residual (TFQMR, of Freund

[28]) implementation. Finally, Belos has an implemen-

tation of Paige and Saunders’ LSQR iteration [44] for

solving linear and damped least-squares problems, as

well as possibly singular nonsymmetric linear systems.

Belos does not claim to offer a complete suite of

Krylov subspace methods. Developers have focused on

methods most trusted by domain experts for their ro-

bustness, in particular on variants of GMRES. Belos

particularly has only two short-recurrence methods for

nonsymmetric linear systems – TFQMR and LSQR –

despite the large number of such methods available

in the literature. This is because users consider them

less robust than GMRES. The decreasing amount of

memory expected per node on future large-scale paral-

lel computers (see, e.g., [38]) may make nonsymmet-

ric short-recurrence solvers more attractive in the fu-

ture. The Belos solver framework enables rapid devel-
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Table 1

List of Krylov subspace methods implemented in Belos, along with the type of algorithm and the Solver-

Manager subclass which provides the method

Algorithm Type of solver SolverManager subclass

CG Single RHS BlockCGSolMgr

Block CG Block BlockCGSolMgr

Pseudoblock CG Pseudoblock PseudoBlockCGSolMgr

Recycling CG Recycling RCGSolMgr

PCPG Seed PCPGSolMgr

Block GMRES Block BlockGmresSolMgr

Block FGMRES Block BlockGmresSolMgr

Pseudoblock GMRES Pseudoblock PseudoBlockGMRESSolMgr

Recycling GMRES (GCRO-DR) Recycling GCRODRSolMgr

Hybrid Block GMRES Seed GmresPolySolMgr

MINRES Single RHS MinresSolMgr

Transpose-Free QMR (TFQMR) Single RHS TFQMRSolMgr

LSQR (least squares) Single RHS LSQRSolMgr

Note: “Single RHS” means that the algorithm can only solve for one right-hand side at a time.

opment of any desired iterative linear solver, so adapt-
ing to application- and architecture-focused needs is
facilitated by its design.

6.1. Block vs. pseudoblock solvers

Block iterations are mathematically different al-
gorithms from their single-vector counterparts. This
means they have different algorithmic performance
characteristics, such as the number of iterations to
meet the same convergence criteria. Many Belos users
want the computational performance benefit of block
iterative methods, with the same convergence behav-
ior as single-vector methods. Belos provides this with
its “pseudoblock” solvers. These execute the single-
vector algorithm for each right-hand side in “lock
step,” by applying the matrix A and any precondition-
ers to all vectors in a block at once and using block
vector operations. If one or more of the linear systems
meet the convergence criteria before the rest, the solver
“deflates” them by constructing a view of the uncon-
verged right-hand sides, and continuing the iteration on
those. Belos provides two pseudoblock solvers: Pseu-
doblock GMRES and Pseudoblock CG.

6.2. Recycling solvers

Krylov subspace recycling attempts to accelerate the
convergence for a sequence of linear systems

(A+ ∆Ai)xi = bi, i = 1, 2, . . . ,

through the judicious selection and use of a projec-
tion subspace between one solve and the next [45].

This technique has proven effective for sequences of
closely related linear systems, like those found in mod-
eling fatigue and fracture via finite element analysis.
Recycling is also effective when performing restart-
ing within one linear system [41,56]. Belos provides
two single-vector recycling solvers: Recycling GM-
RES (GCRO-DR) and Recycling CG. Sandia National
Laboratories and Temple University are currently col-
laborating on a Block Recycling GMRES algorithm to
be deployed in Belos [53,61].

6.3. “Seed” solvers

Krylov subspace methods that attempt to accelerate
the convergence for a sequence of linear systems

Axi = bi, i = 1, 2, . . . ,

where the right-hand sides are not available all at once,
are called “seed” solvers. These solvers either use a
random vector or b1 to create a subspace or polyno-
mial filter to be applied during each solve to acceler-
ate convergence. This subspace and polynomial can be
updated from one solve to the next. Recycling solvers
can also be considered seed solvers, as they could eas-
ily be applied to sequences of linear systems where
the matrix does not change. However, Belos provides
two seed solvers specifically for this use case: Hybrid
Block GMRES and PCPG.

6.4. Least-squares solvers

Least-squares solvers can always solve Ax = b in
a least-squares sense, even if the matrix A is singular
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or the system is inconsistent. Belos provides the least-

squares solver LSQR [44], which computes a mono-

tonically increasing lower bound of the condition num-

ber of A, defined as ‖A‖‖A†‖, where A† is the pseu-

doinverse of A. This solver is specifically useful for ex-

perimentation with mixed-precision algorithms, which

will be discussed in Section 7.5.

7. Belos software architecture

7.1. Belos design assumptions

Belos’ design goal is to offer a generic interface

to a collection of iterative methods for solving large,

sparse linear systems. For algorithm developers, Be-

los provides algorithmic components that facilitate

extensibility and reusability with the express intent

of simplifying the implementation of complex algo-

rithms. Incorporated into the Belos design is the as-

sumption that iterative methods can be decomposed

into several components, including: orthogonaliza-

tion (OrthoManager), stopping criteria (Status-

Test), subspace construction (Iteration), and

a solution strategy (SolverManager). The linear

problem, itself, is described by a separate class

(LinearProblem) that incorporates necessary pre-

conditioning or scaling of the linear problem, as de-

fined by the user. These algorithmic components will

be discussed in Section 7.4.

Belos also makes several assumptions regarding the

underlying linear algebra objects. These have been in-

corporated into the design of the operator and vector

traits interfaces. Similar to Amesos2, Belos assumes

that the operators and vectors are heavyweight objects,

meaning that sparse matrices and preconditioners are

time-consuming to compute and memory for copies

of vectors is limited. This is handled with minimally

error-prone explicit memory management, first by us-

ing Trilinos’ Teuchos memory management classes [8]

as handles for heavyweight objects, and second by sup-

porting both read-only and read-write views of vectors.

Belos’ operator and vector traits interface has been

simplified through some parallelism assumptions.

First, the concrete linear algebra objects are expected

to handle all explicit communication, so that the imple-

mentation of any algorithm looks as much like math-

ematics as possible. Furthermore, the result of any re-

duction operation (dot product, norm, etc.) on a vector

or set of vectors (multivector) is expected to be repli-

cated over all participating distributed-memory pro-

cesses. This means that Belos only exploits intranode
shared-memory parallelism if the concrete linear al-
gebra objects do. Belos does not introduce its own
shared-memory parallelism for the small dense lin-

ear algebra operations required by many Krylov meth-
ods. Furthermore, rounding errors in reduction opera-
tions may result in situations where different processes

take divergent paths through the solver. Heterogeneous
nodes (see [10]) or the use of nondeterministic shared-
memory parallelism may exacerbate this problem. This
has not yet proven an issue in practice.

7.2. Typical Belos usage

The flowchart in Fig. 2 shows the standard use case
for Belos solvers. A Belos SolverManager requires
two items for construction: a LinearProblem ob-

ject and a set of options that are stored and passed in
using a ParameterList. The latter, a class in the
Teuchos Trilinos package, maps option names to op-
tion values. It allows hierarchical nesting, where an op-

tion’s value may itself be a ParameterList. A user
can generate this parameter list in two ways: construct
a minimal list containing a subset of options with non-

default values, or acquire the solver’s default options
by calling getValidParameters() on the solver
object and then modify that list as desired. The Lin-
earProblem object contains the matrix A, the right-

hand side(s) B, the initial guess(es) X , and a left,
right or both (split) preconditioner(s). The loop in the
flowchart returning to circle “A” shows that the same

SolverManager object and parameters can solve
multiple linear systems in sequence. This avoids ex-
pensive reconfiguration and rebuilding of state. In ad-
dition, some Belos solvers, such as the recycling (Sec-

tion 6.2) and seed (Section 6.3) solvers, may save state
computed from the first solve in order to accelerate
subsequent solves. This behavior happens without user

intervention, though users can invoke the solver’s re-
set() method to clear out this state for recomputa-
tion by the next solve() call.

Here follows a simple example of how to use

GMRES to solve a given linear system AX =

B with a right preconditioner M . The matrix A

and preconditioner M have type OP, representing

an operator such as Epetra_Operator or Tpe-
tra::Operator, and the vectors have type MV, rep-
resenting a vector such as Epetra_MultiVector
or Tpetra::MultiVector. We simplify the ex-

ample by using a “factory” to create the solver, though
you can also create specific solvers directly by invok-
ing their constructors (Listing 1).
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Fig. 2. Flowchart of typical Belos usage for solving linear systems. Dotted connectors denote optional steps. We write AX = B, rather than

Ax = b, to show that each “solve” invocation may be applied to multiple right-hand sides.

7.3. Interface to matrices, vectors and

preconditioners

The Belos solver framework uses C++ templates

for compile-time polymorphism. All of the algorithmic

components have three template parameters: a scalar

type (Scalar), a multivector type (MV), and an opera-

tor type (OP). The scalar type identifies the type of en-

tries in the multivector and operator. The multivector

type is used to represent the right-hand side(s) (B) and

the solution vector(s) (X). The operator type is used

to represent the matrix A and any preconditioner(s).

Each operator is expected to interact with the multivec-

tor type MV by taking a MV reference as input, and

writing the result of applying the operator (or its trans-

pose or conjugate transpose, if supported) to another

MV reference.

Rather than requiring the specific scalar, multi-

vector, and operator types to support operations di-

rectly, Belos uses a C++ traits interface to implement

compile-time polymorphism. The scalar traits are pro-

vided by the ScalarTraits class in the Teuchos

package of Trilinos, and the multivector and opera-

tor traits are provided through Belos’ MultiVec-

Traits and OperatorTraits class, respectively.

Belos currently provides implementations of Multi-

VecTraits and OperatorTraits for linear alge-

bra objects from three different Trilinos packages: Epe-

tra, Tpetra, and Thyra. In addition, users may special-

ize the traits interface themselves. Finally, a run-time

polymorphic interface is available through Belos’ own

MultiVec and Operator abstract interfaces.

7.4. Belos algorithmic components

The Belos design enables the implementation of

any iterative method using algorithmic components,

including: the linear problem (LinearProblem),

orthogonalization (OrthoManager), stopping crite-

ria (StatusTest), subspace construction (Itera-
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us ing Teuchos : : P a r a m e t e r L i s t ;

us ing Teuchos : : p a r a m e t e r L i s t ;

us ing Teuchos : : RCP ;

us ing Teuchos : : r c p ; / / Save some t y p i n g

/ / The e l l i p s e s r e p r e s e n t t h e code you would n o r m a l l y use t o

/ / c r e a t e t h e s p a r s e m a t r i x , p r e c o n d i t i o n e r , r i g h t −hand s i d e ,

/ / and i n i t i a l g u e s s f o r t h e l i n e a r s y s t e m AX=B t o s o l v e .

RCP<OP> A = . . . ; / / The s p a r s e m a t r i x / o p e r a t o r A

RCP<OP> M = . . . ; / / The ( r i g h t ) p r e c o n d i t i o n e r M

RCP<MV> B = . . . ; / / R igh t−hand s i d e o f AX=B

RCP<MV> X = . . . ; / / I n i t i a l g u e s s f o r t h e s o l u t i o n

/ / Make an empty new parame te r l i s t .

RCP< P a r a m e t e r L i s t > s o l v e r P a r a m s = p a r a m e t e r L i s t ( ) ;

/ / S e t some GMRES p a r a m e t e r s .

/ /

/ / "Num B l o c k s " = Maximum number o f K r y l o v v e c t o r s t o s t o r e .

/ / T h i s i s a l s o t h e r e s t a r t l e n g t h . " B lock " he re r e f e r s t o

/ / t h e a b i l i t y o f t h i s p a r t i c u l a r s o l v e r ( and many o t h e r B e l o s

/ / s o l v e r s ) t o s o l v e m u l t i p l e l i n e a r s y s t e m s a t a t ime , even

/ / though we are o n l y s o l v i n g one l i n e a r s y s t e m i n t h i s example .

s o l v e r P a r a m s −>s e t ( "Num Blocks " , 4 0 ) ;

s o l v e r P a r a m s −>s e t ( "Maximum I t e r a t i o n s " , 4 0 0 ) ;

s o l v e r P a r a m s −>s e t ( " Convergence T o l e r a n c e " , 1 . 0 e −8);

/ / C r e a t e t h e GMRES s o l v e r u s i n g a " f a c t o r y " and

/ / t h e l i s t o f s o l v e r p a r a m e t e r s c r e a t e d above .

Belos : : S o l v e r F a c t o r y < S c a l a r , MV, OP> f a c t o r y ;

RCP< Belos : : SolverManager < S c a l a r , MV, OP> > s o l v e r =

f a c t o r y . c r e a t e ( "GMRES" , s o l v e r P a r a m s ) ;

/ / C r e a t e a L inearProb lem s t r u c t w i t h t h e problem t o s o l v e .

/ / A , X , B , and M are p a s s e d by ( smar t ) p o i n t e r , n o t c o p i e d .

RCP< Belos : : L inea rProb lem < S c a l a r , MV, OP> > problem =

r c p ( new Belos : : L inea rProb lem < S c a l a r , MV, OP> (A, X, B ) ) ;

problem−>s e t R i g h t P r e c (M) ;

/ / T e l l t h e s o l v e r what problem you want t o s o l v e .

s o l v e r −>s e t P r o b l e m ( problem ) ;

/ / A t t e m p t t o s o l v e t h e l i n e a r s y s t e m . r e s u l t == B e l o s : : Converged

/ / means t h a t i t was s o l v e d t o t h e d e s i r e d t o l e r a n c e . T h i s c a l l

/ / o v e r w r i t e s X w i t h t h e computed a p p r o x i m a t e s o l u t i o n .

Belos : : ReturnType r e s u l t = s o l v e r −>s o l v e ( ) ;

/ / Ask t h e s o l v e r how many i t e r a t i o n s t h e l a s t s o l v e ( ) t o o k .

c o n s t i n t n u m I t e r s = s o l v e r −>g e t N u m I t e r s ( ) ;

Listing 1. A simple example to use GMRES to solve a given linear system AX = B with a right preconditioner M .

tion) and a solution strategy (SolverManager).

We briefly summarize each of these essential compo-

nents here.

7.4.1. Linear problem

A LinearProblem object is a container for op-

erator A, the right-hand side(s) B, the initial guess(es)

X , and a left, right or both (split) preconditioner(s).

This class defines a minimum interface that can be ex-

pected of all linear problems by the classes that will

work with these problems. The methods provided by

this interface are generic enough to define any lin-

ear problem that is Hermitian or non-Hermitian. The
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LinearProblem class provides a default implemen-

tation of these methods, but a user can modify this us-

ing run-time polymorphism.

7.4.2. Orthogonalization

Orthogonalization and orthonormalization are com-

monly performed computations in iterative linear solv-

ers and can be implemented in a variety of ways.

The OrthoManager class separates the Itera-

tion from this functionality. The OrthoManager

defines a small number of orthogonalization-related

operations, including a choice of an inner product.

The OrthoManager interface has also been extended,

through inheritance, to support orthogonalization and

orthonormalization using matrix-based inner products

in the MatOrthoManager class.

Belos provides several different orthogonalizations,

which offer trade-offs between accuracy and perfor-

mance. Users can experiment with different orthogo-

nalization methods and their parameters by setting run-

time options in the solver parameter list. The orthogo-

nalization methods provided by Belos work on blocks

of vectors, and are valid for both Euclidean [55] and

non-Euclidean [57] inner products. Belos supports this

in two ways: by passing an inner product operator B

(such that 〈·, ·〉B , and B is Hermitian positive definite)

to a MatOrthoManager and by changing the inner

product method (MvTransMv) in the interface to the

multivector.

Belos provides four concrete orthogonalization

managers:

• DGKSOrthoManager – performs “Classical

Gram–Schmidt (CGS)” with a DGKS correc-

tion [15];

• ICGSOrthoManager – performs “Iterated

Classical Gram–Schmidt” (ICGS);

• IMGSOrthoManager – performs “Iterated

Modified Gram–Schmidt” (IMGS);

• TsqrMatOrthoManager – performs “Tall

Skinny QR (TSQR)” as the normalization step

[35].

TSQR provides better performance and accuracy than

MGS or CGS when normalizing blocks with multiple

columns. However, TSQR is currently only available

for the four Scalar types supported by LAPACK (real

and complex IEEE 754 single- and double-precision

floating-point values). Furthermore, TSQR currently

only supports orthogonalization with respect to the Eu-

clidean inner product, though algorithms exist for the

general inner product case and can be implemented

given sufficient interest. For solvers that support dif-

ferent orthogonalization methods, users may select the

method and its parameters (such as reorthogonalization

thresholds) via the ParameterList for the solver of

their choice.

7.4.3. Stopping criteria

Belos provides a generic interface called Sta-

tusTest for stopping criteria. Solvers construct im-

plementations of this interface to control termination

of the subspace construction (Iteration). Users can

also provide custom stopping criteria by implement-

ing their own StatusTest subclass and passing an

instance of it to the solver. Belos provides classes

for composing StatusTest instances, so that the

resulting composite test passes if Boolean combina-

tions of the constituent tests passed (optionally with

short-circuiting semantics to avoid unnecessary test

evaluations). A StatusTest instance “passes” when

it thinks the iteration should stop. This may indi-

cate positive results (e.g., the method has converged

to the desired relative residual tolerance) or nega-

tive results (e.g., the maximum number of iterations

has been reached). The solution strategy, implemented

by the SolverManager, must determine the rea-

son for the termination of the Iteration by inter-

preting the results of the various stopping criteria, and

must know how to proceed. Belos’ design assumes

that the StatusTest is evaluated redundantly over

all distributed-memory processes and that the returned

Boolean value is the same on all processes. However,

if inconsistent parallel convergence tests are necessary,

Belos’ modular design makes it easy to change conver-

gence tests to require agreement between all proces-

sors before terminating the iteration.

7.4.4. Subspace construction

The Iteration class provides generic compu-

tational kernels that do not have the intelligence to

determine when to stop the iteration, what the lin-

ear problem of interest is, or how to orthogonalize

the basis for a subspace. The intelligence to perform

these three tasks is, instead, provided by the Sta-

tusTest, LinearProblem and OrthoManager

objects, which are passed into the constructor of an

Iteration. This allows each of these three tasks to

be modified without affecting the basic solver itera-

tion. When combined with the status and state-specific

methods provided by the Iteration class, this gives

the user a large degree of control over linear solver it-

erations.
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7.5. Enabling mixed-precision algorithms

Solving problems with the least precision possible

saves both storage and memory bandwidth, which are

scarce resources on modern computers and likely to

become scarcer. However, an ill-conditioned matrix A

might be numerically rank-deficient at lower preci-

sions. This may affect accuracy of computed precondi-

tioners and certain linear solvers. LSQR’s exact condi-

tion number lower bound enables a new kind of algo-

rithm: one which dynamically increases floating-point

precision until it knows it can solve the problem ac-

curately. LSQR can detect and correct this problem by

first attempting to solve the linear system at the lowest

precision possible (e.g., IEEE 754 single precision). If

it finds that the condition number of A is greater than

the inverse of machine precision at the current working

precision, then A is numerically rank deficient at work-

ing precision. An outer loop around LSQR can then

increase working precision and solve again, increasing

precision until it finds one at which A is numerically

full rank. The user can then confidently use that preci-

sion for successive solves with A, using either LSQR

or another method.

8. Future work

8.1. Amesos2 plans

Amesos2 plans to continue expanding software sup-

port for different matrix and vector representations

found within Trilinos. We also may add support for

matrix representations from other software packages

such as PETSc [5] or Hypre [26] if the need arises.

Most direct solvers support a simple compressed row

or column format. We plan to support this data struc-

ture as well. Amesos2 also needs an interface to

more direct solvers, such as PaStiX [29], MUMPS

[1] and UMFPACK [16,17,19,20]. Finally, we plan

to support Cholesky factorization with an interface to

CHOLMOD [13]. This improves upon the previous

package Amesos, which lacked a Cholesky factoriza-

tion capability.

8.2. Belos plans

Belos also offers a modular framework for research

and development of new, as well as known, iter-

ative solvers. It currently provides only two short-

recurrence iterative methods for nonsymmetric linear

systems, namely Transpose-Free QMR (TFQMR) [28]

and LSQR [44], as opposed to many GMRES vari-

ants. This is because application developers are more

familiar with GMRES’ robustness, but longer vector

recurrence means that it takes more memory. The de-

creasing amount of memory expected per node on fu-

ture large-scale parallel computers (see, e.g., [38]) may

make short-recurrence methods for nonsymmetric sys-

tems, like BiCGSTAB [59] or IDR [52], attractive in

the future.

Implementation of communication-avoiding Krylov

subspace methods [34] is ongoing in Belos. These al-

gorithms replace the kernels in standard Krylov meth-

ods with new kernels that communicate less between

processors and move less data between levels of the

memory hierarchy. The Tall Skinny QR (TSQR) fac-

torization is one of these kernels, and is currently avail-

able as a MatOrthoManager [35]. Implementation

of another component, the “matrix powers kernel” that

computes a Krylov subspace basis with minimal com-

munication, is ongoing work involving a collaboration

between Sandia National Laboratories and the Univer-

sity of California Berkeley.
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