
METHODOLOGY ARTICLE Open Access

Amino acid encoding for deep learning
applications
Hesham ElAbd1, Yana Bromberg2,3,4, Adrienne Hoarfrost2, Tobias Lenz5, Andre Franke1*† and Mareike Wendorff1†

* Correspondence: a.franke@

mucosa.de

Andre Franke and Mareike Wendorff

are joint coordination and

supervision of project
1Institute of Clinical Molecular

Biology,

Christian-Albrechts-University of Kiel,

Kiel, Germany

Full list of author information is

available at the end of the article

Abstract

Background: The number of applications of deep learning algorithms in

bioinformatics is increasing as they usually achieve superior performance over

classical approaches, especially, when bigger training datasets are available. In deep

learning applications, discrete data, e.g. words or n-grams in language, or amino

acids or nucleotides in bioinformatics, are generally represented as a continuous

vector through an embedding matrix. Recently, learning this embedding matrix

directly from the data as part of the continuous iteration of the model to optimize

the target prediction – a process called ‘end-to-end learning’ – has led to state-of-

the-art results in many fields. Although usage of embeddings is well described in the

bioinformatics literature, the potential of end-to-end learning for single amino acids,

as compared to more classical manually-curated encoding strategies, has not been

systematically addressed. To this end, we compared classical encoding matrices,

namely one-hot, VHSE8 and BLOSUM62, to end-to-end learning of amino acid

embeddings for two different prediction tasks using three widely used architectures,

namely recurrent neural networks (RNN), convolutional neural networks (CNN), and

the hybrid CNN-RNN.

Results: By using different deep learning architectures, we show that end-to-end

learning is on par with classical encodings for embeddings of the same dimension

even when limited training data is available, and might allow for a reduction in the

embedding dimension without performance loss, which is critical when deploying

the models to devices with limited computational capacities. We found that the

embedding dimension is a major factor in controlling the model performance.

Surprisingly, we observed that deep learning models are capable of learning from

random vectors of appropriate dimension.

Conclusion: Our study shows that end-to-end learning is a flexible and powerful

method for amino acid encoding. Further, due to the flexibility of deep learning

systems, amino acid encoding schemes should be benchmarked against random

vectors of the same dimension to disentangle the information content provided by

the encoding scheme from the distinguishability effect provided by the scheme.

Keywords: Deep-learning, Amino acid encoding, Amino acids embedding, Protein-

protein interaction (PPI), HLA-II peptide interaction, Convoluted-neural network

(CNN), Recurrent neural network (RNN), Machine-learning (ML), Human-leukocyte

antigen (HLA)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

ElAbd et al. BMC Bioinformatics (2020) 21:235

https://doi.org/10.1186/s12859-020-03546-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03546-x&domain=pdf
http://orcid.org/0000-0003-1530-5811
mailto:a.franke@mucosa.de
mailto:a.franke@mucosa.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Background

Deep learning has recently received a lot of attention due to the major breakthroughs it

has enabled in computer vision, machine translation, and bioinformatics. In bioinfor-

matics, deep learning has been applied, for example, to SNP and small indel calling [1],

to estimate the impact of non-coding variants on DNA-methylation [2], as well as for

the prediction of protein function [3], structure [4], and protein-protein interactions

(PPI) [5].

A critical step before feeding amino acid sequences to the model is numerical encod-

ing through an encoding scheme that assigns a numerical representation to each amino

acid, i.e. it is a map from the input amino acids to some point in the representational

space of the scheme. Arguably, any encoding scheme should fulfill two requirements;

First distinguability, meaning that you are able to distinguish or discriminate between

the elements that the scheme is supposed to encode, e.g. amino acids; Second, preserv-

ability, meaning that the scheme is capturing or preserving the relationship among the

elements of the scheme, usually this relationship is expressed geometrically through the

vector representation of the encoded elements. Benchmarking of different amino acid

encoding schemes for predicting amino acid similarity demonstrated that the encoding

process plays a critical role in the applicability and quality of the model [6].

Despite the importance of biological sequence encoding, however, the investigation

and development of encoding schemes for biological sequence information have not

caught up with the accelerated development of deep learning models. Most of the

newly developed models still use encoding schemes that were developed in the pre-

deep-learning era. For example, orthogonal encoding, commonly known as “one-hot

encoding” [7], substitution matrices such as the BLOck SUbstitution Matrix (BLOSUM)

[8], and physicochemical character-based schemes such as the principal components

score Vectors of Hydrophobic, Steric, and Electronic properties (VHSE8) [9], are com-

monly employed.

Notably, while providing a numerical representation of amino acid sequences, these

encoding schemes often try to capture prior domain knowledge about amino acids as

similarities between vectors. Where one-hot encoding assumes no prior knowledge,

BLOSUM captures evolutionary relationships, and VHSE8 captures physicochemical

properties. However, most of the current encoding schemes, which depend upon

manually curated features, are general-purpose encoding schemes that are not opti-

mized for the specific tasks at hand [10]. In addition, manually curated encoding

schemes are dependent on current domain knowledge which may not capture features

that are important for governing the relationships among amino acid sequences that

are not yet known.

Recently, machine learning has been applied to biological sequences, taking advantage

of the expanding sequence repositories to learn a meaningful numerical representation

for biological sequences. For example, Asgahri and Mofrad [11] used unsupervised

learning in a fashion similar to word2vec [12] to develop ProtVec which is a one-

hundred dimension learned vector representation for fixed overlapping k-mers of

amino acids. More recently, Rives and colleagues [13] used bidirectional contextual lan-

guage models for learning a representation for whole protein sequences while Alley

and colleagues used an LSTM-based architecture to learn an embedding of whole pro-

tein sequences into a fixed-length vector [14]. This form of unsupervised learning is

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 2 of 14

usually used as a starting point for training task-specific models, i.e. pre-training for a

supervised learning task.

Another possible way for representing input sequences in a task-specific manner is

by making the encoding a learnable part of the model, i.e. by jointly learning the encod-

ing scheme with other model parameters (here, end-to-end learning). Arguably, end-to-

end learning has been particularly effective as data availability increases and deep learn-

ing models can be trained on very large datasets. In such data-intensive cases, the

models may be able to capture features which underlie similarities and differences be-

tween amino acids which are not captured by classical manually-curated encodings. It

might also enable the model to encode, learn and extract the aspects of amino acids

that are relevant for the task-at-hand which might differ between different tasks. Such

applications may require a minimum amount of training data, and the threshold for

this data size in bioinformatics remains unconstrained.

Recently, Raimondi and colleagues [15], have performed an in-depth analysis of

amino acid encoding using biophysical propensity scales for shallow machine-learning

models where they argued that a learned embedding of features might lead to a simple,

optimal and assumptions-free feature engineering. Nevertheless, to the best of our

knowledge, in peptidomics and proteomics there has not been a formal comparison be-

tween classical encoding and end-to-end learning, especially, for deep-learning model.

Therefore, we here aimed to evaluate the performance of different classical single

amino-acid encoding schemes, focusing on one-hot, VHSE8 and BLOSUM62, as com-

pared to end-to-end learning. We evaluate the performance of end-to-end learning

relative to classical encoding schemes across different data sizes. To disentangle the in-

formation content in the encoding scheme as represented by the geometrical relation-

ship among its vectors from the distinguishability effect provided by the unique

position of each amino acid in the embedding space, we compare learned and classical

encoding strategies to ‘random frozen embedding’ of amino acids, i.e. by randomly

assigning a unique position to each amino acid in the embedding space. Finally, we

examine the consistency of the effect of learned, classical, and random frozen embed-

ding on model performance across different model architectures and two challenging

biological problems, predicting human leukocyte antigen class II (HLA-II)-peptide

interactions and PPIs.

Results

End-to-end learning shows comparable performance to different classical encoding

schemes but at a lower embedding dimension

We first compared the performance of machine-learnt encoding schemes, i.e. end-to-

end learning, to classical encoding schemes. In brief, for the machine-learnt encoding,

an embedding layer was used with one, two, four, eight, sixteen or thirty-two as the

embedding dimension while for classical encoding the weights of the embedding layer

were replaced with the encoding matrix and those weights were kept fixed during train-

ing. We then trained long short-term memory (LSTM) based models for predicting the

affinity of peptides toward one of two HLA-II proteins namely, HLA-DRB1*15:01 and

HLA-DRB1*13:01 (see Methods). As shown in Fig. 1a and b, end-to-end learning allows

the model to achieve the same performance as classical encoding but using a lower

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 3 of 14

embedding dimension. For example, a 4-dimensional learned embedding (LE) achieved

comparable performance compared to a 20-dimensional classical encoding (see LE-4D

compared to BLOSUM62-20D and OneHot20D, Fig. 1a and b). High dimensional en-

coding schemes, regardless of being machine-learnt or classical, showed a higher degree

of overfitting over longer training times, resulting in a lower validation AUC. However,

different encoding schemes achieved similar maximum performance in early epochs re-

gardless of the embedding dimension. To test if these results are stable across different

architectures, we constructed CNN-LSTM based models (see Methods) and trained

these models on the peptide-HLA-II data. Similar to the LSTM-based model architec-

ture, a CNN-LSTM model achieved superior or comparable performance using end-to-

end learning compared to classical encodings, and this performance was achieved using

a lower embedding dimension than the classical encodings (Fig. S1 A and B).

End-to-end learning consistently enables efficient encoding of amino acids across

different problems, different architectures and different amount of training data

Next, we were interested in seeing if end-to-end learning will show the same patterns

in performance across different architectures, prediction tasks, and data sizes. To this

end, we compared end-to-end learned embeddings to classical embeddings on a new

task with a different model architecture: predicting PPIs from amino acid sequence in-

formation, using a model architecture adapted from Hashemifar and colleagues [5].

Our selected model was a smaller version of the previously published model [5] to en-

able rapid experimentation (see Methods). To test the effect of training data size on

embedding performance, the model was also trained with different subsets of the train-

ing data, restricting data inputs to 25, 50, 75 and 100% of the total dataset, respectively.

As shown in Fig. 2, end-to-end learning enables the model to achieve a performance

that exceeds all classical encoding schemes in almost all cases at 25, 75, and 100% data

Fig. 1 Comparison between classical and machine-learnt (LE) encoding schemes for LSTM-based models of

peptide-HLA-II interaction. The y-axis shows the area under the receiver operating characteristic curve, AUC,

for the model predictions on the validation dataset (Val AUC). The x-axis shows the number of training

cycles or epochs. a shows the performances of models trained on HLA-DRB1*15:01 data and b shows the

model performances for HLA-DRB1*13:01 data

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 4 of 14

fractions, and exceeded or met all but the BLOSUM encoding at 50%. As data size in-

creased, the improvement of end-to-end encoding over classical encoding schemes was

more pronounced, and was able to exceed the performance of classical encodings with

far fewer embedding dimensions (Fig. 2).

The learnt embedding space captured meaningful aspects of amino acids

physicochemical properties

To get a better understanding of information captured by the learnt embedding space as

compared to the classical encoding schemes, we compared the Euclidean distance among the

vector representations of each amino acid embedding under four encoding schemes: the 8-

dimensional learnt embedding of PPI-based models (Fig. 3a); the 8-dimensional learnt em-

bedding of RNN-based models (Fig. 3b); and the physicochemical based encoding schemes

of VHSE-8 (Fig. 3c) and BLOSUM (Fig. 3d). The learnt embedding space (Fig. 3a and b) do

not produce as distinct of clusters along physicochemical lines as those observed with VHSE-

8 (Fig. 3c) and to some extent BLOSUM (Fig. 3d). Nevertheless, there is some partitioning in

the learnt embedding space along physicochemical lines: as shown in Fig. 3b, the amino acids

with an aromatic side-chain – phenylalanine (F), tyrosine (Y) and tryptophan (W) – are lo-

cated closer to each other in the learnt embedding space of the LSTM-based model for

peptide-HLA-DRB1*15:01 interactions, as are amino acids with a hydrophobic side-chain –

leucine (L), isoleucine (I), alanine (A), and methionine (M). The same clustering is also ob-

served with the two amino acids with an acidic side-chain, aspartic acid (D) and glutamic acid

(E), and with the two amino acid with a neutral side-chain, asparagine (N) and serine (S). Fi-

nally, arginine (R) and lysine (K), the two amino acids with a basic side-chain, are also located

near each other in the embedding space. This suggests that the model was able to discover

the physicochemical similarities among amino acid groups indirectly from the training data-

set as it tries to find a pattern in the data that would minimize the loss on the task at hand.

Importantly, this model may also be learning relationships among amino acids that are not

Fig. 2 Comparison between classical and machine-learnt (LE) encoding schemes for PPI-based models. The y-axis shows

the accuracy of the model prediction on the validation dataset while the x-axis shows the fraction of the training

dataset used to train the models. Error-bars represent one standard-deviation from the mean of five repetitions

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 5 of 14

defined by known physicochemical parameters, whereas manually curated classical encodings

are limited by domain knowledge of the physicochemical similarity among amino acids.

Interestingly, the embedding space of the PPI-based models seems to capture less knowledge

about the physicochemical properties of amino acids. This difference in the embedding space

between the learnt embeddings may be due to differences in learning styles of model archi-

tectures (see Discussion).

Deep learning models are capable of learning from random vectors of appropriate

dimensionality

To disentangle the information content in the encoding scheme, which is encoded in

the form of a geometrical relationship among the vector representation of amino acids

Fig. 3 Cluster heat-map of the pairwise distance among amino acids in different encoding schemes. a

represents the learnt embedding space of a PPI-based model with eight dimensions. b represents the learnt

embedding space of a peptide-HLA-II LSTM-based model with eight dimensions. c represents VHSE8 Matrix. d

represents BLOSUM62. For the PPI-based model, the model was trained for 50 epochs using the full training

dataset as described in the Materials and Methods section. For the RNN-based model, the model was trained

for 3000 epochs using HLA-DRB1*15:01 data as described in Materials and Methods. For both cases, the

weights of the embedding layer after training was used for visualizing the learnt embedding space. The special

character zero, used for padding shorter sequences, was also included in the analysis

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 6 of 14

from the distinguishability effect provided by the unique position of each amino acid in

the space we used the same settings mentioned above, however, we prevented the up-

date of the embedding weights during training. Hence, each amino acid was repre-

sented as a vector of random numbers drawn from a uniform distribution. Effectively,

assigning each amino acid to a unique position in the embedding space, however, the

relationship among these positions is completely arbitrary. As shown in Fig. 4a and b,

in a low embedding dimension, for example, one or two dimensional space the models

for peptide-HLA-II interaction over fit the training data and are not able to generalize

to the un-seen examples in the validation dataset. However, as the dimensionality of

the embedding space increases, the model performance on the validation dataset im-

proves, and for higher numbers of dimensions, it achieved a comparable performance

to both learned and classical encoding schemes.

This result is consistent across model architectures (Figs. S2 A and B) – CNN-LSTM

based models trained using random frozen embeddings exhibited the same pattern as

the LSTM-based models, i.e. the model performed poorly with few embedding dimen-

sions and improved with increasing dimensionality, achieving comparable performance

to classical and learned embeddings at the highest dimensions. Also, it was consistent

across problems and across different amount of training data. As seen in Fig. 4c, the

PPI model was able to learn from random vectors, and its ability to learn improved

with increasing the dimensionality of the embedding space. This consistency suggests

Fig. 4 A comparison between classical encoding and random frozen embedding (FE). a shows the

performances of models trained on HLA-DRB1*15:01 data and b shows the model performances for HLA-

DRB1*13:01 data. The y-axis of a & b shows the area under the receiver operating characteristic curve, AUC,

for the model predictions on the validation dataset (Val AUC), while, the x-axis shows the number of

training cycles or epochs. c is the performance of PPI model trained on different fractions of the training

data. The y-axis shows the accuracy on the validation dataset while the x-axis shows the fraction of training

data used while error bars represent one standard-deviation from the mean of five repetitions

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 7 of 14

that the ability of the model to learn from random vectors of appropriate dimension is

independent of the model architecture used, possibly because the model treats these

random vectors in a “one-hot” fashion, i.e. it just uses the encoding scheme to distin-

guish between amino acids and shifts the information content, i.e. the relationship

among the amino acids, to the next layer/layers of the model.

Discussion

Our results demonstrate that end-to-end training achieves superior or comparable per-

formance to classical encoding schemes, and may be the preferred approach to encod-

ing of amino acid sequences under many modelling circumstances. End-to-end training

can be used to achieve comparable performance to classical encoding schemes in a

much lower embedding dimension, and achieves increasingly improved performance at

higher embedding dimensions. This performance is consistent across three different

neural architectures and two challenging bioinformatic problems, namely, predicting

HLA-II-peptide interactions and PPIs. Performance improvements from end-to-end

learning over classical encodings are particularly pronounced as data sizes increase,

suggesting that as labelled data becomes more available or pre-trained embeddings

from unsupervised approaches become more widely adopted, end-to-end learning is

likely to be preferable to classical encodings. Even at the relatively restricted data sizes

used in this study – for example, with modelling of peptide-HLA-DRB1*13:01 interac-

tions fewer than 850 training data points were used – end-to-end learning achieved

comparable or superior performance to classical encodings.

For applications where the trained model will be deployed to devices with limited

computational and/or memory capacity, the ability to encode amino acids at a lower di-

mension than classical encodings becomes critical. For example, representing a se-

quence of 100 amino acids using BLOSUM will generate a 100x20 matrix, while

embedding the same sequence in a learned embedding space of two or four would gen-

erate a 100x2 and 100x4 matrix, respectively. Using such a learned embedding thus re-

duces the encoded sequence size by 10 and 5 folds, respectively.

End-to-end learning offers many advantages in comparison to classical encoding

schemes. For example, end-to-end learning can easily encode non-proteinogenic amino

acids or post-translational modifications, when data is available, by simply increasing

the vocabulary size and letting the machine learn how to encode it on its own, whereas

manually curated classical encodings cannot easily be expanded in this straightforward

manner. A second advantage for end-to-end learning is the straightforward ability to

control the embedding dimension, which is an important factor in more advanced ar-

chitectures like multi-headed attention [16] where the embedding dimension must be

divisible by the number of attention heads.

We identified the embedding dimensionality as a major player in controlling the

model performance. This result agrees with what has been reported before in the bio-

informatics literature. For example, Liu and colleagues [17] reported that their model

achieved the best performance when amino acids were encoded as vectors of size 43,

containing a permutation of physical properties, BLOSUM, and one-hot encoding.

Hence, our results argue that the encoding dimensionality should be treated as a critical

hyperparameter that should be tuned in a task-specific manner.

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 8 of 14

We also detected that by simply embedding the amino acids randomly in a high-

dimensional space, we achieved comparable performance to both the machine-learnt and

classical amino acid encoding schemes. This observation was consistent and independent

of the prediction task and the architecture used. The ability of machine-learning models

to learn from random vectors has been previously described in the bioinformatics litera-

ture by Raimondi and colleagues [15] for shallow machine-learning models, and in the

natural language processing literature by Kocmi and Bojar [18] for deep learning model.

A key insight from these studies is the flexibility of non-linear machine-learning models,

for example, Kocmi and Bojar [18] argued that when the network is faced with frozen em-

beddings it tries to learn in a “one-hot” fashion, i.e. it mainly depends upon the distin-

guishability among different tokens. In contrast to word embedding, where a vocabulary

of tens of thousands of words are commonly used, here we used single amino-acid based

encoding with a vocabulary size of twenty. Thus, distinguishing between different amino

acids is relatively easy with increasing embedding dimension, particularly as the embed-

ding dimension meets or exceeds the vocabulary size. This might explain the relationship

between the dimensionality of the random frozen embeddings and the model perform-

ance, which improves with increasing dimensionality of the random frozen embeddings.

At low embedding dimensions much smaller than the vocabulary size, the network strug-

gles to distinguish between different amino acids, whereas at higher embedding dimen-

sions similar to or exceeding the vocabulary size, the model performs comparably with

models using one-hot encoded amino acids (Fig. 4). Hence, our findings argue that

amino-acid encoding schemes should be benchmarked against random vectors of the

same dimension to disentangle the information contained in the encoding scheme from

the distinguishability effect that is provided by the dimension of the encoding scheme.

Interestingly, we found that the information content in the learned embedding

space, as represented by the geometrical relationship between the amino acids, dif-

fers a lot between tasks. For example, the embedding space of the peptide-HLA-II

models seems to capture more knowledge about the physio-chemical properties of

amino acids in comparison to PPI-based models. This difference in embedding

space between the learnt embeddings may be due to the difference in model archi-

tecture used, i.e. CNN vs. RNN. The CNN-based architecture tries to find

translational-invariants in the input by convolving a different number of filters over

a block of amino acids which differ from the way RNNs process their input se-

quences, which analyse one amino acid at a time. A second factor that might ex-

plain this difference, is the scale of both problems, wherein protein-protein

interactions long protein sequences have been used, where the contribution of each

amino acids is governed by other amino acids in its vicinity, hence, the context, or

the high-level organization of blocks of amino acids into motifs, or even a higher

level as domains, is more informative for the model than each amino acid individu-

ally. Hence, the lack of an organized embedding space for this problem. On the

other hand, for HLA-II peptide interaction short peptides have been used, where a re-

placement of one amino-acid can completely change the binding between the peptide and

the HLA-II protein. Hence, the models pay more attention to each individual amino acid

and we get a much-more organized embedding space. Thus, we speculate that the differ-

ence in the embedding space between the two problems might be due to the nature of the

problem itself and the employed underlying architectures.

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 9 of 14

Conclusions

In this work, we compared end-to-end learning to feature-based classical encoding of

amino acids. We compared the performance of these two encoding strategies using

three commonly used neural architectures – recurrent neural networks (RNN), convo-

lutional neural networks (CNN), and a hybrid CNN-RNN – as applied to two challen-

ging problems – predicting human leukocyte antigen class II (HLA-II)-peptide

interactions and protein-protein interactions (PPIs). As shown above, end-to-end learn-

ing allows for an efficient, scalable, and easy to fine-tune encoding without reducing

performance. Nevertheless, given that each bioinformatics problem has a different per-

formance requirement, different complexities and different amounts of data available,

more experimentation would be highly needed to characterize the performance of end-

to-end learning with regard to these problems.

We also find that the embedding dimensionality is an important hyperparameter that

should be carefully tuned to fit the training set size and model complexity in order to

improve the overall performance. Also, our experimentation with random embedding

builds on what has been previously described by Raimondi and colleagues [15] where

they showed that non-linear machine-learning models are not able to discriminate be-

tween real and random encoding schemes. Hence, we argue that newer encoding

schemes should be benchmarked against frozen embeddings of the same dimension to

disentangle the information content of the encoding scheme from the distinguishability

effect provided by the encoding scheme.

Methods

Task definitions and data preparation

Peptide-HLA-II interaction dataset

HLA-II is a heteromeric protein that is predominantly expressed on antigen-presenting

cells, where it presents peptides and protein fragments to CD4+ T cells [19]. Modelling

the interaction between possible peptide candidates and HLA-II proteins is of para-

mount importance to understand the genetic association between certain alleles and

autoimmune diseases, and to develop novel vaccines and immunotherapies. Here, we

modeled the interaction between peptides and two HLA-II alleles of interest, HLA-

DRB1*15:01 and HLA-DRB1*13:01, because of their genetic association with inflamma-

tory bowel disease (IBD).

We used two publicly available datasets from NetMHCIIpan (http://www.cbs.dtu.dk/

suppl/immunology/NetMHCIIpan-3.2/) [20] to train the peptide-HLA-II binding pre-

diction models. In short, both datasets comprise pairs of peptides and alleles along with

their log-transformed IC50 values as a measure of the binding affinity, for data from

the two molecules HLA-DRB1*13:01 and HLA-DRB1*15:01. Each dataset was split into

a five-fold cross-validation dataset by Jensen and colleagues [20], with about 800 train-

ing examples (HLA-DRB1*13:01) and ~ 3900 training examples (HLA-DRB1*15:01).

Peptide sequences were processed by (i) encoding them as integers through a tokenizer,

and (ii) padding shorter sequences and trimming longer peptide sequences from the

head end to a fixed length of 26 amino acids. To compute the AUC, the IC50 values

were binarized using the same threshold used by Jensen and colleagues of 0.426, which

is equal to 500 nM [20].

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 10 of 14

http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.2/
http://www.cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.2/

Protein-protein interaction (PPI) dataset

The binary PPI data were downloaded from the HiNT database [21]. At the time of

download (August 2019), the database contained PPI data for 12 organisms, namely, H.

sapiens, S. cerevisiae, S. pombe, M. musculus, D. melanogaster, C. elegans, A. thaliana,

B. subtilis, B. taurus, E. coli, R. norvegicus and O. sativa. The dataset was prepared for

training as follows: (i) the binary interaction data, i.e. the positively interacting protein

pair IDs for the 12 organisms were downloaded and combined, resulting in 163,165

interaction pairs across 44,340 unique proteins. (ii) The protein sequences were ex-

tracted where available from a local copy of the Swiss-Prot and Trembl databases [22].

The sequences of 43,084 proteins (97.167%) were successfully extracted from the data-

bases. Next, proteins shorter than 100 amino acids or longer than 1000 amino acids

were removed from the database. After filtration, the database contained 123,402 inter-

acting pairs among 37,557 unique proteins.

The set of unique proteins were split into two sets, one for training containing 33,801

unique proteins (90%) and the second for testing containing 3756 unique proteins

(10%). To make sure that the accuracy of the models on the test data was a result of a

general pattern learned by the model and not due to homology between proteins in the

test and training datasets, we removed any protein in the test dataset sharing more than

40% homology to any of the training set proteins. To remove homologous proteins

overlapping in the test and training datasets, blastp [23] was used. In brief, the se-

quences of the proteins in the training dataset were used to construct a database and

then the test proteins were blasted against it, and any test proteins with more than 40%

homology were removed from the final test set. This procedure resulted in a test data-

set with 591 unique proteins. Next, the binary interaction data for the proteins in the

training and test dataset were extracted, resulting in a training dataset with 100,635

positively interacting pairs and a test dataset with 121 positively interacting pairs. To

construct negative examples, random sampling was used to generate a dataset of equal

size, i.e. the ratio of positive to negative examples is 1:1. The positive and negative pairs

were combined to generate a training dataset with 201,270 examples and a test dataset

with 242 examples. Finally, the protein sequences were encoded as integers through a

tokenizer, and shorter sequences were zero-padded to a fixed length of 1000 amino

acids.

The embedding layer

The embedding layer is a look-up table or a weight matrix where each row is in our

case a vector representation of a specific amino acid. The number of rows is equal to

the number of unique vocabulary elements, i.e. number of amino acids, plus one, at the

zero index, which is a reserved value for the padding variable. The number of columns

is the embedding dimension, which is a model hyperparameter. Before training starts

the weight matrix is initialized randomly along with all the parameters of the networks,

and during the training phase the values inside the matrix are updated to minimize the

error made by the network. The optimized embedding of each amino acid is thus “lear-

ned”from this iterative process of updating the weights of the embedding matrix. This

differs from classical encoding where the numerical values for amino acids are not up-

dated during training (Fig. S2).

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 11 of 14

If the model was trained using classical encoding, the weights of the layer were re-

placed with the encoding scheme and kept fixed during the training phase. In the case

of BLOSUM62, a frequency normalized form was obtained from NetMHCIIpan3.2 soft-

ware package [20] while for VHSE8 the raw values provided by the authors [9] have

been directly used. Otherwise, all weights, i.e. the elements of the matrix, were drawn

from a uniform distribution over the interval [− 0.05, + 0.05], which is the default initia-

lizer for the layer as implemented in Keras [24]. If random frozen encoding were used,

these elements were kept fixed, i.e. they were not updated during the training phase. If

learnt-encoding was used, the weights were adjusted using backpropagation to optimize

the model objective function.

Model architectures

An LSTM-based model for HLA-II peptide interaction prediction

The model is a composite of three layers. The first layer is an embedding layer which

takes as an input an integer which maps the identity of the amino acid to the corre-

sponding row index in the embedding matrix, and converts the amino acid index to a

vector in the embedding space. The embedding layer is followed by a long short-term

memory (LSTM) layer with 12 nodes, and the final layer consists of a single neuron

producing the network output. As the normalized IC50 values ranged from zero to

one, we applied a sigmoidal activation function to the output of the final layer to re-

strict the range of the model predictions to this range. The mean absolute error was

used as a loss function and Adam [25] was used as an optimizer. The model was imple-

mented using the Keras API [24] built on the TensorFlow deep learning framework

[26]. Training the model was carried out in batches of size 256 using an Nvidia Tesla

V100-SXM2 GPU.

A CNN-LSTM-based model for HLA-II peptide interactions

To evaluate the impact of the model architecture, we built another model composed of

four components: an embedding layer, followed by a small convolution layer with 36

filters each of size nine and a stride size (or step size) of one, followed by an LSTM

with 12 nodes, and finally a prediction neuron. Sigmoid was used as an activation func-

tion for the prediction units, the mean absolute error was used as a loss function and

Adam [25] as an optimizer. The model was implemented using the Keras API [24] built

on the TensorFlow deep learning framework [26]. Training the model was carried out

in batches of size 256 examples using an Nvidia Tesla V100-SXM2 GPU.

A Siamese-like CNN for protein-protein interaction (PPI) prediction

Using TensorFlow, we implemented an architecture inspired by Hashemifar and col-

leagues [5] for identifying PPIs. This model is composed of two parts. The first is a con-

volutional neural network (CNN) for processing individual protein sequences. It is a

composite of four modules, each of which contains a convolution layer, followed by a

rectified linear unit (ReLu), a batch normalization layer, and an average pooling layer,

except the final module which uses Global average pooling. Each module is imple-

mented with a variable number of filters and kernel sizes (Table S1). The CNN at each

forward pass receives as an input a pair of input proteins, and produces a pair of

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 12 of 14

vectors that represent each of these proteins using the same weights; hence it is a

Siamese-like architecture. The second part of the model is a feed-forward multilayer

perceptron, which receive the vectors produced by the CNNs and returns the probabil-

ity that the pair of proteins interact. Our reported model is considerably smaller than

the one described by Hashemifar and colleagues [5]. For example, we used four convo-

lution modules instead of five. The aim of this reduction in size was to allow faster

training and experimentation with different dimensionality. A sigmoid function was

used as an activation function for the prediction units, the binary cross-entropy was

used as a loss function and Adam [25] as an optimizer. The model was implemented

using the Keras API [24] built on the TensorFlow deep learning framework [26]. Train-

ing the model was carried out in batches of size 1024 using Nvidia Tesla V100-SXM2

GPUs.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03546-x.

Additional file 1 Fig. S1. Comparison between classical encoding and machine-learned (LE) encoding schemes

used to encode amino acids for a CNN-LSTM based peptide-HLA-II interaction model. Fig. S2: Comparison be-

tween classical encoding and random frozen embedding (LE) encoding schemes used to encode amino acids for

a CNN-LSTM based peptide-HLA-II interaction model. Fig. S3: Comparison between classical encoding schemes

and machine-learnt encoding schemes. Table S1: The parameters of the four convolution modules used with the

model. For convolutional module 1–3 average pooling was used and for convolutional module four global average

pooling was used.

Abbreviations

BLOSUM: BLOck Substitution Matrix; CNN: Convolutional neural networks; HLA: Human leukocyte antigen; LSTM: Long

short-term memory; SNP: Single nucleotide polymorphism; PPI: Protein-protein interaction; VHSE8: Physicochemical

character-based schemes such as the principal components score Vectors of Hydrophobic, Steric, and Electronic

properties

Acknowledgments

The authors would like to thank Jan Christian Kässens and Lars Wienbrandt for their support with code optimization,

Matthias Hübenthal and Frauke Degenhardt for the interesting discussion regarding data analysis. We would also like

to thank Dr. Maximillian Miller (Rutgers University) and Dmitrii Nechaev (Technical University of Munich) for critical

comments to the manuscript.

Authors’ contributions

HE, MW, AF, YB designed and conceived the study. HE conducted the experiments, HE, AH and MW analysed the

results. TL contributed to the computational analysis. All authors read and approved the final manuscript.

Funding

This study was funded by the German Research Foundation (DFG) Research Training Group 1743 Genes, Environment

and Inflammation and the applicants HE and MW received infrastructure support from the DFG Excellence Cluster

2167 Precision Medicine in Inflammation (PMI). Funding also provided by NASA Astrobiology Institute grant

80NSSC18M0093 to YB, and a NASA Astrobiology Postdoctoral Fellowship to AH. The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

The code and the datasets generated during the current study are available in the

amino_acid_encoding_deep_learning_applications repository, https://github.com/ikmb/amino_acid_encoding_deep_

learning_applications

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 13 of 14

https://doi.org/10.1186/s12859-020-03546-x
https://github.com/ikmb/amino_acid_encoding_deep_learning_applications
https://github.com/ikmb/amino_acid_encoding_deep_learning_applications

Author details
1Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany. 2Department of

Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA. 3Department of Genetics, Rutgers

University, New Brunswick, NJ, USA. 4Technical University of Munich Institute for Advanced Study, (TUM-IAS),

Lichtenbergstr. 2a, 85748 Garching/Munich, Germany. 5Research Group for Evolutionary Immunogenomics, Max Planck

Institute for Evolutionary Biology, 24306 Plön, Germany.

Received: 20 February 2020 Accepted: 12 May 2020

References

1. Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-indel variant caller

using deep neural networks. Nat Biotechnol. 2018;36:983. https://doi.org/10.1038/nbt.4235.

2. Zeng H, Gifford DK. Predicting the impact of non-coding variants on DNA methylation. Nucleic Acids Res. 2017;45(11):

e99. https://doi.org/10.1093/nar/gkx177.

3. Kulmanov M, Khan MA, Hoehndorf R. DeepGO: Predicting protein functions from sequence and interactions using a

deep ontology-aware classifier. Bioinformatics. 2018;34(4):660–8. https://doi.org/10.1093/bioinformatics/btx624.

4. Zhang B, Li J, Lü Q. Prediction of 8-state protein secondary structures by a novel deep learning architecture. BMC

Bioinformatics. 2018;19:293. https://doi.org/10.1186/s12859-018-2280-5.

5. Hashemifar S, Neyshabur B, Khan AA, Xu J. Predicting protein-protein interactions through sequence-based deep

learning. Bioinformatics. 2018:802–10. https://doi.org/10.1093/bioinformatics/bty573.

6. Zamani M, Kremer SC. Amino acid encoding schemes for machine learning methods. In: 2011 IEEE International

Conference on Bioinformatics and Biomedicine Workshops: BIBMW; 2011.

7. Lin K, May ACW, Taylor WR. Amino acid encoding schemes from protein structure alignments: Multi-dimensional

vectors to describe residue types. J Theor Biol. 2002:361–5. https://doi.org/10.1006/jtbi.2001.2512.

8. Eddy SR. Where did the BLOSUM62 alignment score matrix come from? Nature Biotechnology; 2004.

9. Mei H, Liao ZH, Zhou Y, Li SZ. A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers.

2005;80:775–86.

10. Torng W, Altman RB. 3D deep convolutional neural networks for amino acid environment similarity analysis. BMC

Bioinformatics. 2017;18:302. https://doi.org/10.1186/s12859-017-1702-0.

11. Asgari E, Mofrad MRK. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and

Genomics. PLoS One. 2015;10:e0141287. https://doi.org/10.1371/journal.pone.0141287.

12. Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. CoRR. 2013;

http://arxiv.org/abs/1301.3781.

13. Rives A, Goyal S, Meier J, Guo D, Ott M, Zitnick CL, et al. Biological structure and function emerge from scaling

unsupervised learning to 250 million protein sequences. bioRxiv. 2019:622803. https://doi.org/10.1101/622803.

14. Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with sequence-based

deep representation learning. Nat Methods. 2019;16:1315–22. https://doi.org/10.1038/s41592-019-0598-1.

15. Raimondi D, Orlando G, Vranken WF, Moreau Y. Exploring the limitations of biophysical propensity scales coupled with

machine learning for protein sequence analysis. Sci Rep. 2019;9:16932. https://doi.org/10.1038/s41598-019-53324-w.

16. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in Neural

Information Processing Systems 30; 2017. p. 5998–6008.

17. Liu Z, Jin J, Cui Y, Xiong Z, Nasiri A, Zhao Y, et al. DeepSeqPanII: an interpretable recurrent neural network model with

attention mechanism for peptide-HLA class II binding prediction. bioRxiv. 2019. https://doi.org/10.1101/817502.

18. Kocmi T, Bojar O. An Exploration of Word Embedding Initialization in Deep-Learning Tasks. CoRR. 2017; http://arxiv.org/

abs/1711.09160.

19. Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II

transactivator. Nat Rev Immunol. 2005;5(10):793–806. https://doi.org/10.1038/nri1708.

20. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide

binding affinity to MHC class II molecules. Immunology. 2018;154:394–406.

21. Das J, Yu H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst

Biol. 2012.

22. Consortium TU. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.

https://doi.org/10.1093/nar/gky1049.

23. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC

Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10.

24. Chollet F, et al. Keras. 2015.

25. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings; 2015.

http://arxiv.org/abs/1412.6980.

26. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems. CoRR. 2016; http://arxiv.org/abs/1603.04467.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ElAbd et al. BMC Bioinformatics (2020) 21:235 Page 14 of 14

https://doi.org/10.1038/nbt.4235
https://doi.org/10.1093/nar/gkx177
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1186/s12859-018-2280-5
https://doi.org/10.1093/bioinformatics/bty573
https://doi.org/10.1006/jtbi.2001.2512
https://doi.org/10.1186/s12859-017-1702-0
https://doi.org/10.1371/journal.pone.0141287
http://arxiv.org/abs/1301.3781
https://doi.org/10.1101/622803
https://doi.org/10.1038/s41592-019-0598-1
https://doi.org/10.1038/s41598-019-53324-w
https://doi.org/10.1101/817502
http://arxiv.org/abs/1711.09160
http://arxiv.org/abs/1711.09160
https://doi.org/10.1038/nri1708
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1186/1471-2105-10
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1603.04467

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	End-to-end learning shows comparable performance to different classical encoding schemes but at a lower embedding dimension
	End-to-end learning consistently enables efficient encoding of amino acids across different problems, different architectures and different amount of training data
	The learnt embedding space captured meaningful aspects of amino acids physicochemical properties
	Deep learning models are capable of learning from random vectors of appropriate dimensionality

	Discussion
	Conclusions
	Methods
	Task definitions and data preparation
	Peptide-HLA-II interaction dataset
	Protein-protein interaction (PPI) dataset

	The embedding layer
	Model architectures
	An LSTM-based model for HLA-II peptide interaction prediction
	A CNN-LSTM-based model for HLA-II peptide interactions
	A Siamese-like CNN for protein-protein interaction (PPI) prediction

	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

