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Chronic brain ischemia is a prominent risk factor for neurological dysfunction

and progression for dementias, including Alzheimer’s disease (AD). In rats,

permanent bilateral common carotid artery occlusion (2VO) causes a progressive

neurodegeneration in the hippocampus, learning deficits and memory loss as it occurs

in AD. Kyotorphin (KTP) is an endogenous antinociceptive dipeptide whose role

as neuromodulator/neuroprotector has been suggested. Recently, we designed two

analgesic KTP-derivatives, KTP-amide (KTP–NH2) and KTP–NH2 linked to ibuprofen

(IbKTP–NH2) to improve KTP brain targeting. This study investigated the effects of

KTP-derivatives on cognitive/behavioral functions (motor/spatial memory/nociception)

and hippocampal pathology of female rats in chronic cerebral hypoperfusion (2VO-rat

model). 2VO-animals were treated with KTP–NH2 or IbKTP–NH2 for 7 days at weeks 2

and 5 post-surgery. After behavioral testing (week 6), coronal sections of hippocampus

were H&E-stained or immunolabeled for the cellular markers GFAP (astrocytes) and

NFL (neurons). Our findings show that KTP-derivatives, mainly IbKTP–NH2, enhanced

cognitive impairment of 2VO-animals and prevented neuronal damage in hippocampal

CA1 subfield, suggesting their potential usefulness for the treatment of dementia.

Keywords: 2VO-dementia model, chronic cerebral hypoperfusion, cognitive impairment, hippocampus,

kyotorphin derivatives, neuroprotection

INTRODUCTION

Current estimates indicate that 35.6 million people worldwide are living with dementia,
a number that is expected to nearly double every 20 years (World Health Organization

[WHO], 2012). Chronic brain ischemia is a prominent risk factor for neurological dysfunction
and progression for dementia including Alzheimer’s disease (AD) (Farkas et al., 2007;

Abbreviations: AD, Alzheimer’s disease; BBB, blood–brain barrier; CA, cornu ammonis; CATCH, critically attained
threshold of cerebral hypoperfusion; CNS, central nervous system; CSF, cerebrospinal fluid; DMSO, dimethyl sulfoxide;
GFAP, glial fibrillary acidic protein; H&E, hematoxylin and eosin; IbKTP–NH2, KTP–NH2 linked to Ibuprofen; i.p.,
intraperitoneal; KTP, kyotorphin; KTP–NH2, kyotorphin-amide; LWH, length, width, height; NFL, neurofilament-L (low–
molecular weight) protein; NO, nitric oxide; nNOS, nitric oxide synthase located in neurons; OFT, open-field test; 2VO,
permanent bilateral common carotid artery occlusion, two-vessel occlusion.
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Institoris et al., 2007; Cechetti et al., 2012). This irreversible

disease is characterized by progressive deterioration of cognitive
and memory function (Selkoe, 1999; de la Torre, 2004; Blennow

et al., 2006). There is accumulating evidence that AD is primarily
a vascular disease with neurodegenerative consequences (de la

Torre, 2004). The convergence of aging and decreased cerebral
perfusion results in a “critically attained threshold of cerebral

hypoperfusion” (CATCH), which promotes distortion of brain
capillary structure and impairment of NO release (de la Torre

and Stefano, 2000). Experimental animal models have been
improved to investigate circulation-dependent behavioral deficits

resultant of chronic cerebrovascular insufficiency as it occurs in
human aging and AD (Farkas et al., 2007). In rats, permanent

bilateral common carotid artery occlusion (two-vessel occlusion,
2VO) causes progressive and irreversible cognitive impairment

with Alzheimer’s phenotype: learning difficulties, memory loss,
failure of neuronal signaling, neuropathological damage in the
hippocampus and cerebral cortex within a variable time frame

since occlusion (Farkas et al., 2007). In 2VO-model there is
neurodegeneration of various cerebral structures, particularly in

the CA1 pyramidal cell layer of the hippocampus, a brain region
known to be highly implicated in spatial learning and memory

(Rolls and Kesner, 2006), and also susceptible to post-ischemic
inflammatory phenomena and β-amyloid accumulation (Sekeljic

et al., 2012).
Kyotorphin (KTP) is an endogenous dipeptide (L-Tyr-L-Arg)

synthesized in nerve terminals, that plays an important role
in pain inhibition at the CNS (Takagi et al., 1979a,b; Shiomi

et al., 1981; Ueda et al., 1986). To improve KTP delivery to
CNS through the manipulation of charge and affinity for lipids

(Ribeiro et al., 2012), we have recently succeeded in designing two
new KTP-derivatives: KTP-amide (KTP–NH2) and IbKTP–NH2

(Ribeiro et al., 2011a,b). Both derivatives proved to induce strong
analgesic activity following systemic administration (Ribeiro

et al., 2011a,b), in contrast with underivatized KTP, without
evidences of major side-effects when compared to clinically
relevant opioids (Ribeiro et al., 2013). Derivatization seems to

enable CNS-targeting. Besides analgesia, it has been hypothesized
that KTP has neuromodulating and neuroprotective properties

(Nazarenko et al., 1999; Bocheva and Dzambazova-Maximova,
2004), as well as an antiepileptic effect (Godlevsky et al., 1995)

and neuroleptic activity affecting calcium-dependent currents in
postsynaptic membrane (Santalova et al., 2004).

Due to its L-arginine residue, KTP could also act as substrate
for nNOS (NO synthase in neurons), with subsequent formation

of NO which would then induce analgesia via met-enkephalin
release (Arima et al., 1997). Disruption of NO homeostasis

may hasten the development of AD. Actually, prolonged brain
hypoperfusion brought on by CATCH seems to promote regional

endotheliopathies due to basal deficit of NO, that over time, can
evolve to such a degree that lead to AD symptoms and progressive

neurodegeneration (de la Torre and Stefano, 2000). Additionally,
when neuronal death occurs it may in turn cause a decreased level

of endogenous KTP in brain which further impacts on chronic
pain and impairment of NO production.

Our recent clinical studies support the existence of a link
between AD, pain, and KTP in humans. Indeed, not only we

observe that pain is underestimated in AD patients (Santos

and Castanho, 2013) but also that KTP has decreased levels in
the CSF of AD patients (Santos et al., 2013). Moreover, there

was an inverse correlation between levels of phosphorylated-
tau protein (biomarker of AD progression) and of KTP (Santos

et al., 2013). The present study was conducted to investigate
the neuroprotective effects of chronic post-ischemic treatment

with KTP–NH2 and IbKTP–NH2, on motor function, memory
impairment, and hippocampal injury in a 2VO-dementia rat

model.

MATERIALS AND METHODS

Compounds
Peptides KTP–NH2 and IbKTP–NH2 were synthesized as
described elsewhere (Ribeiro et al., 2011a; Ramu et al.,

2014). For animal-surgery, anesthetic, and analgesic drugs
were: Imalgene R©1000 (ketamine 100 mg/ml; Merial, France);
Domitor R©(medetomidine hydrochloride 1 mg/ml; Pfizer,

OrionPharma, Finland); Antisedan R©(atipamezole hydrochloride
5 mg/ml; OrionPharma); Bupaq R©(buprenorphine 0.3 mg/ml;

RichterPharma, Austria).

Animals and Housing
Young female Sprague–Dawley rats weighing 225–250 g (3-
month-old), purchased to Charles River (L’Arbresle Cedex,

France), were housed in-group (3–4 per cage) with unrestricted
access to water and food, and under controlled conditions

(22 ± 2◦C; lights on: 7:00 a.m. to 7:00 p.m.). Surgical procedures
and behavioral testing were carried out during the light period of

the 12 h light–dark cycle.
All described experiments were conducted in compliance with

the European Community legislation (Directive 2010/63/EU),
and were approved by the Ethical Committee for Animal

Research of IMM (Faculty of Medicine, University of Lisbon)
and the Portuguese Competent Authority for Animal Welfare

(DGAV).

Surgery: Two-Vessel Carotid Artery
Occlusion (2VO) Procedure
One week after animals’ arrival, permanent global ischemia
and sham surgery was performed as described elsewhere

(Bennett et al., 1998; Vicente et al., 2009). Briefly, animals were
anesthetized for surgery with a mixture of ketamine (75 mg/kg

BW, i.p.) plus medetomidine (4 mg/kg BW, i.p.). Following
ventral midline incision, both common carotid arteries were

exposed and carefully separated from their sheats and vagal
nerves, and permanently ligated with 5–0 silk sutures. Sham-

group was subjected to the same surgical procedures without
actual carotid-ligation. After the procedure, rats were injected

with the medetomidine-reversing agent mixture (Antisedan R© ;
1 mg/kg BW) and kept on a 37◦C heating pad until they

recovered from the anesthesia. During the first 24 h post-
surgery, buprenorphine was administrated for pain relief

purposes (0.05 ml/150–300 g BW q 8–12 h). (More details in
Suplemmentary Material).
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Rat Treatment Regimen
KTP–NH2 and IbKTP–NH2 were dissolved in saline solution
(0.9% NaCl, 5% DMSO) prior to i.p. injection (dose volume

of 1 ml/kg BW). KTP-derivatives were administrated as a
chronic treatment regimen during 7 consecutive days (single i.p.

dose/day) in two different timings: (A) 1 week and (B) 4 weeks
after the onset of 2VO-surgery. KTP-derivatives were injected

only to occluded-animals.
Animals were matched by body weight and randomly assigned

to one of four experimental groups: (1) sham-operated controls
(sham group); (2) 2VO-control group; (3) 2VO-animals receiving
KTP–NH2 i.p. (32.3 mg/kg = 96 µmol/kg); and (4) 2VO-animals

receiving IbKTP–NH2 i.p. (24.2 mg/kg = 46 µmol/kg).
Selected doses of KTP-derivatives were based on our

previous results concerning their analgesic action profile
(Ribeiro et al., 2011a,b, 2013). Control 2VO- and sham-

operated groups were i.p. injected with the vehicle
(saline solution). A timeline of experiments is depicted in

Figure 1.

Behavioral Test Procedures
At week 6 post-surgery (Figure 1), rats were tested in standard
behavioral paradigms (in a quiet room with dimmed light).

A blind coding was used for the animal groups. (Full details of
this section in Supplementary Material).

Motor Function Testing: Open-Field

Open-field test (OFT) is a widely used test of locomotion
activity, exploratory and anxiety behaviors (Ribeiro et al.,

2013). Testing protocol has been described by us in detail
previously (Ribeiro et al., 2013). Briefly, 15 min after i.p.

injection (with one of KTP-derivatives or with vehicle) rats
were placed individually in the center of OFT arena (LWH:

67 cm × 67 cm × 51 cm), behavior was video-recorded for
5 min and motor activity parameters obtained using specific

software (Smart version 2.5.10 program; Panlab, Barcelona,
Spain). Results are shown as average velocity (i.e., mean velocity

with the resting time excluded), % of time resting, number of
crossings between two areas inside apparatus and % of time

spent in the center of arena (for details see Ribeiro et al.,
2013).

Memory Testing: Y-Maze

Y-maze is a simple two-trial recognition test for measuring
spatial recognition memory skills in rodents (Dellu et al.,

2000). Experimental protocol was similar as the one described
in (Wang et al., 2006). Briefly, Y-shaped apparatus comprises

three identical arms at a 120◦ angle from each other (arm
dimensions, LWH: 35 cm × 10 cm × 20 cm). Those three

arms were designated as Start arm, in which the rat starts to
explore (always open), Other arm (always open) and Novel

arm, which is blocked at the first trial (acquisition phase) but
open at the second trial (retention phase). Animal behavior

was video-monitored for 5 min (second trial), enabling the
number of total entries (sum of entries in all three arms, i.e.,

Novel+Other+Start) and time spent in Novel and Other arms
to be analyzed.

Pain Testing: Hot-Plate

Thermal sensitivity evaluation was done using the hot-plate
nociception testing. Briefly, immediately after the last i.p.

injection animals were placed individually on an 35◦C aluminum
surface, heated gradually at 9◦C/min (cut-off = 52.5◦C)

(IITC Incremental Hot/Cold plate, Series 8/Software, IITC Life
Sciences, San Fernando Valley, CA, USA). The temperature to

elicit a hind paw licking or jumping was recorded.

Histopathology and
Immunofluorescence
After the last behavioral test, rats were anesthetized using

ketamine/medetomidine mixture and perfused transcardially
with 0.9% saline, followed by 4% paraformaldehyde. Brains were

removed, post-fixed and coronal 15-µm thickness sections
were cut (Leica CM 3050S cryostat, Nussloch, Germany).
Sections of dorsal hippocampus (Paxinos and Watson, 2007)

were serially collected, with one in every two processed for
Hematoxylin-Eosin (H&E) staining or immunofluorescence.

The first set were H&E-stained and subsequently observed
under a brightfield microscope Leica DM2500 (Wetzlar,

Germany) equipped with a digital camera Leica DFC420
for image acquisition (Software Leica FireCam version

3.4.1; 1.25× HCX PL FLUOTAR (NA 0.04) and 5× N
PLAN (NA 0.12) dry objectives). Researcher evaluating the

histology was blind to the type of treatment the animals had
received.

For immunofluorescence studies, the second set of
hippocampal sections was double-stained for the astrocytic

marker mouse anti-glial fibrillary acidic protein (GFAP, 1:200;
Milipore, Temecula, CA, USA) and for the neuronal marker

rabbit anti-neurofilament-L protein (NFL, 1:50; Milipore).
Secondary antibodies were goat anti-mouse IgG Alexa 488

(1:200; Molecular Probes, Eugene, OR, USA) and goat anti-
rabbit IgG Alexa 594 (1:200; Molecular Probes). Sections
were counterstained with the DNA stain, Hoechst 33342

(6 µg/ml; Molecular Probes). All samples were analyzed in
a Zeiss LSM 510 META confocal point-scanning microscope

(Mannheim, Germany) using excitation wavelengths of 405, 488,
and 594 nm (for blue, green, and red channels, respectively).

Immunofluorescence images were capture (Software LSM 510
version 4.0 SP2; 40× Water Immersion C-Apochromat (NA

1.2) objective) in two randomized areas of dorsal CA1 subfield
in both hemispheres, i.e., CA1 images were taken bilaterally in

each rat. All acquisition conditions were kept constant between
samples during the capture process.

Tissue background was determined and since its
autofluorescence was negligible, background subtraction

was not required for immunofluorescence quantification.
Maximum intensity Z-stack projection was carried out and

ImageJ Fiji 1.48c Software (http://rsb.info.nih.gov) was used to
measure the intensities of the fluorescence signals for GFAP

(green) and NFL (red), after gray-scale threshold determination.
One measurement was taken from each hippocampus of each

animal (two measurements per rat, 3–4 rats per group) rendering
a total of 6–8 data points per group. The investigator was blind
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FIGURE 1 | Time course of the experiments planned. Female Sprague–Dawley rats were divided into groups according to the type of surgery and to the

injected compound during the two time periods A and B: i.e., KTP–NH2 (32.3 mg/kg = 96 µmol/kg), IbKTP–NH2 (24.2 mg/kg = 46 µmol/kg) or saline solution

(vehicle). KTP-derivatives were administrated only to 2VO-animals. Last day of “Time period B” corresponded to the first day of behavioral testing (i.e., open-field

test). Abbreviations: i.p., intra-peritoneal; 2VO, two-vessel occlusion.

to animals’ experimental condition during image analysis. (Full

details in Supplementary Material, including equipment and
settings).

Statistical Analysis
Data are represented as the groups’ mean ± SEM (standard error
of the mean).

All statistical analyses were calculated with Prism 6 Software
(GraphPad Software, La Jolla, CA, USA). Statistically significant
differences were analyzed using two-tailed Student’s t-test

(unpaired) or one way ANOVA followed by Tukey’s multiple
comparison test when indicated. P < 0.05 was considered

significant.

RESULTS

Histopathological and
Immunofluorescence Evaluation
Representative photomicrographs of H&E-stained hippocampal

sections are shown in Figure 2. In some animals subjected
to 2VO-surgery, brain tissue loss was observed (Figure 2A):

ischemic regions were colored white while the non-ischemic
regions were colored pink.

2VO-control animals showed significant unilateral changes
(right or left hemisphere) in the histoarchitecture of cornu

ammonis (i.e., CA1, CA2, and CA3) subfields (Figure 2B),
namely the loss of pyramidal cells layers. These degenerative

changes were not observed in both KTP-treated 2VO groups.
Immunofluorescence studies were performed to evaluate

the effects of KTP-derivatives on astrocytic responses and
against neuronal damage in hippocampal CA1 subfield, using

as cellular markers, GFAP and NFL, respectively. Representative
immunofluorescence images are presented in Figure 3A, in

which one can observe a lower NFL signal for 2VO-control
group compared with other groups. Quantitative analysis of both

fluorescence signals (Figure 3B) showed no significant effects on

GFAP occur in the three 2VO-groups when compared to the
sham group. As expected, there was a significant decrease in NFL

content in 2VO-control group (Figure 3B; P-values shown in
the table footnotes). In contrast, the NFL immunofluorescence

results for both KTP-treated 2VO groups were similar to those in
sham group.

Open-Field Test
Locomotor activity in a new environment was measured in

an open-field apparatus (Figure 4). There were no difference
between the vehicle-treated animals (i.e., sham-operated and

2VO controls) for the velocity parameter, % of time resting and
number crossings. In fact, the only significant difference between

the sham-operated rats and the three 2VO-groups was the % of
time spent in the center of the arena (Figure 4C), i.e., all the

2VO-animals exhibit a more pronounced anxious behavior.
Moreover, the pattern of locomotor response is clearly

different in IbKTP–NH2-treated 2VO group as those animals

moved slower (Figure 4B), spent more time resting (Figure 4A)
and crossed less frequently between areas (Figure 4D). We

previously reported this effect in normal rats (without any type
of surgery, and also after 15 min i.p.) and seems to be due a

synergistic effect of ibuprofen and KTP (Ribeiro et al., 2013).
The statistical comparisons, the number of animals and

P-values are shown in the respective figure legend.

Y-Maze
Figure 5 shows the results of KTP-treated 2VO animals in
Y-maze task, in which short-term spatial recognition memory

was evaluated.
To determine if the motivation to explore the maze apparatus

was the same among the groups during the testing period,
the number of total arm entries were analyzed. There was no

difference found between all groups in terms of total number
of arm entries (Figure 5A). Analysis of which arm was chosen

Frontiers in Aging Neuroscience | www.frontiersin.org 4 January 2016 | Volume 8 | Article 1

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Sá Santos et al. Neuroprotective Effects of Kyotorphin-Derivatives

FIGURE 2 | Representative H&E staining photomicrographs of hippocampal sections from sham-operated and 2VO-female rats treated or not with

KTP-derivatives (details in Figure 1). Histological evaluation was performed six weeks after surgery. (A): images showing ischemic lesion (white area, black arrow)

in 2VO rat (12.5× magnification). Scale bar: 300 µm. (B): images showing unilateral changes of the CA1, CA2, and CA3 pyramidal cell layers in 2VO-control group

(black arrows are pointing at damaged layers) (50× magnification). Scale bar: 80 µm. Abbreviations: CA, cornu ammonis; CTR, control; 2VO, two-vessel occlusion;

CTR Sham, control sham-operated animals; DG, dentate gyrus.

to be explored first revealed similar outcomes between sham-

operated and IbKTP–NH2-treated groups: i.e., all those animals
entered the Novel arm as the first choice (100%), whereas the

2VO-control group chose unanimously the Other arm to go first.
The percentage of animals that entered Novel arm as first choice

in KTP–NH2 group was 60%.
Additionally, there was no difference between sham group

and KTP-treated 2VO groups for the % of time spent in the

Other arm and in the Novel arm (Figure 5B). In contrast,
the 2VO-control group spent less time in the Novel arm

when compared with sham-operated animals. Also, the analysis
within each experimental group showed that 2VO-control group

explored the Other arm significantly more than Novel arm
(Figure 5B),whereas all the other groups (sham and KTP-treated

2VO animals) spent similar amount of time both in the Novel and
Other arms (Figure 5B). The statistical comparisons, the number

of animals and P-values are shown in the respective figure legend.

Hot-Plate Test
Sensitivity of sham- and 2VO-groups to painful stimuli was

assessed using the hot-plate test. As shown in Figure 5C,
2VO-control group exhibited a pronounced sensitivity in hot-

plate response, with first signs of pain being observed at lower
temperature (43.00 ± 0.64◦C), evidenced by the threshold

variation decrease of 2–3◦C when compared to the other three
groups. Similar pain behavior between sham and KTP-treated

2VO groups was observed. The statistical comparisons, the
number of animals and P-values are in the respective figure

legend.

DISCUSSION

It is now consensual that ischemic episodes in brain trigger
a cascade of degenerative events similar to those that
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FIGURE 3 | (A) Representative confocal Z-stack images (maximum intensity) of imunostaining for GFAP (green, astrocytic marker) and NFL (red, neuronal marker) in

the hippocampal CA1 subfield from sham-operated and 2VO-female rats (details in Figure 1). Nuclei is stained blue (Hoechst). Upper panels: control groups, sham

and 2VO (left and right painel, respectively). Lower painels: KTP-treated 2VO groups, 2VO KTP–NH2, and 2VO IbKTP–NH2 (left and right painel, respectively) (400×

magnification). Note a significant decrease in the NFL signal in the 2VO-control group. Scale bar: 50 µm. (B) Quantitative results of GFAP and NFL fluorescence

signals. Measurements were performed bilaterally from 3 to 4 rats per group, rendering at least 6 data points per group. Abbreviations: CTR, control; 2VO,

two-vessel occlusion; CTR Sham, control sham-operated animals; GFAP, glial fibrillary acidic protein; NFL, neurofilament-L protein.

ultimately culminate in irreversible dementia of Alzheimer’s

phenotype (Pluta et al., 2013). Besides β-amyloid peptide and
hyperphosphorylated tau protein accumulation in post-ischemic

brains, human epidemiological studies indicated a higher
incidence of dementia (i.e., up to ninefold) following a few
months of ischemic injury (Pluta et al., 2013).

Permanent bilateral common carotid artery occlusion (2VO)
in rats is a suitable experimental model to investigate the

neurodegeneration and cognitive consequences of chronic brain
hypoperfusion. Like in human aging and dementia, the 2VO-

animals show a progressive loss of hippocampal neurons, which
in turn leads to cognitive decline and behavioral changes (Farkas

et al., 2007). The usefulness of the 2VO-rat model for the

development and testing of potentially neuroprotective drugs,

against ischemic damage, and/or dementia, has been emphasized
(Farkas et al., 2007).

In this work, two analgesic KTP-derivatives, KTP–NH2

and IbKTP–NH2, were studied regarding their ability in
post-ischemia to ameliorate cognitive dysfunction, behavioral

functions, and neuronal damage caused by chronic brain
hypoperfusion in female rats (2VO-rat model). From a

therapeutic standpoint, it is of interest to test their effectiveness
after the onset of the ischemic insult. We choose two timepoints

during chronic phase of brain hypoperfusion for KTP-derivatives
administration (i.e., weeks 2 and 5, Figure 1), taking into

account the progressive neuropathologic changes in hippocampal
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FIGURE 4 | Locomotion performance of KTP-treated rat females, during the 6th week after the onset of 2VO-surgery (details on chronic treatment

regimen in Figure 1). Open-field test (OFT): 2VO-animals were individually placed in the center of the test apparatus 15 min after being i.p. injected with one of

KTP-derivatives (KTP–NH2 or IbKTP–NH2 ), or vehicle (saline with 5% DMSO used as a control). Sham-operated animals were injected with the vehicle. Behavior was

video-recorded for a 5 min time period and data are shown as % time spent resting (A), average velocity (B), % time spent in the center of the arena (C), and the

number of crossings (D). In all OFT experiments, n = 5 animals per group. In (A,D): ∗∗∗P < 0.001 vs. 2VO-control and sham-operated groups. In (B,C): ∗∗P < 0.01,
∗∗∗P < 0.001 vs. sham-operated group. In (A,B,D): ##P < 0.01 vs. KTP–NH2 . Data analyzed using one way ANOVA [P = 0.0003 in (A), P = 0.0027 in (B),

P = 0.0001 in (C,D)] followed by Tukey’s post test. All data are expressed as mean ± SEM. Abbreviations: CTR, control; 2VO, two-vessel occlusion; CTR sham,

control sham-operated animals.

CA1/CA3 subfields reported in 2VO-model, i.e., comprising
periods of negligible neuronal death and when hippocampal

neuronal injury is obvious (Farkas et al., 2007). In addition,
the one week treatment window after 2VO-surgery provides

a clinically relevant paradigm for ischemic insult/dementia
therapy.

The protective effects of KTP-derivatives on hippocampal
neurons were shown by H&E staining and NFL

immunofluorescence. In 2VO-animals treated with saline
solution (2VO-control group) there was a notorious unilateral

damage at CA1, CA2, and CA3 subfields reflected by the
disappearance of the well-defined layer of pyramidal neurons

(Figure 2). In contrast, both KTP derivatives were effective
in preventing extensive neuronal death at those regions.

Immunofluorescence studies were focused on CA1 NFL
proteins. Loss of NFL is closely related with the selective

vulnerability of CA1 neurons in cerebral ischemia (Nakamura
et al., 1992). Futhermore, increased CSF levels of neurofilament

proteins (including NFL) has been described as marker of
neuronal death and axonal degeneration in several neurological
disorders (Scherling et al., 2014). Chronic hypoperfusion caused

a significant reduction in the NFL signal in the CA1 subfield

(2VO-control group, Figures 3A,B). In contrast, no changes
were observed for KTP–NH2 and IbKTP–NH2 groups when

compared to the sham-control group.
Cerebral ischemia triggers reactive astrogliosis, a condition

characterized by an increase of GFAP levels in astrocytes (Farkas
et al., 2007). Although astrocytic activation and proliferation can

be detected in the cortex (Farkas et al., 2007) and hippocampus
(Cechetti et al., 2012) after 1 week of the occlusion, GFAP increase

may be not evident until 6 months later (Farkas et al., 2007).
This is in agreement with the absence of major astrogliosis

in hippocampal CA1 region after 6 weeks of 2VO-surgery
(Figure 3).

Although ischemic injury may affect brain areas related to
motor function (i.e, cortex and neocortex regions), there are no

obvious signs of motor deficits in 2VO-rats (Farkas et al., 2007;
Cechetti et al., 2012). Similar results were obtained for control

groups (sham-operated and 2VO) in terms of velocity, % of
resting and number of crossings, suggesting that bilateral carotid-

occlusion did not impair locomotion performance (Figure 4). In
fact, when tested in the Y-maze arena all the 2VO-groups showed
same behavior as the sham-operated ones in the total number

of arm visits (another locomotor activity index, (Wang et al.,
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FIGURE 5 | Cognitive performance in the Y-maze (A,B) and pain behavioral responses in the hot-plate (C) of KTP-treated rat females during the 6th

week after the onset of 2VO-surgery (details on chronic treatment regimen in Figure 1). (A,B) Y-maze: animals were individually placed in the Start arm of

the apparatus and allowed to explore freely the entire maze. Behavior was video-monitored for a 5 min time period and data are shown as number of total entries (A)

and % time spent in the Other and Novel arms (B). In all Y-maze experiments, n ≥ 4 animals per group. In (B): #P < 0.05 vs. sham-operated group; ∗P < 0.05,
∗∗P < 0.01 vs. 2VO-control group, one way ANOVA [P = 0.0083 for % time in Other arm, P = 0.0283 for % time in Novel arm] followed by Tukey’s post test.

Comparison between % time in Other arm and % time in Novel arm for 2VO-control group: §§ P = 0.0028, unpaired two-tailed Student’s t-test. (C) Hot-plate:

animals were individually placed in the analgesimeter apparatus and temperature to elicit a hind paw licking or jumping recorded. In all hot-plate experiments, n ≥ 3

rats per group ∗P = 0.0209 vs. sham-operated group; #P = 0.0123, ##P = 0.0026 vs. 2VO-control group, unpaired two-tailed Student’s t-test. All data are

expressed as mean ± SEM. Abbreviations: CTR, control; 2VO, two-vessel occlusion; CTR sham, control sham-operated animals.

2006), reinforcing that locomotor function remained intact in
2VO-animals. Nevertheless, all female rats subjected to bilateral

occlusion weremore anxious than the sham-controls in the open-
field, as measured by decreased time spent in the center of the

arena. These results are in agreement with previous studies of
global ischemia, in which tested animals developed an anxious

behavior (Dhooper et al., 1997). Clinical studies have shown
mood alterations and increased anxiety levels in AD patients
(Teri et al., 1999). Hippocampus plays a crucial role in many

species-typical behaviors (like anxiety), potentially influencing
performance in a variety of behavioral tests (Castelhano et al.,

2013). Indeed, hippocampal damage disrupts spatial cognition
and may induce increased motor activity in rodents. Previous

studies indicate that even small lesions in dorsal CA1 subfield of
mice lead to dramatic spatial memory impairments in the Y-maze

and hyperactivity upon exposure to a novel environment (Dillon
et al., 2008). Herein, the anxious behavior of 2VO-operated

animals was not affected by the administration of KTP-derived
compounds, showing that these peptides probably do not possess

intrinsic anxiolytic properties, and/or did not act on key areas
responsible for this behavior.

Spatial recognition memory of female rats was measured by
the two-trial Y-maze test (Dellu et al., 2000; Wang et al., 2006).

Y-maze paradigm is based on an innate tendency of rodents
to explore a novel environment but not on learning a new

behavior or rule, allowing to measure behavior parameters such
as recognition vs. discrimination memory and spatial exploration

(Dellu et al., 2000; Wang et al., 2006). Rodents typically prefer
to investigate a new arm of the maze (unfamiliar) rather than

returning to one that was previously visited (familiar). Therefore,
if memory and novelty-seeking behavior are not affected, animals

are expected to enter the Novel arm more than the Other
arm. In our study, although all animals shown to be equally
motivated to explore the Y-maze (total entries into all arms were

similar), their response to novelty inside the apparatus was not
the same. A significant difference was detected between groups

related to the first arm choice and percent of time spent in
Novel vs. Other arms with the 2VO-control group spending

more time and choosing the Other arm to go first (Figure 5B).
This indicates that 2VO-surgery induced short-term memory

deficits, making those females unable to discriminate novelty
and familiarity. Conversely, both KTP-treated groups and sham-

animals chosen more often first the Novel arm and spent similar
time in the Novel vs. Other arm. In fact, the percentage of

animals that entered the Novel arm as the first choice was 100%
in both sham and IbKTP–NH2 groups and 60% in KTP–NH2

group. Since the first choice for Novel arm reflects recognition
of the unfamiliar arm (discrimination memory), is obvious

that administration over time of IbKTP–NH2 and KTP–NH2

improved the ability of 2VO-animals to distinguish the Novel
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arm from the familiar ones. Therefore, IbKTP–NH2 and KTP–

NH2 treatment enhanced spatial recognition memory in 2VO
animals, with a greater effect of IbKTP–NH2.

A direct correlation between cerebral hypoperfusion-induced
memory deficits and hippocampal CA1 neuronal damage has

been reported (Bennett et al., 1998; De Jong et al., 1999; Cechetti
et al., 2012; Xi et al., 2014). In addition, Y-maze memory

performance in female rats (same strain as the one used herein)
is more tightly coupled with CA1 morphology than CA3 subfield

when compared to male rats (McLaughlin et al., 2005). Taken all
together, one concludes: improved memory abilities seen in KTP-

derivatives-treated 2VO female rats is due to the neuroprotective
effects of peptides on CA1 neurons.

Several evidences support that hippocampus processes
nociception-related information, including the affective-

emotional component involved (McKenna and Melzack, 2001).
Dorsal hippocampal CA1 neurons respond to persistent
noxious stimuli, and specific neuronal-receptor antagonists

microinjections into the dentate gyrus and CA1 region produce
analgesia (McKenna and Melzack, 2001; Soleimannejad et al.,

2006). Therefore, it is likely that alterations in hippocampal
structure/function, such as the ones induced by 2VO-surgery,

lead to changes in pain perception. Herein, the hot-plate test
(acute pain model) was used to assess nocifensive response to

thermal stimuli. Our data shows a similar nociception outcome
between sham-operated and KTP-treated 2VO groups, whereas

2VO-vehicle group displayed significant higher sensitivity in
thermal response (Figure 5C). At first, the latter findings seem

to contrast with evidences of increasead hot-plate latencies
in rats with frontal/cingulate cortex lesions (i.e., disruption

of supraspinally integrated responses) (Pastoriza et al., 1996).
However, we can not exclude, despite efforts to habituate all

animals to the analgesimeter, the lower pain threshold in 2VO-
vehicle females may reflect an anxiety-related behavior (an

aggravating factor for experimental/clinical pain) (Le Bars et al.,
2001).

CONCLUSION

Our experimental findings clearly show that KTP-derivatives

improved cognitive impairment and prevented neuronal damage
in hippocampal CA1 subfield induced by chronic cerebral

hypoperfusion. Moreover, IbKTP–NH2 showed to be more
effective in restoring normal cognitive function than KTP–NH2.

The mechanism underlying this repair and/or recovery seems
to involve, in addition to improved permeability across lipid

bilayers (Serrano et al., 2015) and other factors, the presence of
the ibuprofen in IbKTP–NH2 derivative, which may attenuate

some of neuroinflammatory processes in 2VO-ischemic brain.

Epidemiological studies have shown that long-term NSAIDs-

based therapies reduce the risk of developing AD (Gasparini
et al., 2004). Also, several NSAIDs including ibuprofen protect

neurons against mitochondrial Ca2+ overload induced by
β-amyloid oligomers (Yu et al., 2009). In rodent AD models,

chronic administration of ibuprofen prevents oxidative damage,
significantly inhibits amyloid formation and deposition, and

improves cognitive functions (Gasparini et al., 2004; Wilkinson
et al., 2012). Further studies are needed to unveil which are the

molecular targets of IbKTP–NH2.
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