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ABSTRACT

We present Adaptive Matched Identifier of Clustered Objects (AMICO), a new algorithm

for the detection of galaxy clusters in photometric surveys. AMICO is based on the Optimal

Filtering technique, which allows to maximize the signal-to-noise ratio (S/N) of the clusters. In

this work, we focus on the new iterative approach to the extraction of cluster candidates from

the map produced by the filter. In particular, we provide a definition of membership probability

for the galaxies close to any cluster candidate, which allows us to remove its imprint from the

map, allowing the detection of smaller structures. As demonstrated in our tests, this method

allows the deblending of close-by and aligned structures in more than 50 per cent of the cases

for objects at radial distance equal to 0.5 × R200 or redshift distance equal to 2 × σ z, being

σ z the typical uncertainty of photometric redshifts. Running AMICO on mocks derived from

N-body simulations and semi-analytical modelling of the galaxy evolution, we obtain a con-

sistent mass–amplitude relation through the redshift range of 0.3 < z < 1, with a logarithmic

slope of ∼0.55 and a logarithmic scatter of ∼0.14. The fraction of false detections is steeply

decreasing with S/N and negligible at S/N > 5.

Key words: methods: data analysis – galaxies: clusters: general – large-scale structure of

Universe – cosmology: observations.

1 IN T RO D U C T I O N

Clusters of galaxies were historically recognized as overdensities

of galaxies in optical images (e.g. Shapley 1933; Abell 1958).

Although large samples of clusters have also been drawn from

X-ray observations or through the detection of the Sunyaev-

Zel’dovich (SZ) effect on the CMB, photometric observations re-

main the most promising source of discovery of new clusters of

galaxies. This applies especially to the wide ongoing and upcom-

ing photometric surveys such as the Kilo Degree Survey (KiDS; de

Jong et al. 2013), the Dark energy Survey (DES; The Dark Energy

Survey Collaboration 2005), Pan-STARRS (Kaiser et al. 2002), the

Large Synoptic Survey Telescope (LSST; LSST Science Collabo-

ration et al. 2009) and the European Space Agency Cosmic Vision

mission Euclid1 (Laureijs et al. 2011). On the other hand, the de-

tection of clusters through photometric data requires non-obvious

procedures to distinguish genuine physical groups from clumps gen-

⋆ E-mail: fabio.bellagamba2@unibo.it
1 http://sci.esa.int/euclid/

erated by chance alignments and non-collapsed overdensities due

to the matter distribution on larger scales.

Because of these challenges, and following the evolution in the

quality and the amount of data to be analysed, a multitude of auto-

mated methods has been developed in the last decades. A possible

(but not rigid) classification can be made according to the kind of

information the algorithm uses to perform the detection. A first class

of methods is purely geometrical; that is, they try to group galaxies

from their positions (including photometric redshifts, when avail-

able). These methods do not consider explicitly the galaxy obser-

vational properties (i.e. magnitudes and colours) in the detection

process, although they are accounted for in the photo-z measure-

ment. The first automated approaches, such as those by Shectman

(1985) and Lumsden et al. (1992), performed a Gaussian smoothing

of galaxy counts in cells. More recent and sophisticated attempts in-

clude friends-of-friends algorithms (e.g. Botzler et al. 2004; Trevese

et al. 2007; Wen, Han & Liu 2012) and those based on Voronoi tes-

sellation (e.g. Ramella et al. 1999; Soares-Santos et al. 2011).

Another group of methods is instead based on known observa-

tional properties of the galaxy population in clusters, and in partic-

ular on the presence of a dominant passive component. In practice,

clusters are searched as overdensities of galaxies with a similar (red)
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colour. The evolution of the observed colour for this galaxy popula-

tion encodes the redshift information and makes photo-zs redundant

in this kind of analysis. This way of searching for clusters was named

Cluster Red Sequence method by Gladders & Yee (2000), and then

evolved in the MaxBCG algorithm (Hansen et al. 2005; Koester

et al. 2007) and finally in redMaPPer (Rykoff et al. 2014, 2016) and

RedGOLD (Licitra et al. 2016).

A different approach is the one of Matched Filters (MFs), which

dates back to Postman et al. (1996). This approach requires an a-

priori definition of the cluster model, usually made up of a radial

profile and a luminosity function, which may vary also with redshift:

clusters are searched as patterns in the data that resemble the model

and are not likely to be produced by random fluctuations. This

method evolved in different directions: the Adaptive Matched Filter

(Kepner et al. 1999; White & Kochanek 2002; Dong et al. 2008),

3D-MF (Milkeraitis et al. 2010) and the Bayesian Cluster Finder

(Ascaso, Wittman & Benı́tez 2012) that, differently from the others,

includes galaxy colours and the presence of a BCG in the likelihood

evaluation.

Optimal Filtering is a general technique to extract and measure

an expected signal in a data set affected by a noisy background. In

astronomy, it was originally applied to weak lensing detection of

galaxy clusters by Maturi et al. (2005) and Pace et al. (2007), and

to X-ray and SZ detections in Pace et al. (2008). In Bellagamba

et al. (2011), it was shown that in case of photometric detections,

if one assumes that the background is homogeneous, the Optimal

Filter actually corresponds to an MF. A more recent application to

photometric data of the same method can be found in Radovich et al.

(2017). Differently from other methods, the formalism of Optimal

Filtering is very generic and allows us to consider (or neglect)

in the model any galaxy property, such as magnitudes or colours,

the presence of a BCG, or even photometric and morphological

classifications. It is the algorithm itself that selects the most relevant

properties for the cluster detection in the available data set and

thus gives appropriate weights to the galaxies in the catalogue. The

extreme flexibility of the Optimal Filtering method makes it suitable

for surveys that span a wide range in redshift, differently from other

methods that are tailored to a specific kind of data. Moreover, this

formalism allows to combine in a consistent way optical data with

other observables such as weak gravitational lensing, SZ and X-rays

observations.

In this paper, we present Adaptive Matched Identifier of Clus-

tered Objects (AMICO), an improved Optimal Filtering algorithm

for cluster detection. Apart from many improvements over the ver-

sion described in Bellagamba et al. (2011) in terms of usability,

robustness and efficiency, it presents new features in the detection

procedure itself. In particular, in this work, we will focus on a new

method to translate the map derived from the application of the

filter to a list of cluster detections, which is the ultimate and the

most important output of such an algorithm. The basic idea is to

iteratively remove the imprint of candidate clusters from the map,

allowing for the detection of other objects at lower signal-to-noise

ratio (S/N) in the surroundings. This becomes a critical point when

dealing with surveys that are deep enough to detect tens of clus-

ters/groups per square degree, making cluster detection severely

limited by confusion. A crucial quantity in this procedure is the

membership probability that is calculated for all possible cluster

members after each detection. In practice, each galaxy is initially

considered part of the background distribution and, as the detection

procedure goes on, may be gradually attributed probabilistically

to one or more detections. A deblending technique allowing the

removal of the candidate clusters has already been applied to SZ

detections, but only through the cluster template, instead of using

the likely members of the cluster (Pace et al. 2008). This new ap-

proach leads to more accurate and self-consistent results. Another

important feature of AMICO is the local estimation of the back-

ground population which, as we will see, is a key ingredient in

getting an unbiased mass proxy for the detections.

A critical point in all filtering methods is the definition of the

model or template that is the expected appearance of the clusters in

the given data set. On one side, using the knowledge about clusters

helps the detection increasing the S/N of poor or distant structures.

On the other side, when more and more information is included, it

may induce an ‘overspecialization’ of the filter which is going to

target a very specific type of objects leading to a non-straightforward

selection function for the cluster sample, or it may produce sub-

optimal results if the filter is applied in regions of wavelength or

redshift where knowledge about clusters is limited. As stated above,

AMICO employs a very general structure, and the cluster model is

considered an input parameter of the algorithm. AMICO has the

potential to iteratively perform the extraction and the refinement

of the model for the cluster from the available data starting from

simple assumptions, but we leave this topic for a future paper. In

the following, we will assume to know the model that describes the

expected galaxy distribution in clusters at each redshift.

Many of the key ingredients in the definition of the detection

performance of AMICO and of other cluster finders depend, of

course, on survey specific quantities, such as its depth, the magni-

tude errors, the quality of photometric redshifts and the accuracy

of their error modelling. Since in this paper we do not aim to make

any forecast for specific applications of AMICO to current or fu-

ture data sets, we instead focus in providing a general presentation

ought to be used as a benchmark for results on real data. For this

reason, and to keep the analysis as simple as possible, in the cata-

logues used in this paper the photometric redshifts are modelled as

simple Gaussian distributions with a realistic width. Nevertheless,

as described in the following section, AMICO can deal with arbi-

trary probability redshift distributions as provided by photometric

redshift algorithms.

The paper is organized as follows. In Section 2, we give an

overview of the basic principles of Optimal Filtering and we de-

scribe the relevant quantities for its application to photometric data.

In Section 3, we outline the newly implemented procedure to iter-

atively extract clusters and their members from the map produced

by the application of the filter to the data. In Sections 4, we perform

different tests on fields with clusters in specific configurations to

highlight the capability of the algorithm in disentangling clusters

that are close-by or aligned along the line of sight. In Section 5, we

perform the cluster detection in a more realistic field, where clusters

have a more diverse population and are embedded in a realistic, non-

homogeneous, background. Finally, in Section 6, we summarize the

results of our work and make some concluding remarks.

2 O P T I M A L F I LT E R I N G O F T H E DATA

Optimal Filtering is a general technique to extract and measure an

expected signal in a data set that is affected by a noisy background.

We refer to Maturi et al. (2005) and Bellagamba et al. (2011) for a

more complete introduction about Optimal Filters and their appli-

cation to cluster detection in photometric surveys, respectively. In

this section, we review the relevant quantities for the discussion of

the specific implementation of the algorithm in AMICO.
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2.1 General principles

The basic assumption of Optimal Filtering is that we can describe

a set of data D as the sum of a signal component described by a

model M with an unknown normalization A and a noise component

N. In the case of a photometric catalogue, the data are represented

by the galaxy density D(θ, m, z) as a function of angular position

in the sky θ , of magnitudes m and of redshift z. We can write it as

D(θ, m, z) = A(θ c, zc) × Mc(θ − θ c, m, z) + N (m, z). (1)

The model Mc(θ − θ c, m, z) is the expected galaxy distribution of

a cluster centred in (θ c, zc), the amplitude A(θ c, zc) is the normal-

ization of the cluster galaxy distribution, and the noise N (m, z) is

the field galaxy distribution. In this formalism, the array m may

include not only photometric magnitudes but also any other observ-

able available for the galaxies in the catalogue, such as morpho-

logical type or ellipticity. Here, we will assume the distribution of

the field galaxies to be completely random with a uniform mean,

i.e. the power spectrum of the large-scale structure is neglected. An

improvement over this simplistic assumption will be described in

Section 2.6.

Following the general theory of Optimal Filtering, the optimal

linear estimate of the amplitude A of the signal component in the

position (θ c, zc) is obtained by filtering the data D with a suitable

function �c

A(θ c, zc) = α−1(zc)

∫

�c(θ − θ c, m, z)

× D(θ , m, z) d2θ dnm dz − B(zc), (2)

where α is a normalization constant given by

α(zc) =

∫

�2
c (θ − θ c, m, z)N (m, zc) d2θ dnm dz, (3)

where n is the number of dimensions of the space describing the

cluster properties m, and B is the background component to be

subtracted. Under the assumption that the noise is uniform and is

produced by random Poissonian counts of galaxies, the Optimal

Filter is given by the ratio of the model Mc over the data noise N:

�c(θ − θ c, m, z) = Mc(θ − θ c, m, z)/N (m, zc). (4)

It is possible to demonstrate that the estimate of equation (2) is

optimal in the sense that it is unbiased and with the minimum

possible variance.

2.2 Applying the filter

Dealing with a catalogue of galaxies, it is convenient to rewrite

equation (2) as

A(θ c, zc) = α−1(zc) S(θ c, zc) − B(zc), (5)

where S, defined as

S(θ c, zc) =

Ngal
∑

i=1

Mc(θ i − θ c, mi) pi(zc)

N (mi, zc)
, (6)

is the analogue of the integral of equation (2) for discrete data, and

the subscript i runs over the galaxy catalogue. In the model Mc of a

cluster at redshift zc, we are now omitting the redshift distribution of

the members, in favour of the photometric redshift distribution pi(z)

for each galaxy. In fact, the intrinsic dispersion in redshift of the

cluster members is negligible in comparison with the measurement

uncertainty. The units of the model Mc(r, m) are then mag−n deg−2,

the noise N (m, z) instead has units mag−n deg−2 z−1, as the data

D(θ , m, z).

The normalization α ensures that the amplitude A is the measure

of the cluster signal in units of the model Mc. Equation (3) then

becomes

α(zc) =

∫

M2
c (θ − θ c, m) q2(zc, z)

N (m, zc)
d2θ dnm dz. (7)

In the previous equation, we introduced q(zc, z), which is the typical

redshift probability distribution for a galaxy which lies at redshift

zc. If no a priori information is available, this distribution can be

computed from the data as

q(zc, z) =

⎛

⎝

Ngal
∑

i=1

pi(zc)

⎞

⎠

−1
Ngal
∑

i=1

pi(z − zc + zpeak, i)pi(zc), (8)

where zpeak,i is the most probable redshift for the ith galaxy. Equa-

tion (8) is a sort of weighted mean p(z) for galaxies whose true

redshift is zc computed in this way: each galaxy probability distri-

bution is weighted with its value at redshift zc and then is shifted

so that it peaks at zc. Instead of a generic q(zc, z) for all objects, it

is possible to compute equation (8) for different classes of objects

(e.g. as a function of magnitudes) and take this into account in the

integral of equation (7) and in the following.

The same statistics on the redshift distribution can be used to

calculate an analytical estimate of the background component to be

subtracted, which is

B(zc) = α−1(zc)β(zc), (9)

where β(zc) is the expectation value of S(θ c, zc) if the galaxy dis-

tribution corresponds to the field component only:

β(zc) =

∫

Mc(θ − θ c, m) q(zc, z)

N (m, zc)
N (m, zc) d2θ dnm dz

=

∫

Mc(θ − θ c, m) q(zc, z) d2θ dnm dz. (10)

The subtraction of B(zc) in equation (5) ensures that A = 0 when

the galaxy distribution around a given position corresponds to the

field one, namely D(θ c, zc) = N(θ c, zc). By construction, β(zc) is

also the total number of galaxies in the cluster model at redshift zc.

It is important to stress that the treatment of photometric redshifts

described here is completely generic, and does not assume any

specific shape or accuracy of the p(z) distribution. This is different

with respect to other MF algorithms, such as Dong et al. (2008)

and Milkeraitis et al. (2010). Even in the absence of any redshift

information one can apply the formalism described here by simply

assuming a flat probability distribution in the considered redshift

range.

2.3 Variance of the amplitude estimate

Following the assumptions described in the previous sections, one

can derive an analytical estimate of the uncertainty of A(θ c, zc).

This is given by

σ 2
A(θ c, zc) = α−1(zc) + A(θ c, zc)

γ (zc)

α2(zc)
, (11)

where the first component derives from the background fluctuations,

the second one accounts for the shot-noise contribution of the actual

structures present in the data as measured with the filter. Here, the
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quantity γ is given by

γ (zc) =

∫

M3
c (θ − θ c, m) q3(zc, z)

N2(m, zc)
d2θ dnm dz. (12)

By construction, equation (11) is meaningless when A is negative,

but this is not important as regions with negative A have a lower-

than-average galaxy density, and so are negligible in the cluster

detection.

2.4 Likelihood

Given the description of the data D as the sum of a signal component

M with normalization A and a noise component N as in equation

(1), their likelihood is

L(θ c, zc)

= −

∫

{D − [AMc(θ − θ c, m) + N (m, zc)]}2

N (m, zc)
d2θ dnm dz. (13)

Combining the previous equation with the amplitude estimate given

by equation (5), one can show that

L(θ c, zc) = L0 + A2(θ c, zc) α(zc), (14)

where L0 is a constant that does not depend on the position. Dif-

ferently from AMF (Kepner et al. 1999; Dong et al. 2008), we do

not consider a Poissonian likelihood, but use instead a Gaussian

likelihood, coherently with the construction of the Optimal Filter.

At a given redshift, maxima of A are also maxima of the like-

lihood. Intuitively, this depends on the fact that, the bigger is the

cluster, the bigger is the improvement in the likelihood when the

cluster model is centred in that position. However, as noted in Bel-

lagamba et al. (2011), the likelihood alone does not distinguish

between overdensities (A > 0), which we are interested in, and

underdensities with negative A. In the following, to perform the de-

tection we will combine this information with the S/N A/σ A, which

is meaningful only when A is positive.

To summarize, following equations (5), (11) and (14), we can

calculate an estimate of the amplitude of the candidate cluster, its

uncertainty and the likelihood on a 3D grid of positions in the

sky and redshift. We can then derive cluster detections from this

map by selecting (θ c, zc) locations with large S/N values and large

likelihood. We will detail our procedure to extract detections from

the map in Section 3.

We note that, differently from other works (Dong et al. 2008;

Ascaso et al. 2012) that centre their cluster candidates on galaxy

positions, we use a regular grid in angles and redshift. This choice

is helpful for the optimization of the extraction of cluster candidates

presented in Section 3. If needed, it is always possible to select the

most likely central galaxy a posteriori.

2.5 Masked areas

It is common in galaxy surveys to have field regions with missing

data, mainly due to foreground sources (e.g. stars). This is usually

handled with the definition of suitable masks. In our formalism, we

can account for masked regions by computing the constants α, β

and γ as a function of xc (and not just zc), performing the integrals

in equations (7), (10) and (12) only on the available (unmasked)

area around the centre. The derived values of A are then compara-

ble, because they are computed assuming the same model and the

noise distribution, but considering the different available area for

the amplitude estimate. By construction, if the galaxy distribution is

the same, the S/N of an amplitude estimate derived from a partially

masked area will be lower than the one obtained when the full area

is completely available to observations.

2.6 Local background

In the previous sections, the background component N (m, zc) has

been considered to have a constant mean over the surveyed area.

With this approximation, for a given redshift zc, the contribute of

the field population to the amplitude is random with mean equal to

B(zc) and is subtracted as in equation (5). In reality, the large-scale

structure of the Universe will produce correlations in the density of

galaxies on scales which are larger than the typical cluster scale. In

order to appropriately remove the background contribution to the

amplitude estimate A, AMICO applies a local correction f (θ, zc) to

N (m, zc). For every redshift, this is computed by producing a map

of the density of galaxies as a function of the angular coordinates. A

k-σ clipping is applied to this map to remove obvious peaks (likely

to be produced by clusters and not by the field distribution) and then

a smoothing is performed over a scale which is significantly larger

than the one of the filter. Finally, by dividing this map by its mean

value, we obtain a correction term f (θ, zc) for each position.

It is easy to show that one can account for the local background

correction a posteriori. In fact, after applying the filter to the galaxy

population using the mean N(m, zc) (equation (6)), the relevant

quantities for the corrected background density f (θ, zc)N (m, zc)

can be calculated in the following way:

A′(θ c, zc) =
S(θ c, zc) − f (θ , zc)β(zc)

α(zc)
, (15)

σ 2
A′ (θ c, zc) =

f (θ , zc)

α(zc)
+ A′(θ c, zc)

γ (zc)

α2(zc)
, (16)

L
′(θ c, zc) = L0 +

A2(θ c, zc) α(zc)

f (θ , zc)
. (17)

In this step, there are no approximations, the very same results

would be obtained by accounting for the local correction from the

beginning. We opted for this procedure for efficiency reasons.

2.7 Model

In the formalism described above, the model is an input param-

eter that describes the expected galaxy distribution in clusters as

a function of redshift. In principle, one can construct it in several

ways, for example by binning members of known clusters in mag-

nitude and radial distance. For numerical stability and continuity, it

is often preferred to use analytic expressions to describe the model.

As a cluster galaxy distribution can be considered the sum of dif-

ferent components (e.g. central galaxy and satellites, red and blue

populations), the model can be written in a generic form as

Mc(r, m) =
∑

i

�i(r)	i(m) , (18)

where the index i runs over the considered galaxy populations and

� i(r) and 	i(m) are the radial and magnitude distributions for the

ith component, respectively.

As a representative example of a practical choice for the model,

we describe here the model used for the tests presented in Sections 4

and 5 of this paper. In this case, we consider separately the distri-

bution of central and satellite galaxies, and we take into account

only one observing band. The central galaxies are modelled with a

Gaussian distribution in magnitude. In the radial distribution, they

are described by a step distribution larger than zero only in the most
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inner bin, as they lie at the centre of the haloes by construction. For

the satellites’ magnitude distribution, we use a Schechter function

(Schechter 1976):

	(m) = C × 10−0.4(m−m⋆)(α+1) exp (−10−0.4(m−m⋆)), (19)

where m⋆ is the typical magnitude, α controls the faint-end slope

and C is the normalization. For the satellites’ radial profile we use

an NFW distribution (Navarro, Frenk & White 1997)

�(r) =
B

r

rs

(

1 +
r

rs

)2
, (20)

where the scale radius is rs = R200/c, c is the concentration param-

eter and B is the normalization. The value of the parameters as a

function of redshift is derived from mock catalogues as described

in Section 4.2.

3 SE L E C T I N G T H E C L U S T E R C A N D I DAT E S

The principles of Optimal Filtering, applied to the photometric

galaxy survey data, lead to the construction of a 3D map of ampli-

tude estimates A(θ , zc), as defined by equation (5). Each value of

this map represents an estimate of the amplitude of a cluster signal,

if a cluster is actually centred in that position. It is non-trivial to

move from the amplitude map to the list of likely clusters, which

is the desired output of a detection algorithm. In the following, we

will outline how AMICO proceeds in this task. In particular, we

will describe the cleaning procedure, which aims at removing the

signal of the most significant objects from the map in the attempt to

detect smaller objects that might be blended with them. This is one

of the most important novelties introduced in AMICO with respect

to traditional MF algorithms. We will see in Sections 4.4 and 4.5, a

practical demonstration of its power.

After the 3D map of amplitude is built as described in Section 2.2,

the algorithm proceeds iteratively. The total number of detections

Ndet depends on (S/N)min, the minimum S/N one wants to achieve.

For j that runs from 1 to Ndet, the following steps are made:

(i) All the pixels with an S/N below the defined threshold

(S/N)min are discarded.

(ii) Among the remaining pixels, the one with the highest likeli-

hood is selected. This identifies the jth cluster detection.

(iii) Some relevant properties of the detection are saved, such as

centre position (θ j , zj ), amplitude Aj ≡ A(θ j, zj), S/N Aj/σAj
and a

first estimate of the number of members Nj, given by Nj = Aj ×β(zj).

(iv) For each galaxy whose sky coordinates lies close to θ j, a

membership probability P(i ∈ j) is computed as detailed in Sec-

tion 3.1.

(v) The imprint of its potential members is removed from the

map, as it will be detailed in Section 3.2.

Once step (v) is completed, all the values of amplitude, likelihood

and S/N are updated and do not contain anymore the contribution of

the jth detection (and of the previous ones). The process is repeated

iteratively until after step (i) no pixel is left.

3.1 Membership assignment

We now describe the details regarding the step (iv) of our procedure.

Given the jth detection at position θ j and redshift zj with amplitude

Aj, the probability P(i ∈ j) of the ith galaxy of being a member of

the jth detected object is defined as

P (i ∈ j ) ≡
AjMj (θ i − θ j , mi)pi(zj )

AjMj (θ i − θ j , mi)pi(zj ) + N (mi, zj )
, (21)

i.e. the ratio between the galaxy density associated with the cluster

component and the total one. This definition is strictly correct only

if we consider one cluster at a time, while in reality several galaxies

will have a positive probability to belong to more than one structure.

In principle, equation (21) should be modified to

P (i ∈ j ) =
AjMj (θ i − θ j , mi)pi(zj )

∑Ndet

k=1 AkMk(θ i − θ k, mi)pi(zk) + N (mi, zj )
, (22)

where the sum at the denominator runs over all the detected struc-

tures. However, even if formally correct, the application of this

equation in the process outlined above is unfeasible. In fact, the

probability must be computed when the jth detection is found and

no information is available on the presence of other nearby clusters

candidates that will be subsequently detected. Thus, we consider

one cluster at a time in the total density, an assumption which is

coherent with the measurement of A made via equation (5).

We take into account previous memberships assigned to the same

galaxy by introducing the field probability Pf, i, which is defined as

Pf ,i = 1 −

j−1
∑

k=1

P (i ∈ k). (23)

The field probability for a galaxy is 1 at the beginning of the process,

and decreases while the galaxy is progressively attributed to new

detected objects. Intuitively, it is a measure of the fraction of the

galaxy that is still available for further associations. Then, equation

(21) becomes

P (i ∈ j ) = Pf ,i ×
AjMj (θ i − θ j , mi)pi(zj )

AjMc(θ i − θ j , mi)pi(zj ) + N (mi, zj )
. (24)

This modification also ensures that the sum of the membership

probabilities of each galaxy is always ≤1.

3.2 Cleaning the detections

Once the probability of a galaxy to belong to a given detected object

is calculated, in step (v) of the process summarized above, we can

take this knowledge into account when determining the following

detections. We do so by removing from all the pixels the contribution

of possible cluster members weighted by P(i ∈ j). This effectively

removes the imprint of the detected cluster from all the pixels. In

practice, equation (6) becomes

S(θ j , zj ) =

Ngal
∑

i=1

Pf ,i

Mj (θ i − θ j , mi)pi(zj )

N (mi, zj )
. (25)

From the computational point of view, the cleaning process forces

the code to run through all the galaxies every time a new detection

is found, and modify the value of the map of S(θ j, zj) in its surround-

ings. Moreover, following equations (11) and (14) also the values

of σ A and L must be updated accordingly. This makes the cleaning

the computational bottleneck of AMICO.

An example of how the cleaning procedure modifies the initial

amplitude map is shown in Fig. 1, from the analysis on the mock

galaxy catalogues presented in Section 5.
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Figure 1. Amplitude map of 1 × 1 deg2 at redshift z = 0.33 from one of

the fields analysed in Section 5. Top panel: initial map produced by the

algorithm. Central panel: map after the pixel with the highest S/N has been

marked as a detection and its cleaning performed. Bottom panel: map after

all the detections with S/N > 7 have been selected and cleaned. White

crosses indicate the position of cluster detections removed from the map.

4 T E S T S O N I D E A L M O C K S

In order to verify the performance of the algorithm outlined in

the previous sections, we perform two sets of tests, which are dis-

tinguished by the kind of mock catalogues used. The first set of

tests is run over so-called ideal mocks, where we place clusters in

known positions over a background population with constant mean

density. These tests are useful to show how the algorithm works

in a completely controlled environment, where all the assumptions

of the Optimal Filtering described in Section 2 are perfectly met.

The second set of tests is run on cosmological mocks, where the

galaxy distribution, derived from N-body numerical simulations and

semi-analytic modelling, is more similar to the one we see in real

observations. These tests show the algorithm at work in a more

complex environment, where galaxy clusters and groups may have

different shapes, luminosity functions, are embedded in the corre-

lated large-scale structure with non-negligible chances of random

alignments. All of this makes the identification of clusters more

difficult, and the estimation of their properties more uncertain. This

second set of tests will be described in Section 5.

4.1 Simulation

The starting point for our tests are the public mock catalogues

described in Meneux et al. (2008). We use 50 catalogues, 2 × 2 deg2

each, which were originally meant to mimic the VVDS survey (Le

Fevre et al. 2003). They were obtained by applying the prescriptions

of De Lucia & Blaizot (2007) to the dark-matter halo merging trees

extracted from the Millennium simulation (Springel et al. 2005).

The catalogues are complete in apparent magnitude up to I = 25

for redshift z > 0.3. In this section, we extract a cluster model

and a noise distribution from these mocks and we use them to

create new ideal mocks. The analysis of the mocks in their original

form is discussed in the next section. The cosmology adopted in

the simulation of the mocks is a flat 
CDM (
 cold dark matter)

model, with �m = 0.25, �
 = 0.75, σ 8 = 0.9 and H0 = 0.73 km

s−1 Mpc−1.

4.2 Model and background

The catalogues provide us a halo identification made on the outputs

of the simulation. Galaxies that lie at the centre of haloes are marked

and for each halo its mass M200
2 is provided. This allows us to

build the model distribution Mc(r, m) that describes the typical

galaxy content of a cluster of mass ∼1014 M⊙ h−1 at redshift zc.

To this end, we first select as cluster members the galaxies that

are at distance <1.35R200 ∼ R100 from the central galaxy of a

cluster with 13.8 < log M200/(M⊙ h−1) < 14.2. Then, we build the

radial distribution (in units of R200) and the magnitude distribution

for the cluster satellites in bins of redshift, weighing each galaxy

by wi = [M200/(1014 M⊙ h−1)]−1. This weight is used to keep the

desired normalization for the cluster model. Finally, in each redshift

bin, we fit the derived average radial distribution with an NFW

function (equation 20) and the average magnitude distribution with

a Schechter function (equation 19).

As an example, we show the empirical distribution and the an-

alytical fitting functions at z = 0.4 in Fig. 2. At all redshifts, the

mean radial profile is consistent with a concentration c = 3, so we

2 The mass of the haloes is provided in terms of M200, which is the mass

contained in a sphere with a density 200 times larger than the critical one.

The radius of this sphere is R200.
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Figure 2. Empirical distributions and analytical fit for the cluster satellites

at redshift z = 0.4. Top panel: radial profile. Bottom panel: magnitude

distribution. The error bars derive from Poissonian statistics, but are often

smaller than the point size. These distributions were used to create the

idealized mock simulations.

use this value for the model. As for the other parameters (the to-

tal number of galaxies N, the typical magnitude m⋆, the faint-end

slope α), we perform a fit over redshift to get a smoothly changing

model. Central galaxies are added separately, following a Gaussian

distribution in magnitude and adding one galaxy in the first bin of

the radial profile, as they lie by definition exactly at the centre of the

structures. This mimics the presence of a BCG in our model. For

each redshift zc, the desired Mc(r, m) is then obtained by projecting

the 3D radial distribution in 2D and multiplying it by the magnitude

distribution.

The background distribution N(m, z) is instead built from the

galaxies that are not closer than 1.35R200 to any structure with

M200 > 0.5 × 1014 M⊙ h−1. This choice is meant to be complemen-

tary to the one made in constructing the model Mc(r, m), following

the separation in two parts of the galaxy population that is an as-

sumption of the algorithm. Anyway, N(m, z) is very weakly affected

by the specific values of the thresholds in mass and radius, as the vast

majority of the galaxy population resides in much smaller haloes.

Given the properties of the catalogue, we decided to concentrate

our analysis over the redshift range of 0.3 < z < 1. In fact, at lower

redshifts, the catalogue is not complete at the faint magnitudes,

while at higher redshifts the galaxy density is so low that one cannot

build properly the typical cluster distribution. In the remaining of the

paper, we will restrict our analysis to this redshift interval. We note

that, even if this work is not aimed at providing forecasts for any

Figure 3. Distribution of clusters in the field described in Section 4.3. The

colour indicates the input redshift, as coded by the bar on the right, the

radius of the circle is proportional to the cubic root of the number of visible

galaxies.

specific survey, this redshift range is common for cluster detection

with optical data. AMICO can use the information coming from

multiband observations, but in the tests presented here we use only

the I band for simplicity.

4.3 Test on isolated clusters

Having built the cluster model and the background component in the

redshift range of interest, we can prepare our ideal mock catalogues.

As a first test case, we prepare a catalogue with structures disposed

on a grid over a statistically uniform background. We consider seven

redshift values, with z ranging from 0.35 to 0.95, separated by �z

= 0.1. For each redshift, we create 250 Monte Carlo realizations of

our cluster model, 50 for each five different amplitude values Atrue =

(0.2, 0.5, 1.0, 2.0, 5.0). Clusters are distributed over a field with size

10 × 7 deg2 on a grid with a distance 0.2 deg one from each other, as

shown in Fig. 3. We underline that, following our assumptions, for a

given redshift the expected galaxy distribution for clusters with any

richness is the same, apart from a rescaling of the total number of

galaxies. We add a homogeneous background component, following

the density given by N(m, z) and random positions over the field.

Here and in the following, we applied a scatter to the redshift of

the galaxies following a Gaussian distribution with σ = 0.05(1+z),

which is typical for wide-band photometric surveys.

Given a cluster model and a background distribution, and having

fixed the photometric redshift uncertainty, we can use equations

(5), (6) and (11) to estimate the expected S/N for a cluster of any

amplitude at any redshift, and build the expected selection function

for our cluster search. The result is shown in Fig. 4. This is a purely

theoretical estimate that depends on our modellization of the cluster

and of the background and allows us to make a first estimate of the

kind of objects we can detect under certain survey conditions. In

particular, for any redshift we can compute the minimum amplitude

Amin required for the detection. In the following, we will compare

this with the actual detection thresholds in our experiments on ideal

and cosmological fields.

4.3.1 Completeness

Once the mock catalogue is produced, we run AMICO on it using

the model and the background estimated as above. In this case, as

the background distribution is following our assumption of unifor-

mity over the field, we do not use the local estimation presented
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Figure 4. Theoretical minimum amplitude for detection of galaxy clusters

as a function of redshift, for three different S/N thresholds.

Figure 5. Points with error bars show the fraction of detected objects for

different input amplitudes as a function of redshift. The lines indicate the

theoretical detection probability. For clarity, points that refer to different

input amplitude values are slightly offset along the x-axis.

in Section 2.6. The following quantities are read for each galaxy

of the catalogue: angular position in the sky, magnitude in the I

band, photometric redshift estimate and photometric redshift un-

certainty. The algorithm produces a list of detections as described

in Section 3. In order to be as complete as possible, we set an S/N

threshold = 2 even if, as we will see, the amount of spurious detec-

tions due to noise fluctuations is not negligible for S/N < 3. Once

we have a list of detections, we try to match them with the actual

structures in the field, allowing for an angular separation equal to

the radius R200 of each real structure and for a redshift separation

equal to the 1σ uncertainty 0.05 × (1 + z). When not explicitly

mentioned, this matching procedure will be repeated for all the

experiments we describe.

The resulting completeness for the three lower input values of

amplitude (0.2, 0.5, 1.0) is shown in Fig. 5. For comparison, we show

also the theoretical detection probability that we obtain from Fig. 4,

considering a Gaussian scatter for the observed amplitude with mean

equal to Atrue and uncertainty σ A calculated as in equation (11). The

fraction of the resulting distribution of Aobs that is greater than

Amin for the same redshift is the expected probability of detecting a

structure with those properties. As we see, there is a good agreement

between the theoretical prediction and the actual fraction of detected

objects. For simplicity, we do not show the results for the structures

Figure 6. Mean and scatter of the measured amplitude as a function of

the input redshift for structures with different input amplitudes. For clarity,

points that refer to different input amplitude values are slightly offset along

the x-axis.

with input amplitude equal to 2 and 5, as the completeness is equal

to 1 both in theory and in practice all over the redshift range for

these objects.

4.3.2 Properties of detected structures

For the detected objects, we can compare the measured amplitude

Aobs with the input amplitude Atrue. The results are shown in Fig. 6.

The estimated amplitude is unbiased with respect to the input value

as long as the sample is complete; that is, we are sampling the

whole distribution of Aobs for a given input Atrue. This is true at all

redshifts for the three most massive bins and at z < 0.6 for clusters

with Atrue = 0.5 (see Fig. 5). Instead, the sample of clusters with

Atrue = 0.2 is never complete, because the theoretical amplitude of

all objects lay below the detection line given by Atrue; therefore, only

those objects whose Aobs is increased by the random noise enter the

detection catalogue, and this translates into a positive bias in the

mean Aobs for detected objects. The scatter in the measurement of A

is increasing for higher redshift and lower Atrue, as expected given

the S/N estimates.

The redshift of the detection can also be compared with the input

one. As we see in Fig. 7, the redshift estimate is always consistent

with the input value, considering the scatter. The error bars are

shrinking for bigger structures, as the number of member galaxies

increases and reduces the statistical uncertainty. We note that there

is a slight tendency towards an underestimation of z for low redshifts

and an overestimation for high redshift, which is mildly significant

for the biggest structures. This is due to the redshift evolution of

the cluster model Mc(r, m), which may cause the likelihood for a

structure at redshift zc to peak at a slightly different redshift. As we

will see in Section 5, this source of bias is negligible in a realistic

environment, with correlated noise and increasing confusion due to

structures that may be close to each other and aligned along the line

of sight.

4.3.3 Membership

As described in Section 3.1, after a detection is made, AMICO

runs through the galaxy catalogue and assigns to each galaxy a

probability of being a member of the identified object. We can

verify how accurate is this probabilistic association by comparing
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Figure 7. Mean and scatter of the redshift bias (output–input) as a function

of the input redshift for structures with different input amplitudes. For clarity,

the results for just three input amplitude values are shown and points that

refer to different input amplitude values are slightly offset along the x-axis.

The solid lines limit the region of 1σ uncertainty of the photometric redshift

of individual galaxies.

Figure 8. The mean membership probability as estimated by the algorithm

versus the fraction of actual members in bins of estimated probability is

shown by red pluses. The error bars are negligible because they are smaller

than the point size. The 1-to-1 relation is shown for reference as black solid

line.

it with the fraction of members that actually belong to the identified

structure. The results are shown in Fig. 8. As we see there is an

almost perfect agreement between the probability estimated by the

code and the fraction of actual members. This is a very important

result that verifies the effectiveness of the algorithm when all its

assumptions are met. We will verify this result in a more realistic

environment in Section 5.5.

4.3.4 Spurious detections

Up to now we focused only on detections that were matched to the

objects we inserted in the catalogue. We now consider the fraction

of detections that does not correspond to any structure, but instead

appears just due to random fluctuations of the background distri-

bution. Even if the Optimal Filtering formalism minimizes their

presence, their appearance is expected because of the probabilistic

Gaussian nature of the measured amplitude that has the well-defined

Figure 9. Number of spurious detections per square degree as a function

of S/N.

variance given by equation (11). Their distribution as a function of

the S/N is shown in Fig. 9. As we see, the density of spurious

detections decreases steeply with the S/N. We can estimate a den-

sity ∼4.5 deg−2 at S/N > 3 and ∼0.2 deg−2 at S/N > 3.5, which

is a strong threshold against detections created by purely random

background distribution.

4.4 Test on angular deblending

In order to quantify the capability of AMICO to clean the galaxy

catalogue from the detected structures (see Section 3.2) and allow

for the identification of other neighbouring structures, we create a

specific simulation with couples of clusters that are close to each

other in angular distance (the same problem along the z-direction

will be analysed in Section 4.5). The employed background dis-

tribution and cluster galaxy population are the same described in

Section 4.3. For this test, all the structures are at redshift 0.5 and

have amplitude equal to 1. We created couples of clusters with a

relative distance that goes from 0.01 to 0.1 deg in steps of 0.01 deg.

For each distance bin 25 couples were used.

As it can be seen from Fig. 4, the expected S/N for a single

structure with the parameters we chose is larger than 5. For this

reason, we expect that for every couple at least one of the two

structures should be correctly identified, and this is verified. To

verify how efficient is AMICO to disentangle the two components

of the couples, we evaluate the completeness that here is defined as

the fraction of couples that are correctly identified as two separate

objects over the total number of pairs.

The results are displayed in Fig. 10 for different thresholds in

S/N, along with the projected profile of the cluster model. For the

case under investigation, the deblending is virtually impossible for

clusters with a relative distance = 0.01 deg, while it becomes more

and more likely for larger distances, and almost certain once the

two structures are at a distance larger than 0.04 deg, which is close

to their R200. The completeness for different S/N thresholds high-

lights the fact that for close-by companions, the significance of

the second detection is lowered with respect to the first one. This

happens because, during the iterative detection procedure, the mem-

bership probability P(i ∈ j) is assigned considering one detection

at a time. Galaxies belonging to the two objects concur to increase

the amplitude estimation of the first detection, and the membership

probability is then assigned following equation (21) to the galaxies

surrounding it, including the ones that belong to the other object.
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Figure 10. Points with error bars show the fraction of couples correctly

identified as two separate objects as a function of the relative distance in

degrees for different S/N thresholds (red: S/N ≥ 2, blue: S/N ≥ 3, black:

S/N ≥ 4). For reference, the radial profile of the cluster is shown as a dashed

line.

Figure 11. Mean and scatter of the estimated amplitude for the first (red)

and the second (blue) detection of each couple as a function of the relative

distance in degrees. Only couples for which both objects were detected are

considered in this plot.

For this reason, at the stage when AMICO finds the second de-

tection the value of Pf, i of its members is already <1, causing an

underestimate in the resulting Aobs (see equation 25). This can be

seen also in Fig. 11, where the mean estimated amplitudes for the

first and the second detections of the couple are shown. In the filter-

ing procedure, the two structures interact with each other and, the

closer they are, the more the first one ‘steals’ amplitude from the

second one.

That said, it is notable that AMICO with its cleaning approach is

able to identify objects whose galaxy distributions are significantly

overlapping on the sky and whose relative distance in some cases

is smaller than R200. In our simulations, the two objects are exactly

at the same redshift, but the same would apply to structures with

relative line-of-sight distance lower than the typical photometric

redshift uncertainty. We underline that the case we analysed is the

most pessimistic from two points of view: the two structures have

exactly the same redshift and the same input amplitude. Clearly,

deblending of structures at different z would be helped by their

different photometric redshift distributions. Moreover, if one of the

two structures is smaller than the other, the bias induced on Aobs

Figure 12. Points with error bars show the fraction of couples correctly

identified as two separate objects as a function of the redshift of the most

distant structure for two different matching criteria in redshift: 1σ in red and

2σ in blue. The black dashed line is the shape of the photometric redshift

distribution for the object at z = 0.5.

of the first detected structure would be less significant than the one

shown in Fig. 11, making more accurate the probability association

of galaxies that is needed in the following step of the iteration.

4.5 Test on line-of-sight projections

Complementary to Section 4.4, here we aim to study the possibility

of AMICO to disentangle different structures when they are aligned

along the line of sight but at different redshifts. To this end, we create

a different simulation where clusters are made in couples. For each

pair, the closest (foreground) object lies at z = 0.5, while the second

(background) one is at a redshift ranging from 0.54 to 0.9, in steps

of 0.04. All the structures have an input amplitude equal to 1, but

this corresponds to an expected S/N that is decreasing in redshift,

as we can see from Fig. 4. As in Section 4.4, we are interested in

the capability of the algorithm to detect both objects, as one of the

two (in this case, the foreground one) is obviously identified.

The results as a function of the redshift of the background struc-

ture are shown as the red line in Fig. 12. We see that the fraction of

detected structures goes above 50 per cent when the relative sepa-

ration in redshift �zpair is larger than 0.16 ∼ 2σ z, while for smaller

distances the confusion induced by the photometric redshifts makes

it impossible to distinguish the two objects. We can better under-

stand this behaviour by looking at the top panel in Fig. 13, where the

bias in the redshift determination for the foreground and the back-

ground structures is shown. Galaxies of the background structure

tend to increase the signal, and thus the likelihood, of a detection at

redshifts slightly higher that the true one of the foreground object,

thus biasing high the measured redshift. In turn, the cleaning pro-

cedure for the foreground detection tends to remove galaxies of the

other object which were scattered low in z. As a result, the redshift

of the second detection is biased up as well. This phenomenon is

especially relevant for σ z ≤ �zpair ≤ 3σ z, when the galaxies of the

structures interact in the amplitude measurement. In particular, it

seems likely that for 0.58 ≤ zback ≤ 0.7 some of the structures in the

background have been detected but were not associated with a halo

in the simulation because of the excessive redshift bias. In fact, as

it is shown in Fig. 13, in this redshift range the upper limit of the

scatter of the redshift bias is close to or larger than the limit in z
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Figure 13. Mean and scatter of the bias in the estimated redshift for the

first (red) and the second (blue) detections of each couple as a function of

the redshift of the background structure. Top panel: 1σ z matching. Bottom

panel: 2σ z matching. Only couples for which both objects were detected

are considered in this plot. The upper solid line represents the limiting z bias

for which the object is considered matched in the two cases.

for which the background object is considered matched, which is

0.05 × (1 + z).

To test this hypothesis, we relaxed the redshift criterion for match-

ing to 2σ , equivalent to 0.1 × (1 + z), and the result for the com-

pleteness is the blue line in Fig. 12. We see there is an increase

in the fraction of matched couples, and this is especially relevant

for zback = 0.62 and zback = 0.66 whose completeness increases by

∼20 per cent. The corresponding plot about redshift measurement

is in the bottom panel of Fig. 13. We see the increase in the redshift

bias especially for zback = 0.62 and zback = 0.66, due to the insertion

in the catalogue of couples whose redshift is significantly biased

high, confirming our hypothesis. Now, the distribution of measured

redshifts is well distant from the matching limit, indicating that its

exact location is not affecting anymore the matching results.

Again, we note that these results are relative to a very pessimistic

case (two structures at equal amplitude perfectly aligned on the sky)

and thus must be considered as a worst-case scenario when facing

this problem. We note anyway that AMICO is able in a relevant

fraction of cases to detect a structure that lies just behind another

one, completely overlapping in the sky and with the two galaxy pop-

ulations that are overlapping in redshift, with a �z ∼ 2 × σ z, where

σ z is the typical photometric redshift uncertainty of the galaxies.

Figure 14. Fraction of detected structures (completeness) as a function of

redshift for three different bins in logarithmic mass (�log M = 0.1) and two

S/N thresholds: S/N > 2 in solid, S/N > 3.5 in dashed.

As a general remark, the cases presented here and in Section 4.4

quantify the possible biases in the determination of clusters posi-

tion and amplitude when two or more structures are nearby, and the

description of the data as the sum of a field and a cluster component

fails. A simple check on the spatial proximity of the output detec-

tions of AMICO provides a list of possible cases where these small

systematics may occur.

5 T E S T S O N C O S M O L O G I C A L M O C K S

Now we turn to the analysis of the mock catalogues presented in

Section 4.1, as they are built from the N-body cosmological simu-

lation by applying a semi-analytical modelling of the galaxy evolu-

tion. To make the original catalogues more realistic, we introduced

a scatter in the redshift of the galaxies to simulate the photometric

redshift uncertainties expected from ground-based observations. As

in the previous section, galaxies were scattered following a Gaussian

distribution with rms σ z = 0.05 × (1 + z). The 50 mock catalogues

with a size equal to 2 × 2 deg2 were analysed separately and then

the matching with real haloes was performed following the same

procedure described in Section 4.3.1. We initially considered in the

matching all the haloes with mass M200 larger than 1012 M⊙ h−1

as identified in the catalogue. In Section 5.3, we will discuss and

modify this mass threshold for the halo catalogue. Position and red-

shift of the haloes are set equal to the ones of their central galaxy,

as indicated in the catalogue. As in the previous section, the cluster

search was performed in the redshift range of 0.3 ≤ z ≤ 1. We used

the same model Mc(r, m) and background distribution N(m, z) we

described in Section 4.2. Differently from the analysis of the ideal

mocks, in this case we ran AMICO applying the local background

estimation (see Section 2.6) that helps taking into account the large-

scale fluctuations of the field. We discuss its impact on the quality

of the detections in Section 5.3.

5.1 Completeness

Once the matching is performed, we can quantify the fraction of

real objects detected by AMICO per bin of redshift and mass.

We plot the results in Fig. 14, where for simplicity we show only

three mass bins, corresponding to masses, respectively, ∼0.2, ∼0.5,

∼1.0 × 1014 M⊙ h−1, each with a size �log M = 0.1. The com-

pleteness is shown for two different S/N cuts: S/N > 2 as we used
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Figure 15. Mean and scatter of the redshift bias (output–input) as a function

of the input redshift for structures with different masses. For clarity, just

three mass bins are shown, each with �log M = 0.1, and points that refer to

different mass bins are slightly offset along the x-axis. The solid lines limit

the region of 1σ uncertainty of the photometric redshift.

in Section 4, and S/N > 3.5, which protects against pure random

fluctuations of the background, as shown in Section 4.3.4. In gen-

eral, as one would expect, the completeness is decreasing both with

redshift and with mass.

Relating the measured completeness as a function of mass with

the analytical estimates as a function of amplitude shown in Fig. 4

is not trivial, because of the mass–amplitude relation, which we will

analyse in Section 5.3. The only sample for which we can directly

compare results with the analytical expectations is the one with

mass ∼1.0 × 1014 M⊙ h−1. Objects in this mass bin are detected

with completeness close to 1 at S/N > 2 for the entire redshift range.

The completeness at S/N > 3.5 of this sample is instead decreasing

at high redshift, coherently with the theoretical S/N that is close to

3.5 at z ≥ 0.9, as shown in Fig. 4.

5.2 Redshift estimation

We can perform in this more realistic environment the same analysis

we performed in Section 4.3.2 about the redshift estimation. The

results are shown in Fig. 15 for three different mass bins. Compar-

ing the results with Fig. 7, we see that the scatter is not as much

dependent on mass as it was on amplitude on the ideal mock. The

small bias that was visible in the idealized situation is completely

negligible in the realistic case. Both these differences depend on the

presence of other sources of noise in these mock catalogues, such as

the structures that are located along the line of sight to the detected

objects, making the background much more complicated than our

assumption of a random component with uniform mean. We see

that the scatter is also mildly dependent on redshift, as expected

since the scatter in the photometric redshifts is linearly dependent

on (1+z), and is of the order of 0.5σ z. This value may look large

considering the number of cluster members that contribute to the

redshift determination, but the precision is limited by the interven-

ing galaxies belonging to the large-scale structure. The absence of

redshift bias in this test depends also on the choice of using an un-

biased Gaussian distribution for the redshifts of the galaxies in the

mocks. In applications to real data, some bias in the cluster redshift

might arise if photometric redshifts in the catalogue are biased.

Figure 16. Density plot for the relation between halo mass and estimated

amplitude for two redshift bins: 0.3 ≤ z < 0.4 in the top panel, 0.8 ≤ z < 0.9

in the bottom panel. The red line marks the best-fitting mass–amplitude re-

lation. The dashed black vertical line indicates the 90 per cent completeness

limit for that redshift bin. Only objects with mass larger than that threshold

were considered in the fit. The two horizontal lines indicate the amplitude

corresponding to an S/N equal to 2 (threshold for detection) and 3.5. The

dashed red vertical line indicates the minimum mass for which the expected

amplitude corresponds to an S/N above the detection threshold, according to

the best-fitting mass–amplitude relation. The black dot indicates the original

calibration of the model, such that amplitude equal to 1 corresponds to a

mass of 1014 M⊙ h−1.

5.3 Mass–amplitude relation

One of the most important properties of a detection method for

galaxy clusters, especially for cosmological exploitation, is the re-

lation between the halo mass and the observable. In the case of

AMICO, the mass proxy is provided by the amplitude A of the de-

tection (see equation 5). The density plots for the mass–amplitude

relation in two different redshift bins are shown in Fig. 16, together

with the best-fitting log-linear relation log A = a × log M + b. To

avoid a more complete treatment that takes into account, the incom-

pleteness of the sample and the intrinsic scatter (see e.g. Andreon

& Bergé 2012; Sereno & Ettori 2015), the best-fitting relation is

computed considering only the mass range for which the complete-

ness is larger than 90 per cent, to have an almost complete sample

of measured amplitudes for a given bin of mass and redshift. The

lower limit of this mass range goes from log M/(M⊙ h−1) = 13.6

at low z to log M/(M⊙ h−1) = 13.9 in the last redshift bin. As it

can be seen in Table 1, the slope of the relation is between 0.5 and

0.6 at any redshift, somewhat flatter than what is usually found for

other richness estimators in literature (see e.g. Rykoff et al. 2012;

van Uitert et al. 2016; Sereno & Ettori 2017; Simet et al. 2017).

This may depend on the fact that the amplitude is computed by

AMICO with a fixed filter, which does not change according to the
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Table 1. Best-fitting parameters for the relation log A = a × log M + b between mass M and amplitude A for different redshift bins.

Between parentheses, we show the same parameters of the relation when AMICO is run without local background correction.

z range Slope a Intercept b Scatter of log A Scatter of log M

[0.3, 0.4[ 0.556 ± 0.045 (0.599 ± 0.036) −0.006 ± 0.011 (0.028 ± 0.010) 0.125 (0.156) 0.290 (0.310)

[0.4, 0.5[ 0.580 ± 0.032 (0.592 ± 0.031) −0.001 ± 0.009 (0.030 ± 0.009) 0.126 (0.150) 0.300 (0.326)

[0.5, 0.6[ 0.563 ± 0.036 (0.568 ± 0.035) 0.000 ± 0.009 (0.030 ± 0.009) 0.140 (0.146) 0.313 (0.344)

[0.6, 0.7[ 0.554 ± 0.039 (0.563 ± 0.031) −0.009 ± 0.009 (0.019 ± 0.009) 0.135 (0.156) 0.298 (0.326)

[0.7, 0.8[ 0.529 ± 0.046 (0.540 ± 0.045) −0.011 ± 0.010 (0.022 ± 0.010) 0.144 (0.164) 0.332 (0.343)

[0.8, 0.9[ 0.521 ± 0.065 (0.531 ± 0.049) −0.001 ± 0.013 (0.033 ± 0.011) 0.151 (0.158) 0.366 (0.395)

[0.9, 1.0[ 0.510 ± 0.092 (0.492 ± 0.068) −0.008 ± 0.020 (0.033 ± 0.013) 0.137 (0.151) 0.378 (0.392)

physical size of the object. We expect that for objects less massive

than 1014 M⊙ h−1 (and thus typically smaller than the model) the

correlated noise due to large-scale structure increases the measured

amplitude. On the other hand, for more massive and larger objects

we miss part of the galaxy population that exceeds the model radius.

It is in principle possible to extend the filter to the observed size

of the objects, employing the scale-adaptive version of it (Viola,

Maturi & Bartelmann 2010).

We point out the very precise estimate of the amplitude for objects

with mass ∼1014 M⊙ h−1. In fact, as the model has been derived

from the galaxy population of this sample of clusters, their expected

amplitude is equal to one by construction. AMICO recovers per-

fectly this value, with bias b consistent with zero over the whole

redshift range, with no significant difference with respect to the

ideal case presented in Section 4.3.2. This proves that even when

dealing with objects with different shapes, luminosity functions and

embedded in the large-scale structure, AMICO provides an unbi-

ased mass proxy, provided that the average cluster properties are

known.

In Table 1, we also show the scatter of the amplitude at given

mass σ A|M, and the scatter of mass at given amplitude σ M|A. The

latter was estimated from structures detected at S/N ≥ 3.5. The

shallow A–M relation makes σ M|A much larger than σ A|M. However,

both these values are somewhat dependent on the sample definition,

because they decrease for larger amplitude and mass.

Finally, we report in Table 1 the parameters of the mass–

amplitude relation that are obtained assuming a spatially uniform

background (i.e. neglecting the local background estimate described

in Section 2.6). By comparing parameters with and without local

background correction, we see that the advantage of applying the

f(θ , zc) local correction is twofold: the intercept b of the relation

is closer to zero and the scatter is reduced. This is consistent with

the expectation that massive haloes are embedded in a higher back-

ground that, when neglected, biases high the amplitude estimate.

It also proves the ability of our method to correctly capture these

large-scale features, reducing their contribution to the A–M scatter.

5.4 Miscentering

For several applications (e.g. weak lensing mass measurements,

galaxy density profiles), it is important to estimate accurately the

centre of the detected structure. AMICO, differently from other

methods, does not search for a central galaxy, but instead selects the

centre as the position of highest likelihood, that at a given redshift

corresponds to a maximum in amplitude as well (see equation 14).

The identification of the central galaxy can then be done a posteriori

according to the specific goal. We can measure the mean offset

between the centre as defined by AMICO and the central galaxy as

indicated in the catalogue. The results are shown in Fig. 17. The

Figure 17. Mean offset between the centre of the halo and the centre of

the detection, in pixels, as a function of halo mass. The pixel size is set to

0.005 deg that correspond to 63.7, 90.2 and 101.3 kpc h−1 at redshift 0.35,

0.65 and 0.95, respectively.

mean offset is typically of the order of the size of the amplitude

map pixel (0.005 deg). In physical units, this translates in a value

between 60 and 120 kpc h−1 that tends to increase with redshift. In

principle, the resolution of the amplitude map can be increased at

will, but there is a trade-off between precision and computing speed.

Moreover, given that our centre depends on a filtering procedure, it

is meaningless to give it with a precision smaller than the typical

size over which the filter changes significantly.

We underline that in Fig. 17, we are measuring the distance

between two quantities with a different definition: in the mock

catalogues, the centre is identified with the BCG, while our estimator

depends on the full galaxy distribution on the scale of the cluster.

Even if one neglects resolution issues, it is not expected that the two

correspond precisely for many of the objects. We note here that it is

possible to select BCGs a posteriori from AMICO detections (see

Radovich et al. 2017).

We also checked for systematics in the amplitude estimate with

respect to the centring offset. There is no significant trend as a

function of the offset in the mass proxy derived by AMICO. This is

expected as, by construction, the algorithm selects the position of

the maximum of A as the detection centre.

5.5 Membership

Having established the performance of the detection procedure, we

now focus on the assignment of the membership probability of the

galaxies, as we have done in Section 4.3.3 for the ideal case. Only

members of detections matched to real objects were considered in

the following analysis. In Fig. 18, we show the relation between
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Figure 18. Mean membership probability as estimated by the algorithm

versus the fraction of actual members. Red, black and green points refer

to galaxy members of haloes with log M/(M⊙ h−1) around 13.6, 14.0 and

14.4, respectively. The error bars are negligible because they are smaller

than the point size. The 1-to-1 relation is shown for reference as a black

solid line.

the estimated probability and the fraction of real members for three

different bins of mass. As explained in Section 4.2, galaxies in

the mock catalogues are defined as members when they are at a

distance ≤1.35R200 from the central galaxy. The plot in Fig. 18

shows that, even in a more realistic scenario, AMICO is able to

provide a reliable membership assignment through about an order

of magnitude in mass. For haloes with masses ∼1014 M⊙ h−1, the

relation is well calibrated with differences lower than 0.1.

The slight over(under)-estimation of the probability for smaller

(larger) haloes depends on the mismatch between the model and

the actual size of the objects. The flattening of the relation at high

probabilities is mostly due to small miscenterings of the true halo

position. To further improve the identification of the members of

a cluster, one can a posteriori correct the membership probability,

provided a reasonable estimate of the mass–amplitude relation is

obtained, but this goes beyond the scope of this paper.

5.6 Spurious detections

In general, the definition of spurious detection has some ambigu-

ity in this case, differently from the simple case analysed in Sec-

tion 4.3.4. We showed in Section 5.3, that, as for any mass proxy

based on photometric data, there is a significant scatter between

mass and amplitude, and thus also objects of small mass are ex-

pected to enter the sample if we do not set a very high threshold

in S/N or Aobs. On the other hand, due to the photometric redshift

uncertainty, it is necessary to search for detection counterparts in a

quite large window in z, inside which one will usually find some

corresponding halo, if no significant mass threshold is set. This

means that in this case there is not an obvious way to discriminate

true and false detections, and that most of the information on the

quality of the detection method is embedded in the mass-observable

plots shown in Fig. 16.

For this reason, we decided to define the mass threshold for

our sample considering the properties the mass–amplitude relation.

Given the analytic S/N estimates as a function of amplitude and red-

shift shown in Fig. 4, for each redshift bin we derive the amplitude

that corresponds to S/N = 2 (see the relation in Fig. 4) and define the

value of Mthr(z) as the one derived from the A–M relation, without

Figure 19. Number of spurious detections per square degree as a function

of S/N. Red line: 1σ redshift matching. Blue line: 2σ redshift matching.

Figure 20. Fraction of spurious detections with a minimum S/N. Red line:

1σ redshift matching. Blue line: 2σ redshift matching.

considering the scatter. We then consider as valid counterparts only

haloes that have mass bigger than Mthr(z). We note that this mass

is actually quite low compared to what is usually defined a cluster

and increases as a function of redshift, with log Mthr/(M⊙ h−1) that

goes from 12.44 at z = 0.35 to 13.14 at z = 0.95, following the

decrease in S/N for a fixed amplitude. All the detections without a

counterpart with log M > Mthr(z) are then considered as spurious.

We show in Fig. 19 the density per square degree of spurious

detections as a function of their S/N, and in Fig. 20, the fraction

of unmatched detections with an S/N larger than a given threshold.

Both results are shown for the normal matching procedure (red line)

and for the more relaxed criterion of 2σ in z. The S/N is confirmed

to be a good indicator of the confidence in a detection, as the frac-

tion of spurious detections is monotonically and steeply decreasing.

Comparing Fig. 19 with Fig. 9, we see that the number of spuri-

ous detections at 2 < S/N < 2.5 is actually lower in this case than

in the ideal case of pure random uncorrelated background. This

happens because the cleaning procedure applied on high S/N struc-

tures removes most of the very low-significance detections. On the

other hand, there is a small but not irrelevant number of detections

considered as spurious at 3 < S/N < 5. The fraction of unmatched

detections goes below 12 per cent (8 per cent) at S/N > 3.5 for the 1σ

(2σ ) redshift matching criterion and becomes negligible at S/N > 5.

This value is consistent with what was obtained on COSMOS data
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in Bellagamba et al. (2011) with a previous version of the algorithm

that did not implement the deblending procedure and the local cor-

rection for local background variations.

We underline again that this definition of spurious detection is

somewhat arbitrary. There is no reason why a halo of mass just

above Mthr should be considered as a good counterpart while one

just below this threshold should not, given the scatter in the A–M

relation. Actually, following the relation between mass and ampli-

tude derived in Section 5.3 and its scatter, one can estimate which

fraction of objects of a certain mass and redshift is expected to enter

the detection catalogue for a given S/N threshold. In our case, we

found that this would lead to a large overestimation of the expected

detections for objects of mass M � Mthr. In practice, most of the

very small objects are eliminated when bigger structures are found

and cleaned, because they are physically connected or randomly

aligned with them. As a consequence of this, we are actually detect-

ing fewer objects of mass similar or lower than Mthr with respect to

what one would expect combining the mass function and the scatter

in the mass–amplitude relation.

6 SU M M A RY A N D C O N C L U S I O N S

In this work, we presented AMICO, a new implementation of the

Optimal Filtering technique for cluster detection presented in Maturi

et al. (2005) and applied to photometric data in Bellagamba et al.

(2011). Differently from other approaches, Optimal Filtering is not

based on the search of any specific feature of galaxy clusters, but

instead aims at maximizing the S/N for the detection of objects that

follow a given model in data affected by a given amount of noise.

The model for clusters at redshift z can be considered an input

parameter in this approach and can in principle be derived from

previous observations or iteratively from the data. In this paper, we

did not focus on the extraction of the cluster model, and we instead

considered the workflow of AMICO once the model is known.

The first step in the detection procedure is the creation of a 3D

map constructed through the application of the Optimal Filter to the

data. This map contains in each pixel an estimate of the amplitude

of a tentative cluster centred in that position in the sky and redshift,

together with its S/N and likelihood. The main novelty we introduce

with AMICO with respect to Bellagamba et al. (2011) is the method

to derive the detection catalogue from the filtered map. Instead of

just selecting peaks above a certain S/N in the map, we apply a

procedure that aims at erasing iteratively the imprint of the identified

structures. This helps in the detection of smaller structures partially

overlapping with them in the sky. As a by-product, we also obtain

for each galaxy a reliable estimate of its probability to be a member

of the candidate clusters.

We tested the performance of the algorithm running it blindly on

mock catalogues. We first used catalogues with clusters that follow

our model and a constant random background to test the code in a

controlled environment. In this way, we verified that AMICO is able

to reach a completeness in agreement with theoretical expectations,

and unbiased estimates of amplitude and redshift for the detected

objects. All expectations were met. We then turned to specific tests

on the capability of AMICO to disentangle structures that are close-

by in the sky or aligned along the line of sight. In 50 per cent of

the cases, AMICO proved to be able to distinguish two structures

whose relative distance is ∼0.5 × R200 in the sky or ∼2 × σ z in

redshift, where σ z is the typical photometric redshift uncertainty of

the galaxies.

We finally turned our attention to the analysis of cosmological

mocks, produced by semi-analytic modelling of galaxy evolution on

a cosmological N-body simulation. In this case, the galaxy distribu-

tion is more similar to what observed in the Universe, with haloes of

different masses embedded in the large-scale structure. This makes

the detection procedure more difficult, because the background

is not homogeneous and the galaxy distribution of each cluster

may have peculiar properties. Despite the complexity of the data,

AMICO achieves a completeness for haloes with mass

∼1014 M⊙ h−1 close to 1 all over the considered redshift range

(0.3 < z < 1.0), in line with the theoretical predictions and the

results on the ideal mocks. The redshift of the detected haloes is

recovered with no significant bias, and with a scatter which is of

∼0.5σ z, higher than in the ideal case.

To analyse in more depth the results of the detection proce-

dure, we performed a fit of the mass–amplitude relation in different

redshift bins, considering the mass range for which the sample

is (almost) completely detected. The mass–amplitude relation has

a (logarithmic) slope between 0.50 and 0.60. Most importantly,

the bias for haloes with masses close to the calibration mass of

1014 M⊙ h−1 (i.e. the intercept of the log A–log M relation) is con-

sistent with zero at all z. This shows that the measured amplitude

respects the input calibration of the model. Also, the logarithmic

scatter of the amplitude does not show any evolution with z and is

always between 0.13 and 0.15. This indicates that the amplitude A

is an unbiased redshift-independent mass proxy, provided that the

model is calibrated with haloes of similar mass at each redshift.

A key step in this result is the local estimate of the background

population, which allows to subtract effectively the contribution of

the large-scale structure correlated with the clusters.

Finally, we verified that the S/N computed by AMICO is a reli-

able indicator of the goodness of a detection: the fraction of false

positives is < 8−12 per cent at S/N > 3.5 and practically zero at

S/N > 5. Note that for this calculation we considered as spurious all

the detections that do not have a counterpart in the halo catalogue

with mass above Mthr(z), which corresponds to a theoretical S/N

= 2. This sharp truncation in mass is motivated by our approach,

but nevertheless it neglects all haloes with that can be, and actually

are, detected because of the scatter in the mass–amplitude relation.

Therefore, our estimate is conservative.

AMICO is an algorithm that builds on the well-established Opti-

mal Filtering approach for cluster detection, solving in an effective

way the problem of extracting detections from the map. The cleaning

procedure allows the detection of groups and clusters that are close-

by or aligned to larger structures, a particularly challenging task for

the peak selection used traditionally in filtering methods (Kepner

et al. 1999; Milkeraitis et al. 2010; Bellagamba et al. 2011). In some

way, the cleaning procedure resembles the so-called percolation in

redMaPPer (Rykoff et al. 2014), where a membership probabil-

ity is attributed to the galaxies in a similar way to our equations

(21) and (23). Similarly to redMaPPer, the final centre, redshift and

richness of the detections are computed taking into account higher

ranked close-by clusters. We point out, however, that the way in

which detections are performed is different in the two algorithms:

redMaPPer computes and ranks the candidate cluster centres on

the original catalogue, while in AMICO each cluster candidate is

detected only after those with larger likelihood have been erased.

Moreover, redMaPPer removes from the list of possible centres the

galaxies that have a probability of belonging to another structure

larger than 50 per cent, while AMICO does not set any arbitrary

threshold, as the S/N in each point takes naturally into account the

available probability of the surrounding galaxies.

By choice, in this work, we ignored the problem of defining a

correct cluster model for a given data set, which is for sure an
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important part of the challenge of cluster detection, especially when

the redshift limits of the surveys are pushed above z = 1, when less

information about known structures is available. We are working on

the capability of AMICO to extract the cluster model from a given

data set, and we plan to show this feature in a future work.

Finally, we note that, thanks to its flexible structure, AMICO can,

in principle, be applied to other astronomical problems, such as the

detection of dwarf galaxies or globular clusters in star catalogues.
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