Supporting Information

Aminoboranes as "Compatible" Iminium Ion Generators in Aminative C-C Bond Formations

Michinori Suginome,* Lars Uehlin, and Masahiro Murakami*
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Contents

General
Preparation of amino boranes
Aminative alkylation of aldehydes

General

All reactions were performed in a drybox or using Schlenk technique under a nitrogen atmosphere with magnetic stirring. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury$400(400 \mathrm{MHz})$ or Varian GEMINI-2000 (300 MHz) spectrometer using CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ as a solvent. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian GEMINI-2000 spectrometer at 75 MHz with CDCl_{3} as solvent. Chemical shifts of the ${ }^{13} \mathrm{C}$ NMR spectra were recorded relative to CDCl_{3} (77.0 ppm). ${ }^{11} \mathrm{~B}$ NMR spectra were recorded on a Varian GEMINI-2000 spectrometer at 1288 MHz with $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvent. Chemical shifts of the ${ }^{11} \mathrm{~B}$ NMR spectra were recorded relative to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0 \mathrm{ppm})$. High resolution mass (FAB) spectra were recorded on a JEOL JMS-700 spectrometer.

Anhydrous solvents were purchased from Kanto Chemical Co., aldehydes and ketones dried over CaH_{2} prior to distillation. Bis(diamino)chloroboranes were synthesized
according to the literature. ${ }^{1}$

Preparation of amino boranes

N, N-bis(diethylamino)(isopropoxy)borane (2)

n-Butyllithium (1.6 M of in hexane, 84 mmol) was added at $0^{\circ} \mathrm{C}$ to diisopropylamine (12 $\mathrm{mL}, 84 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$. After stirring for 15 min , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and isopropanol ($6.4 \mathrm{~mL}, 84 \mathrm{mmol}$) was added. Stirring was continued for 30 min , then bis(diethylamino)chloroborane ($12 \mathrm{~g}, 84 \mathrm{mmol}$) was added and the mixture allowed to warm up to room temperature. The solvent was removed in vacuo, the residue extracted with pentane $(100 \mathrm{~mL})$ and the desired compound purified by distillation $\left(30-35{ }^{\circ} \mathrm{C}, 0.5\right.$ mbar). Yield: $15.3 \mathrm{~g}(83 \%)$ colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.14$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.90(\mathrm{q}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 4.08(\mathrm{~h}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 15.1 (4C), 25.3 (2C), 40.3 (4C), 65.3. ${ }^{11} \mathrm{~B}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 24.89$.

N, N-diisopropyl-4H-benzo[d][1,3,2]dioxaborinin-2-amine (6)

Saligenin ($1.45 \mathrm{~g}, 11.7 \mathrm{mmol}$) was dried by azeotropic distillation of toluene (15 ml). Cyclohexane (20 mL) was added, the mixture cooled in an ice bath and chlorobis(diisopropylamino)borane $(2.88 \mathrm{~g}, 11.7 \mathrm{mmol})$ was added. The mixture was allowed to warm up to room temperature and subsequently heated to $120^{\circ} \mathrm{C}$ overnight. Removal of the formed lithium chloride by filtration followed by evaporation of the solvent in vacuo and Kugelrohr distillation of the remaining oil $\left(90^{\circ} \mathrm{C}, 1 \mathrm{mbar}\right)$ yielded 2.0 g of colorless product (73%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.58(\mathrm{~h}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dt}, J=8.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~m}, 2 \mathrm{H}) 7.77(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 23.1(4 \mathrm{C}), 44.1$ (2C), 62.6, 117.5, 121.6, 123.8, 124.7, 128.4, 15.2; ${ }^{11}$ B NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 19.84$.

Three-Component Mannich Reactions Using Aldehyde, Silyl Ketene Acetal, and Amino Boranes

General procedure A Including Extractive Workup with Acid-Treatment

[^0]To a solution of aminoborane ($\mathbf{1}-\mathbf{6}, 0.125 \mathrm{mmol}$) in N-methylpyrrolidinone (0.25 mL) were added 2-piperidinone ($10 \% \mathrm{w} / \mathrm{w}$ solution in NMP, $25 \mathrm{mg}, 0.025 \mathrm{mmol}$), aldehyde (0.25 mmol) , and silyl ketene acetal $(0.125 \mathrm{mmol})$ at room temperature with stirring. The mixture was stirred at room temperature for 2 h . To the reaction mixture were added ice water and tert-butyl methyl ether (15 mL) with stirring. Basic material was extracted from the organic phase three times with 5 ml 0.5 N hydrochloric acid. The combined acid layers were kept at $0{ }^{\circ} \mathrm{C}$, washed with 10 ml tert-butyl methyl ether and the pH brought to 8 by addition of conc. ammonia solution. Organic materials were extracted with tert-butyl methyl ether three times and the combined organic layer was washed with 10 ml water. Evaporation left the crude products that showed purities of $>90 \%$ and were purified by column chromatography on silica gel (eluent: ethyl acetate/hexane). The reaction scale could be increased at least to a 4.4 mmol scale for the reaction shown as entry 5 in Table 2.

General procedure B: Non-Acidic Workup

Reactions were performed according to the procedure same as the general procedure A shown above. The reaction mixture was then diluted with ether (15 mL) and washed with ice-water three times. The organic layer was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated under vacuum. The crude material was purified by chromatography on silica gel using ethyl acetate/hexane mixture as an eluent.

The product shown as entries 1-6 in Table 1 and entry 1 in Table3 has been reported in the literature. (e.g., Saidi et al. J. Chem. Soc. Perkin Trans. 1 1997, 1983.) CAS registry No.: 193820-05-2.

Methyl 3-(diethylamino)-hexanoate (Table 2, entry 1)

General Procedure A. Yield (0.125 mmol scale): $24 \mathrm{mg}(96 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0,86(\mathrm{t}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.12-1.50(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.48$ $(\mathrm{m}, 5 \mathrm{H}), 3.10$ (quintet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.1,14.6,20.1$,
$33.3,36.0,43.3,51.4,56.6,173.7$; IR (neat) $2965,1740 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 65.63; H, 11.52; N, 6.96. Found: C, 65.54; H, 11.34; N, 6.76.

Methyl 3-(diethylamino)-8-(tetrahydro-2H-pyran-2-yloxy)octanoate (Table 2, entry 2;

 Table 3, entry 7)

General Procedure B. Yield (0.125 mmol scale): 40 mg (Table 2, 98%) and 30 mg (Table 3, 73%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.19-1.82(\mathrm{~m}, 9 \mathrm{H}), 2.15(\mathrm{dd}, J=14.1$ $\mathrm{Hz}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.26-2.46 (m, 5H), 3.08 (quin, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31-3.38 (m, 1H), 3.43-3.50 (m, 1H), 3.62 (s, 3H), 3.65-3.73 (m, 1H), 3.80-3.87 (m, 1H), $4.54($ brs, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.9(2 \mathrm{C}), 19.9,25.7,26.6,27.1,30.0,31.0,31.3,36.2,43.5$ (2C), 51.6, 57.1, 62.5, 67.8, 99.0, 173.9; IR (neat) 2939, $1740 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{NO}_{4}$: C, 65.62; H, 10.71; N, 4,25. Found: C, 65.51; H, 10.39; N, 3.76.

Methyl 5-(tert-butoxycarbonylamino)-3-(diethylamino)pentanoate (Table 2, entry 3)

General Procedure B. Yield (0.125 mmol scale): $24 \mathrm{mg}(64 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.44-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dd}, J=17.7 \mathrm{~Hz}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.60(\mathrm{~m}, 3 \mathrm{H}), 3.01-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.23(\mathrm{~m}, 1 \mathrm{H})$, 3.26-3.39 (m, 1H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 5.76$, (s (br), 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.4(2 \mathrm{C}), 28.7$ (3C), $31.2,34.3,39.8,43.4$ (2C), $51.9,56.8,156.2,173.5$; IR (neat) $3368,2974,1720 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 59.57; H, 10.00; N, 9.26. Found: C, 59.27; H, 9.75; N, 9.21 .

Methyl 3-(4-((tert-butoxycarbonyl)amino)phenyl)-3-(diethylamino)propanoate (Table 2 , entry 4; Table 3 , entry 8)

General Procedure B. Yield (0.125 mmol scale): 41 mg (Table 2, 64\%) and 43 mg (Table 3, $98 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.20-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.46-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.6(2 \mathrm{C}), 28.6$ (3C), 37.7, 43.4 (2C), 51.8, 60.0, 118.3 (2C), 129.0 (2C), 134.6, 137.5, 152.9, 172.7; IR (neat) $3343,2974,1732 \mathrm{~cm}^{-1}$. HRMS (FAB) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}^{+}\left(\mathrm{MH}^{+}\right): 351.2278$. Found: 351.2283.

Methyl 3-(diethylamino)-2,2-dimethyl-3-phenylpropanoate (Table 2, entry 5)

General Procedure A. Yield (4.4 mmol scale): 0.93 g (81%); (0.125 mmol scale): 29 mg $(88 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dq}, J$ $=13.2 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{dq}, J=13.2 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}$, $1 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.2(2 \mathrm{C}), 21.9,25.8,44.9(2 \mathrm{C}), 47.5,51.6$, $70.9,126.9,127.5$ (2C), 130.4 (2C), 138.1, 178.4; IR (neat) $2970,1740 \mathrm{~cm}^{-1}$. HRMS for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{H}^{+}$: Calcd.:264.1964. Found: 264.1964.

The product shown as entry 6 in Table 2 has been reported in the literature. See for example, Suginome, Lars, Murakami Org. Lett. 2004, 6, 1167. CAS registry No.: 83188-04-9

Methyl (E)-5-(diethylamino)-5-phenylpent-2-enoate (eq 2)

General Procedure A. Yield (0.125 mmol scale): $32 \mathrm{mg}(98 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.34(\mathrm{dq}, J=12.9 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.66(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 3 \mathrm{H})$, $2.72-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{dd}, J=11.2 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=15.6 \mathrm{~Hz}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dt}, J=15.6 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.1(2 \mathrm{C}), 5.6,43.3(2 \mathrm{C}), 51.6,63.6,122.3,127.3,128.3$ (2C), 128.6 (2C), 140.5, 147.5, 167.0; IR (neat) 2971, 1725, $1655 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 73.53; H, 8.87; N, 5.36. Found: C, 73.41 ; H, 8.73; N, 5.41.

Three-Component Mannich Reactions Using Aldehyde, sec-Amine, Silyl Ketene Acetal with Amino Boranes

General procedure A Including Extractive Workup with Acid-Treatment
To a solution of diisopyopylaminoborane ($\mathbf{1 1}$ or $\mathbf{1 2}, 0.125 \mathrm{mmol}$) in NMP (0.25 ml)were
added 2-piperidinone (0.025 mmol), aldehyde (0.19 mmol), and sec-amine (0.125 mmol). To the mixture was added the nucleophile (0.13 mmol); the mixture was stirred at room temperature for $1-3 \mathrm{~h}$. To the reaction mixture were added ice water and tert-butyl methyl ether (15 mL) with stirring. Basic material was extracted from the organic phase three times with 5 ml 0.5 N hydrochloric acid. The combined acid layers were kept at $0{ }^{\circ} \mathrm{C}$, washed with 10 ml tert-butyl methyl ether and the pH brought to 8 by addition of conc. ammonia solution. Organic materials were extracted with tert-butyl methyl ether three times and the combined organic layer was washed with 10 ml water. Evaporation left the crude products that showed purities of $>90 \%$ and were purified by column chromatography on silica gel (eluent: ethyl acetate/hexane).

General procedure B: Non-Acidic Workup

Reactions were performed according to the procedure same as the general procedure A shown above. The reaction mixture was then diluted with ether $(15 \mathrm{~mL})$ and washed with ice-water three times. The organic layer was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated under vacuum. The crude material was purified by chromatography on silica gel using ethyl acetate/hexane mixture as an eluent.

Methyl 3-[(4-methoxybenzyl)(methyl)amino]-3-phenylpropanoate (Table 3, entry 2)

General Procedure A. Yield (0.125 mmol scale): $28 \mathrm{mg}(71 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.07$ (σ, $3 \mathrm{H}), 2.72$ (dd, $J=14.7 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (dd, $J=14.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 21 \mathrm{H}), 3.24$ $(\mathrm{d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{dd}, J=6.3 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=37.6,37.8,51.9,55.5,58.0,64.4,113.8$ (2C), 127.6, 128,3 (2C), 128,6 (2C), 130.0 (2C), 131.7, 138.4, 158.8, 172.6; IR (neat) 2951, 1740, 1512, $1246 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.76; H, 7.47; N, 4.53.

Methyl 3-(1,4-Dioxa-8-azaspiro[4,5]dec-8-yl)-3-phenylpropanoate (Table 3, entry 3)

General Procedure B. Yield (0.125 mmol scale): $32 \mathrm{mg}(84 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.66(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.40-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=19.6,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{dd}, J=19.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 4.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 35.5(2 \mathrm{C}), 38.3,47.9(2 \mathrm{C}), 51.8,64.4(2 \mathrm{C}), 65.7,107.4$, 127.6, 128.4 (4C), 138.8, 172.5; IR (neat) 2953, $1740 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 66.86; H, 7.59; N, 4.59. Found: C, 66.66; H, 7.66; N, 4.51.

The product shown as entry 4 in Table 3 has been reported in the literature. See for example, Pacheco et al. Bull. Chim. Soc. Fr. 1962, 1379. CAS registry No.: 7032-65-7.

Methyl 3-(pyrrolidin-1-yl)hexanoate (Table 3, entry 5)

GeneralProcedure A. Yield (0.125 mmol scale): $23 \mathrm{mg}(94 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.87$ (dt, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.74(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{dd}, J=14.7 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49-2.56(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.5,19.2,23,7(2 \mathrm{C}), 35.4,36.7$, 49.8 (2C), 51.7, 59.0, 173.7; IR (neat) 2959, 1740, 1458, $1437 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $66.29 ; \mathrm{H}, 10.62 ; \mathrm{N}, 7.03$. Found: C, 66.29; H, 10.37; N, 7.00.

Methyl 3-((S)-2-methoxymethylpyrolidino)-3-phenylpropanoate (Table 3, entry 6)

General Procedure A. Yield (0.40 mmol scale): $105 \mathrm{mg}(88 \%)$. $[\alpha]_{\mathrm{D}}{ }^{25}=-42.2$ (c 0.832 , $\left.\mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.60-0.80(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.75-3.02(\mathrm{~m}, 6 \mathrm{H})$, $3.15(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{dd}, \mathrm{J}=9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.6,28.6,37.6,50.8,51.5,58.8,59.7,63.1,76.1,127.3,128.1,128.2,141.5$, 172.3; IR (neat) 2951, $1735 \mathrm{~cm}^{-1}$. HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \cdot \mathrm{H}^{+}\left(\mathrm{MH}^{+}\right)$: 278.1751 .

Found: 278.1759.

Reaction of Aminoborane 5 and Benzaldehyde in DMF- d_{7}.

Aminoborane $5(24 \mathrm{mg}, 0.125 \mathrm{mmol})$ and benzaldehyde ($13 \mathrm{mg}, 0.125 \mathrm{mmol}$) were dissolved in freshly distilled DMF- $d_{7}(0.70 \mathrm{~mL})$ at room temperature. The mixture was subjected to ${ }^{1} \mathrm{H}$ NMR analyses after 10 min (55% conv.), 3 h (64% conv.), and 14 h (64% conv.). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts (after 14 h) are shown at the end of the Supporting Information.

[^0]: ${ }^{1}$ Chavant, P. Y.; Vaultier M.; J. Organomet. Chem. 1993; 455; 37-46; Gerrard, W.; Lappert, M. F.; Pearce, C.A. J.Chem Soc. 1957; 381-386

