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Abstract

Agonists of GPR40 (FFA1) have been proposed as a means to treat type 2 diabetes. Through lead optimization of a high
throughput screening hit, we have identified a novel GPR40 agonist called AMG 837. The objective of these studies was to
understand the preclinical pharmacological properties of AMG 837. The activity of AMG 837 on GPR40 was characterized
through GTPcS binding, inositol phosphate accumulation and Ca2+ flux assays. Activity of AMG 837 on insulin release was
assessed on isolated primary mouse islets. To determine the anti-diabetic activity of AMG 837 in vivo, we tested AMG 837
using a glucose tolerance test in normal Sprague-Dawley rats and obese Zucker fatty rats. AMG 837 was a potent partial
agonist in the calcium flux assay on the GPR40 receptor and potentiated glucose stimulated insulin secretion in vitro and in
vivo. Acute administration of AMG 837 lowered glucose excursions and increased glucose stimulated insulin secretion
during glucose tolerance tests in both normal and Zucker fatty rats. The improvement in glucose excursions persisted
following daily dosing of AMG 837 for 21-days in Zucker fatty rats. Preclinical studies demonstrated that AMG 837 was a
potent GPR40 partial agonist which lowered post-prandial glucose levels. These studies support the potential utility of AMG
837 for the treatment of type 2 diabetes.
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Introduction

GPR40 (also known as FFA1 and FFAR1) is a free fatty acid-

activated G protein-coupled receptor that is found on the surface

of pancreatic b-cells, gastrointestinal enteroendocrine cells,

immune cells and parts of the brain. Long chain saturated and

unsaturated fatty acids stimulate GPR40, and evidence points to

GPR40 being a mechanistic link to the well-known effects of fatty

acids to acutely stimulate insulin and incretin secretion [1,2,3].

The effect of fatty acids on insulin and incretin (glucagon-like

peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide

(GIP)) secretion is blunted or eliminated in mice lacking GPR40

[4]. GPR40 knockout mice also show impaired glucose and

arginine induced insulin secretion in vivo [5]. Based on these

studies, targeting GPR40 with synthetic agonists may represent a

novel pathway in the treatment of type 2 diabetes. Because activity

of GPR40 agonists on islet b-cells is glucose dependent, it is

believed that GPR40 may offer advantages to commonly used

sulfonylurea drugs which act independently of ambient glucose

levels, resulting in hypoglycemia in some patients [6].

The molecular mechanisms of GPR40-mediated signal trans-

duction have been best studied in pancreatic beta cell lines (eg

MIN-6 and INS-1) and primary pancreatic b-cells. GPR40

couples to the Gaq class of G-proteins, leading to the formation

of inositol phosphate and increases in intracellular calcium.

GPR40 enhancement of glucose-stimulated insulin secretion

requires extracellular calcium [1]. Using isolated rat pancreatic

b-cells, Fujiwara et al demonstrated that GPR40 mediated

increases in intracellular calcium were glucose-dependent, but

independent of the endoplasmic reticulum Ca2+ pump [7].

Increases in intracellular Ca2+ and insulin release were mediated

through activity of phospholipase C and an L-type Ca2+ channel.

Further, stimulation of GPR40 in pancreatic b-cells led to

attenuation of a voltage-gated potassium channel in a protein

kinase A dependent pathway [8].

Both small molecule agonists and antagonists of GPR40 have

been described [9,10,11,12,13,14]. Consistent with its activity in

isolated islets, GPR40 agonists in vivo improved post-prandial

glucose tolerance in rodents following acute administration. TAK-

875 [15,16] and AMG 837, described in this paper, represent the

first GPR40 agonists that have entered clinical trials.

GPR40 is detected in human islets samples from multiple

donors [17,18] and clinical studies with GPR40 agonists will aid in

elucidating the function of GPR40 in humans. Several single

nucleotide polymorphisms (SNP) in the human GPR40 gene have

been described which may shed light on the function of GPR40 in

humans. The most common human SNP has been identified in

the coding region of GPR40 and results in an arginine at position
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211 in place of a histidine. Using homeostasis modeling of b-cell
function, Ogawa et al reported that the His211Arg polymorphism

may contribute to a variation in insulin secretory capacity [19].

However, a study by Hamid et al analyzing healthy and type 2

diabetic Danish subjects concluded that there was no association of

the SNP at codon 211 and type 2 diabetes or insulin release [20].

Furthermore, in cell-based functional assays the Arg211 and

His211 variants responded identically to fatty acids [20]. Another

variant in the GPR40 gene, Gly180Ser, displayed reduced

response in vitro to fatty acids and also diminished insulin secretory

capacity in human carriers, suggesting an important role of

GPR40 in insulin secretion in humans [21]. Finally, a recent

report of a mouse transgenic model containing human GPR40

under control of the insulin promoter showed improved glucose

tolerance and islet physiology [22]. A potent, specific GPR40

agonist used in a clinical setting will clarify the biology of GPR40

in humans.

In this report, we describe the preclinical pharmacological

characterization of a novel synthetic GPR40 agonist, AMG 837.

AMG 837 stimulates glucose dependent insulin secretion in rodent

islets in a GPR40-dependent manner. In vivo, AMG 837 improved

glucose tolerance through stimulation of insulin secretion in both

normal and Zucker fatty rats. The efficacy persisted after daily

dosing of AMG 837 for 21-days in Zucker fatty rats. These data

support the further development of AMG 837 in the clinic.

Results

In vitro characterization of AMG 837
A high throughput screen for GPR40 agonists resulted in the

identification of a lead series of b-substituted phenylpropanoic

acids that was further optimized to obtain AMG 837. AMG 837

features an alkyne at the b-position relative to the carboxylic acid

and a substituted biaryl group remote to the acid that increases

potency on GPR40 relative to the lead series (Houze JB et al, in

preparation). The structure of AMG 837 is shown in figure 1A.

Activity of AMG 837 on GPR40 was characterized in a variety

of biochemical and cell-based assay using cell lines that stably or

transiently expressed GPR40. Because GPR40 is coupled to the

Gaq class of G-proteins, we measured agonist-stimulated [35S]-

GTPc binding using an antibody capture method [23]. Cell

membranes were prepared from an A9 derived cell line stably

overexpressing human GPR40 (A9_GPR40). Incubation of

GPR40 containing cell membranes with AMG 837 increased

[35S]-GTPc binding with an EC50 of 1.560.1 nM (n= 2,

figure 1B). This is the first report of a [35S]-GTPc binding assay

for GPR40 using antibody capture to Gaq and further confirms

that GPR40 couples to Gaq.

Activity of AMG 837 on GPR40 was further explored in cell-

based functional assays for the second messengers inositol

phosphate and intracellular Ca2+. These assays were done in the

presence of a low concentration of HSA (human serum albumin;

0.01% w/v) in order to minimize the effect of binding of AMG

837 to albumin (further described below). AMG 837 stimulated

inositol phosphate accumulation with an EC50 of 7.861.2 nM

(n=52) in the A9_GPR40 cell line (figure 1C) that is consistent

with the potency observed for GTPcS binding. Changes in

intracellular calcium were measured using the Ca2+ sensitive

bioluminescent aequorin reporter. In CHO cells transiently

transfected with human GPR40 and aequorin, AMG 837

stimulated Ca2+ flux with an EC50 of 13.560.8 nM (n= 153) on

the human GPR40 receptor (table 1, figure 1D). AMG 837 did not

have activity on the related receptors GPR41 (FFA2), GPR43

(FFA3) or GPR120 at concentrations up to 10 mM, indicating that

the activity was specific to GPR40 (table 1). The EC50 of AMG

837 in the aequorin assay was 22.661.8 nM (n= 37),

31.761.8 nM (n= 53), 71.365.8 (n = 7) and 30.664.3 nM

(n= 25) on mouse, rat, dog and rhesus monkey GPR40,

respectively (table 1). These results, coupled with the favorable

pharmacokinetic profile of AMG 837 (Houze JB et al, in

preparation), indicate that the pharmacology of AMG 837 could

be studied in common rodent and non-human primate preclinical

species.

In order to explore whether AMG 837 was a full or partial

agonist of GPR40, we compared the activity of AMG 837 to that

of the naturally occurring fatty acid ligand, docosahexaenoic acid

(DHA), in plasmid titration experiments. In our standard aequorin

assay, 5 mg of GPR40 expression plasmid (GPR40 under the

control of the CMV promoter) are used to transfect ,10–12

million CHO cells. Under these conditions, AMG 837 behaved as

a partial agonist on the GPR40 receptor when compared to DHA,

with a maximal activity 85% that of DHA (figure 1D). Because the

relative activity of partial and full agonists is dependent on

receptor expression levels, we reduced the amount of GPR40

plasmid that was transfected by ten-fold increments. The total

amount of plasmid transfected was kept constant by adding an

appropriate amount of empty vector DNA. Under conditions in

which 0.5, 0.05, and 0.005 mg of GPR40 expression plasmid were

transfected to an equivalent number of cells in parallel, the

maximum agonist response of AMG 837 was 40%, 20%, and 10%

as compared to the maximal effect of DHA, respectively

(figure 1E,F,G). These results confirm that AMG 837 is a partial

agonist on the GPR40 receptor in this assay format.

AMG 837 is 98.7% bound when incubated with human plasma,

indicating extensive binding to plasma proteins. Consistent with

this, we found that the EC50 of AMG 837 in the GPR40 aequorin

assay was ,180-fold less potent when tested in the presence of

human serum (100% v/v, EC50=2,1406310 nM (n=7)) com-

pared to the assay in 0.01% HSA (figure 1H). Because human

serum albumin is well known to bind fatty acids and xenobiotics,

we tested the effect of delipidated human serum albumin on AMG

837 activity. The activity of AMG 837 was reduced approximately

16-fold (EC50 of 210612 nM, n=42) in the presence of 0.625%

delipidated HSA compared to the assay in the presence of 0.01%

HSA (figure 1H), indicating that AMG 837 likely binds to

albumin.

Potentiation of Insulin Secretion by AMG 837 in Isolated
Islets
GPR40 is expressed predominantly in the b-cells of the

pancreatic islet and activation of GPR40 improves glucose-

stimulated insulin secretion (GSIS). We examined the activity of

AMG 837 on isolated islets in order to understand the effect of the

compound on a relevant primary cell type. On islets isolated from

mice, AMG 837 stimulated insulin secretion with an EC50 of

142620 nM (n= 3, figure 2A). The activity of AMG 837 was

eliminated in islets isolated from GPR40 knockout mice (figure 2B),

indicating that the activity of AMG 837 was indeed specific to

GPR40.

GPR40 agonists have been reported to increase insulin secretion

in a glucose- dependent manner, and similarly we found that the

activity of AMG 837 was glucose dependent. Activation of GPR40

by AMG 837 did not result in potentiation of glucose stimulated

insulin secretion (GSIS) at glucose concentrations #5.6 mM

(figure 2C). At higher glucose concentrations ($8.3 mM), AMG

837 increased GSIS. This suggests that the risk of hypoglycemia

with AMG 837 may be lower compared with that of insulin

Characterization of the GPR40/FFA1 Agonist AMG 837
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Figure 1. In vitro characterization of AMG 837. (A) The chemical structure of AMG 837 is shown. (B–D) The activity of AMG 837 in various GPCR
assays was assessed as described in Materials and Methods. Dose response relationships of AMG 837 in GTPcS binding (B), inositol phosphate
accumulation (C) and aequorin Ca2+ flux assays (D) in cell lines overexpressing GPR40/FFA1 were determined. (D–G) In order to compare the activity
of AMG 837 to fatty acids, plasmid titration experiments where either 5000 ng (D), 500 ng (E), 50 ng (F) or 5 ng (G) of GPR40 expression plasmid was
co-transfected with aequorin expression plasmids into CHO cells. Activity of AMG 837 (blue diamond) was compared to the naturally occurring
GPR40/FFA1 ligand docosahexaenoic acid (DHA, green square) in aequorin Ca2+ flux. (H) The activity of AMG 837 in the aequorin Ca2+ flux assays in
the presence of 0.01% (v/v) purified human serum albumin (HSA, blue diamond), 0.625% (w/v) HSA (green square) or human serum (100% v/v, black
circle) was determined.
doi:10.1371/journal.pone.0027270.g001
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secretagogues such as sulfonylureas that stimulate insulin secretion

regardless of ambient glucose levels [6].

AMG 837 Stimulates Insulin Secretion and Lowers
Postprandial Glucose Levels in Normal Rodents
We next tested the ability of AMG 837 to improve glucose

tolerance and stimulate insulin secretion in Sprague-Dawley rats.

Sprague-Dawley rats were chosen since they are euglycemic,

allowing AMG 837 to be tested at normal glucose levels and

during the challenged state following a glucose bolus. AMG 837

displays excellent pharmacokinetic properties in multiple species

(Houze JB et al, in preparation). The pharmacokinetic profile

following a single 0.5 mg/kg oral dose in rats displayed excellent

oral bioavailability (%F= 84) and a total plasma Cmax of 1.4 mM.

AMG 837 was dosed by oral gavage at 0.03 mg/kg, 0.1 mg/kg

and 0.3 mg/kg 30 minutes prior to an intraperitoneal glucose

challenge. Glucose and insulin levels were determined before and

after administration of glucose.

AMG 837 administration did not have any effect on glucose

levels prior to the glucose tolerance test (30 minutes following

AMG 837 administration). Following administration of glucose,

plasma glucose levels were suppressed in an AMG 837 dose-

dependent manner (figure 3A). At the low, mid and high dose,

glucose AUC improved 3.9%, 14.5% (p,0.05) and 18.8%

(p,0.01) compared to that of vehicle treated animals, respectively

(figure 3B). The half-maximal dose of AMG 837 to lower post-

prandial glucose in rats was approximately 0.05 mg/kg.

The improvement in post-prandial glucose was a result of an

increase in glucose-stimulated insulin secretion. In animals treated

with AMG 837, there was a dose-dependent increase of plasma

insulin levels following the glucose challenge (figure 3C). The

increase of plasma insulin levels was rapid and of short duration,

Table 1. Aequorin Ca2+ Flux Activity (EC50, nM) of AMG 837 on Various Receptors.

species Human Mouse Rat Dog Monkey Human Human Human

receptor GPR40 GPR40 GPR40 GPR40 GPR40 GPR41 GPR43 GPR120

EC50, nM 13.560.8 22.661.8 31.761.8 71.365.8 30.664.3 .10,000 .10,000 .10,000

CHO cells were co-transfected with expression plasmids of a given receptor along with the Ca2+ sensitive bioluminescent reporter aequorin, as described in Materials
and Methods. Response to AMG 837 was measured with a luminometer and the EC50 (nM) 6 SEM was determined.
doi:10.1371/journal.pone.0027270.t001

Figure 2. AMG 837 Potentiates Insulin Secretion from Islets. Islets were isolated from mice and the activity of AMG 837 on insulin secretion
was determined. (A) The dose response relationship of AMG 837 and insulin secretion on mouse islets at 16.7 mM glucose was evaluated. (B) In order
to determine whether the activity of AMG 837 was GPR40/FFA1 dependent, islets were isolated from GPR40 null mice (gpr402/2). AMG 837
potentiated glucose stimulated insulin secretion from wild type islets (black bar), but not gpr402/2 islets (blue bar). (C) Glucose dependence of AMG
837 on glucose stimulated insulin secretion was determined by incubating islets in buffer containing either 0.1% DMSO (black bar) or 1 mM AMG 837
in 0.1% DMSO (blue bar) in the presence of increasing concentrations of glucose. Statistical significance is denoted by * (p,0.5), ** (p,0.01) and
*** (p,0.001) as determined by one-way or two-way ANOVA.
doi:10.1371/journal.pone.0027270.g002
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Figure 3. Improvement in glucose tolerance and potentiation of insulin secretion in Sprague-Dawley rats treated with AMG 837. 8-
week old Sprague-Dawley rats were treated with a single bolus of AMG 837 (at 0.03, 0.1 and 0.3 mg/kg, n = 6/group) by oral gavage 30-minutes prior
to an intraperitoneal glucose challenge at t = 0 minutes. (A) Blood glucose measurements were taken during prior to and following glucose
challenge. Black circle = vehicle, blue triangle = 0.03 mg/kg AMG 837, green diamond= 0.1 mg/kg AMG 837 and purple square= 0.3 mg/kg AMG 837
(B) The glucose AUC (from230 to 120 minutes) during the course of the experiments were calculated. (C) Plasma insulin levels were measured using
ELISA. Black circle = vehicle, blue triangle = 0.03 mg/kg AMG 837, green diamond= 0.1 mg/kg AMG 837 and purple square = 0.3 mg/kg AMG 837 (D–
D) Two successive glucose challenges were conducted in Sprague-Dawley rats following a single oral dose of vehicle (n = 4, black circle) or AMG 837
at 0.3 mg/kg (n = 4, purple diamond). AMG 837 was dosed at230 minutes, and glucose was administered by ip injection at 0 and 180 minutes. Blood
glucose (D), calculated glucose AUC (from 0–60 minutes following glucose challenge (E, black bars = vehicle, purple bars = 0.3 mg/kg AMG 837) and
plasma insulin (F) were determined. Statistical significance is denoted by * (p,0.5), ** (p,0.01) and *** (p,0.001) as determined by one-way or two-
way ANOVA.
doi:10.1371/journal.pone.0027270.g003
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most evident at 5 and 15 minutes following glucose administra-

tion. Taken together, these results indicate that the activity of

AMG 837 was dependent on glucose in vivo.

We further tested whether a single dose of AMG 837 could

improve post-prandial glucose following consecutive glucose

challenges. A single dose (0.3 mg/kg) of AMG 837 was

administered to Sprague-Dawley rats followed by two intraperi-

toneal glucose challenges 3 hours apart. AMG 837 improved

blood glucose levels during both glucose challenges (p,0.01,

figure 3D, E). As observed in the single glucose challenge, peak

insulin secretion during each glucose challenge increased soon

after the glucose administration (figure 3F). These results indicate

that pharmacological effect of a single dose of AMG 837 on

pancreatic b-cells persists over the course of several hours.

Efficacy of AMG 837 in Zucker Fatty Rats Following Once
Daily Dosing for 21-days
We next tested the effect of AMG 837 in the insulin resistant

Zucker fatty (fa/fa) rat following single and multiple doses of AMG

837. The Zucker fatty rat model was studied since it displays

impaired glucose tolerance, hyperinsulinemia and mild hypergly-

cemia [24,25]. AMG 837 was first tested in single doses of 0.3, 1

and 3 mg/kg prior to an IPGTT. In contrast to that observed in

normal Sprague-Dawley rats, glucose levels 30 minutes following

the AMG 837 dose trended lower and insulin levels trended

higher, although neither parameter reached statistical significance

(figure 4A,C). Because the activity of AMG 837 on GPR40 is

glucose dependent, the higher basal glucose levels in insulin

resistant Zucker fatty rats compared to that in Sprague-Dawley

rats may be sufficient to trigger a response. Following the glucose

challenge, glucose levels were lower at all doses of AMG 837 and

the glucose excursion curves largely overlapped (figure 4A). The

glucose AUC for all doses decreased ,46% (p,0.001, figure 4B).

As observed in Sprague-Dawley rats, plasma insulin levels spiked

most prominently 5 and 15 minutes post glucose challenge

(figure 4C).

In order to understand the effect of AMG 837 following

multiple doses, AMG 837 was dosed at 0.03, 0.1 and 0.3 mg/kg

by oral gavage daily for 21-days. Thirty minutes following the first

dose, an IPGTT was performed. AMG 837 improved glucose

levels during the IPGTT (figure 5A) with a decrease in glucose

AUC of 17%, 34% (p,0.001), and 39% (p,0.001) at 0.03, 0.1

Figure 4. Efficacy of AMG 837 in Zucker fatty (fa/fa) rats following a single dose. 8-week old Zucker fatty rats were administered a single
bolus of AMG 837 (at 0.3, 1 and 3 mg/kg, n = 6/group) by oral gavage 30-minutes prior to an intraperitoneal glucose challenge at t = 0 minutes. (A)
Blood glucose during the IPGTT (black circle = vehicle, blue triangle = 0.3 mg/kg AMG 837, green diamond= 1 mg/kg AMG 837 and purple
square = 3 mg/kg AMG 837) (B) Glucose AUC (from 230 to 120 minutes) during the IPGTT. (C) Plasma insulin levels during the IPGTT (black
circle = vehicle, blue triangle = 0.3 mg/kg AMG 837, green diamond=1 mg/kg AMG 837 and purple square= 3 mg/kg AMG 837). Statistical
significance compared to vehicle treated animals is denoted by * (p,0.5), ** (p,0.01), *** (p,0.001) and **** (p,0.001) as determined by one-way or
two-way ANOVA and colors match the corresponding groups in the figure legend.
doi:10.1371/journal.pone.0027270.g004
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and 0.3 mg/kg, respectively (figure 5B). This was associated with

increased insulin secretion following glucose administration

(figure 5E). Because a separation in the pharmacological response

to glucose challenge could be observed below but not above

0.3 mg/kg (figure 4), this indicates that 0.3 mg/kg is approxi-

mately the maximal dose in this rat model.

Administration of AMG 837 was continued daily for 21-days in

order to test the effects of AMG 837 following multiple doses. A

second IPGTT was performed 30 minutes following the final dose

on day 21 and AMG 837 lowered glucose levels following glucose

challenge (figure 5C). Glucose AUC values during the GTT were

decreased to 7%, 15% (p,0.05), and 25% (p,0.001) at 0.03, 0.1

and 0.3 mg/kg, respectively (figure 5D). Insulin levels prior to

glucose challenge at day 21 were higher in all groups compared to

those on day 1, likely indicative of progressive insulin resistance in

these animals. In rodents treated with AMG 837, insulin levels

increased in the mid- and high- dose groups post-glucose challenge

(figure 5F). Body weights were not affected by AMG 837 treatment

during the 21-day treatment (figure 5G). Taken together, these

results indicate that the pharmacological activity of AMG 837

persisted even after 21-days. Total plasma concentrations of AMG

837 30-minutes following the final dose of 0.03 mg/kg, 0.1 mg/kg

and 0.3 mg/kg AMG 837 were 2666 nM, 75613 nM and

204649 nM, respectively (figure 5H).

Discussion

The GPR40 (FFA1) receptor appears to be a viable and

amenable target for small molecule development for use in treating

type 2 diabetes. Several GPCRs expressed on the pancreatic b-cell,

such as GPR119 and GPR40 have gained considerable interest as

drug targets [26,27]. Because of the success of treating diabetics with

drugs that impact the GLP-1R pathway, it is envisioned that drugs

targeting other b-cell GPCRs may offer a new treatment option.

Interestingly, both GPR40 and GPR119 are also expressed on the

enteroendocrine cells of the gastrointestinal tract and lead to

stimulation of gut hormones such as GLP-1. Studies of the effect of

AMG 837 on gut hormones are currently underway.

In addition to the expression on the b-cell and enteroendocrine

cells, GPR40 expression has also been described in osteoclasts

[28], pancreatic a-cells [29], taste buds [30], immune cells [2] and

specific neurons in the brain [31]. AMG 837 may activate GPR40

receptors in these tissues, but since AMG 837 is a partial agonist,

the pharmacological effect will be more sensitive to receptor

expression levels than that for a full agonist. AMG 837 may

activate GPR40 receptors in the brain. However, the exposure of

AMG 837 in the CNS was not measured. The physicochemical

properties of AMG 837 are generally consistent with blood-brain

barrier penetration. The polar surface area of the compound is

46 Å2, which is within the preferred range of ,70 Å2 for CNS

penetrating drugs [32,33]. The molecular weight ( = 438 Daltons)

and ClogD7.4 ( = 3.7) of AMG 837 are also within the limits

suggested for compounds that penetrate the CNS [34].

Several synthetic GPR40 agonists have been described in recent

years, including GW9508, TAK-875, TUG-424 and others

[9,10,13,15]. Broadly speaking, these agonists, including AMG

837, share similar structural features: a carboxylic acid group or

carboxylate bioisostere separated from a substituted aryl ring by

two carbon atoms. While side-by-side pharmacological compar-

isons of these agonists have not been described, these GPR40

agonists, in general, potentiate GSIS and improve post-prandial

glucose in various rodent models. Two agonists, TAK-875 and the

molecule described here, AMG 837, have been disclosed as

clinical candidates for the treatment of type 2 diabetes.

AMG 837 is a partial GPR40 agonist that potently activated

GPR40 in cell-based assays and isolated islets. AMG 837 did not

potentiate insulin secretion in islets from GPR40 knockout mice

(figure 2B) and the improvement during an OGTT was lost in

GPR40 null mice compared to that in wild type mice (Houze JB

et al, in preparation). The activity of AMG 837 in vitro was right-

shifted in the presence of albumin or serum. While plasma protein

binding reduces the levels of free AMG 837, sub-mM plasma levels

of total AMG 837 (figure 5H) in the Zucker fatty rat were sufficient

to reduce glucose levels. This result indicates that at least the rat is

quite sensitive to AMG 837.

One important aspect of any GPR40 agonist that may be used

to treat a chronic condition such as type 2 diabetes is the potential

for tachyphylaxis. Results from two experiments addressed this

potential. First, a single dose of AMG 837 improved glucose levels

following consecutive glucose challenges, indicating a lack of acute

tachyphylaxis (figure 3D–F). Second, administration of AMG 837

for 21-days qd demonstrated continued efficacy in Zucker fatty rats

(figure 5). While prolonged studies in the clinic will ultimately

establish the utility of long-term dosing of GPR40 agonists, these

preclinical data with AMG 837 are encouraging with a respect to a

lack of tachyphylaxis. AMG 837 did not affect body weight

(figure 5G), indicating that improvements in glucose excursion

following 21-day dosing were independent of body weight. It

should be noted that the improvements in glycemic parameters

observed with 21-day treatment with AMG 837 run counter to the

notion that prolonged agonism of GPR40 is linked to worsening

glucose control [35].

In conclusion, we have discovered and characterized a novel

GPR40 (FFA1) agonist, AMG 837. Further studies of AMG 837

will delineate the biological functions of GPR40 and whether the

GPR40 pathway can be modulated to treat human disease.

Materials and Methods

Plasmids and cell lines
GPR40 was amplified from genomic DNA using standard PCR

techniques and cloned into pcDNA3.1 (Invitrogen) or the

retroviral vector pLPC (from Dr. David Mu). Constructs were

verified by DNA sequencing. An A9 cell line stably transfected

with pLPC-GPR40 (A9_GPR40) was created by retroviral

infection of mouse A9 cells (ATCC catalog # CRL-1811) followed

Figure 5. Efficacy of AMG 837 in Zucker fatty (fa/fa) rats following daily dosing for 21-days. 8-week old Zucker fatty rats were
administered a single bolus of AMG 837 (at 0.03, 0.1 and 0.3 mg/kg, n = 6/group) by oral gavage 30-minutes prior to an intraperitoneal glucose
challenge at t = 0 minutes. (A) Blood glucose during the IPGTT (black circle = vehicle, blue triangle = 0.03 mg/kg AMG 837, green diamond= 0.1 mg/
kg AMG 837 and purple square = 0.3 mg/kg AMG 837). (B) Glucose AUC (from 230 to 120 minutes) during the IPGTT. (E) Plasma insulin levels during
the IPGTT (black bar = vehicle, blue bar = 0.03 mg/kg AMG 837, green bar = 0.1 mg/kg AMG 837 and purple bar = 0.3 mg/kg AMG 837). Once daily
dosing was continued for 21-days. On day 21, an IPGTT was performed in an identical manner to that on day 1. (C) Blood glucose (D) glucose AUC
(from 230 to 120 minutes) and (F) plasma insulin levels were measured from the day 21 IPGTT. Figure legends are identical to those of the day 1
figures. (G) Body weights of the animals were followed through the course of the 21-day study; no difference in BW was observed between the
groups. (H) Total plasma concentration of AMG 837 30-minutes following the final dose on day 21. Statistical significance compared to vehicle treated
animals is denoted by * (p,0.5), ** (p,0.01) and *** (p,0.001) as determined by one-way or two-way ANOVA.
doi:10.1371/journal.pone.0027270.g005
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by selection on 2 mg/mL puromycin (Sigma-Aldrich) as described

[36]. Chinese hamster ovary (CHO, ATCC catalog # CCL-61)

cells were transiently transfected with pCDNA3.1-GPR40 using

lipofectamine 2000 (Invitrogen).

AMG 837
AMG 837 ((S)-3-(4-((49-(trifluoromethyl)biphenyl-3-yl)methoxy)-

phenyl)hex-4-ynoic acid) was synthesized by the Amgen Chemistry

Research and Discovery Department, South San Francisco, CA.

Synthesis and characterization of AMG 837 were conducted as

described (Houze, JB et al, in preparation and [37]). AMG 837 was

.98% pure as judged by HPLC area integration with UV

detection at a wavelength of 254 nM.

GTPcS binding assay
A GTPcS binding assays using an anti-Ga-protein scintillation

proximity assay format was employed essentially as described [23].

Assays were performed in Corning 96-well plates (Corning catalog

#3604). Cell membranes were prepared from an A9 cell line

stably transfected with GPR40 (A9_GPR40). Cell membranes

were mixed with various concentrations of AMG 837, 0.1 mM

GDP, 400 pM [35S]-GTPc (Perkin-Elmer) in binding buffer

(consisting of 20 mM Hepes pH 7.4, 100 mM NaCl and 5 mM

MgCl2) in a volume of 200 ml/well. Plates were incubated for

60 minutes at room temperature. Next, 20 ml of 3% NP-40 were

added to each well and the plates were further incubated for

30 minutes. This was followed by the addition of 20 ml of anti-Gq

antibody (anti Ga q/11 antibody, Santa Cruz Biotechnologies cat#

SC-392, 1:400 dilution) and the plates were incubated for an

additional 60 min. Finally, 50 ml of anti-rabbit-SPA beads

(Amersham # RPNQ 0016) were added to each well and the

plates were incubated for 3 hrs. Antibody captured [35S]-GTPc

was measured using a Microbeta (Wallac).

Inositol phosphate accumulation assays
A9_GPR40 cells were plated in 96-well plates containing 20,000

cells/well in DMEM containing 10% FBS. After the cells attached

to the well surface, the media was replaced with inositol free

DMEM containing 10% dialyzed FBS and 1mCi, mL 3H-myo-

inositol and incubated for 16 hours. Compounds were diluted in

HBSS/10 mM LiCl, pH7.4 in 0.01% HSA and added directly to

cells. Following 1 hour incubation at 37uC, the media was

replaced with 100 ml of 20 mM formic acid to quench the

reaction. 50 mL of the extract was then added to 100 mL of SPA

beads, incubated overnight, and measured on a TopCount the

following day.

Aequorin assay
CHO cells were plated in 15 cm plates containing 86106 cells/

plate in DMEM/F12 containing 10% FBS. The following day,

cells were transfected with 5 mg of GPR40 expression plasmid and

5 mg of aequorin expression plasmid (Euroscreen) complexed with

30 mL of Lipofectamine 2000. In plasmid titration experiments,

the amount of GPR40 expression plasmid was reduced, but the

total amount of DNA transfected was kept constant by adding in

empty vector DNA. Sixteen to twenty-four hours post-transfection,

cells were washed with PBS and detached from the plate with

2 mL trypsin (0.25% in HBSS). 28 mL of HBSS containing a

desired amount of HSA (0.01% or 0.625% w/v, Sigma-Aldrich) or

human serum (100% v/v, Sigma-Aldrich) was added to the

detached cells and coelenterazine was added to final concentration

of 1 mg/mL. Cells were allowed to incubate in coelenterazine

containing buffer for 2 hours prior to assay. AMG 837 and DHA

(Sigma-Aldrich) stock solutions were prepared in DMSO and then

diluted in HBSS buffer containing the % HSA identical to that in

which the cells were incubated in. Compounds were allowed to

complex with HSA for 1 hr at 37uC. Aequorin activity was

measured using a microlumat.

Isolation of Mouse Pancreatic Islets
Islets were prepared from mouse pancreas following injection of

collagenase into the common bile duct followed by purification on

a histopaque gradient. Animals were euthanized by CO2

inhalation and the abdominal cavity was opened. The common

bile duct was clamped just proximal to the duodenum and the

pancreas was perfused with 3–5 mL of ice cold collagenase

(0.67 mg collagenase/mL in HBSS containing 25 mM Hepes

pH 7.4 and 1% penicillin/streptomycin). The inflated pancreas

was excised and collagenase digestion was allowed to proceed for

20 minutes in a 37uC water bath. The digestion was quenched by

addition of quenching buffer (10% FBS in HBSS containing

25 mM Hepes pH 7.4 and 1% penicillin/streptomycin). Islets

were washed twice with quenching buffer following centrifugation

at 3006g for 2 minutes. Islets were pelleted and resuspended in

10 mL of Histopaque 1119 (Sigma-Aldrich). Next, 10 mL of

Histopaque 1077 was layered on top of the Histopaque 1119 layer,

and 10 mL of quenching buffer was carefully layered on the very

top. The tube was centrifuged at 10006g for 30 minutes and the

islets were isolated with a pipet and washed in culture media

(RPMI modified, 10% FBS, 25 mM Hepes, 1% penicillin/

streptomycin, pH 7.4, 37uC). Islets were allowed to culture for

48 hours in a cell incubator and were then handpicked under a

dissection microscope and transferred to a 96-well transwell plate

(Corning). Insulin secretion assays were performed in KRBH,

pH7.4 (consisting of 129 mM NaCl, 4.8 mM KCl, 1.2 mM

KH2PO4, 1.2 mM MgSO4, 10 mM HEPES, 2.5 mM CaCl2,

25 mM NaHCO3) and the insulin secreted into the supernatant

was measured using an insulin ELISA (Alpco).

Animals
All procedures on animals were approved by the Amgen San

Francisco Institutional Animal Care and Use Committee (ap-

proved protocol #11-04). Eight week old male Sprague-Dawley

(SD) rats (Harlan, Indianapolis, Indiana) and 8-week old male

Zucker fatty rats (fa/fa, Harlan, Haslett, MI; Barrier 206) were

used in studies. Animals were maintained on a standard chow diet

(Harlan Tecklad 2918, Madison, Wisconsin) and acclimated to the

Amgen San Francisco facility (an AAALAC accredited facility) for

a minimum of 7-days before treatment. Animals were housed in

Tecniplast cages on a ventilated rack. The animals were housed

under a 12-h light, 12-h dark cycle (lights-on 0600 h and lights-off

1800 h) and were allowed ad libidum access to regular chow and

water.

In vivo procedures
AMG 837 was formulated for oral dosing using 1% methylcel-

lulose (CMC), 1% Tween 80 (Sigma-Aldrich, St. Louis, MO). For

evaluation of AMG 837 following a single dose in rats, animals

were fasted overnight and then randomized into dose groups based

on their body weights. Thirty minutes after oral administration of

their respective treatments, the animals received a 1 g/kg glucose

challenge dose by intraperitoneal injection. Blood samples were

collected at 0, 5, 15, 30, 60, and 120 minutes via tail vein after the

glucose challenge. Glucose levels were monitored with a

Glucometer (Elite XL). Plasma insulin was measured using a rat

insulin ELISA kit (ALPCO Diagnostics, Windham, NH). For

evaluation of AMG 837 in Zucker fatty rats, animals were

Characterization of the GPR40/FFA1 Agonist AMG 837

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e27270



randomized based on body weight and received either vehicle,

0.03 mg/kg, 0.1 mg/kg, or 0.3 mg/kg AMG 837 once daily for

21 days by oral gavage. Treatments were administered between

0900 and 1000 h during the light cycle. On days 1 and 21, an

intraperitoneal glucose tolerance test (IPGTT) was performed as

described above.

Bioanalytical Analysis
AMG 837 plasma concentrations were measured using a

sensitive and selective LC/MS/MS method. Briefly, following

the addition of internal standard, samples were extracted using

protein precipitation. The resulting supernatants were dried,

reconstituted and injected into a a triple quadruple LC/MS/MS

instrument (API 3000, AB Sciex, Foster City, CA) for detection.

Concentrations of AMG 837 in plasma samples were calculated

using a calibration curve with a lower limit of quantitation of

1 ng/mL.

Statistics
Data was expressed as mean 6 SEM. One- or two-way

ANOVA (GraphPad Prism) was used to assess statistical

significance between control and treatments.
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