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Aminoglycoside-driven 
biosynthesis of selenium-deficient 
Selenoprotein P
Kostja Renko1, Janine Martitz1, Sandra Hybsier1, Bjoern Heynisch1, Linn Voss1, Robert A. 

Everley2, Steven P. Gygi2, Mette Stoedter1, Monika Wisniewska1, Josef Köhrle1, Vadim N. 

Gladyshev3 & Lutz Schomburg  1

Selenoprotein biosynthesis relies on the co-translational insertion of selenocysteine in response to UGA 

codons. Aminoglycoside antibiotics interfere with ribosomal function and may cause codon misreading. 

We hypothesized that biosynthesis of the selenium (Se) transporter selenoprotein P (SELENOP) is 

particularly sensitive to antibiotics due to its ten in frame UGA codons. As liver regulates Se metabolism, 

we tested the aminoglycosides G418 and gentamicin in hepatoma cell lines (HepG2, Hep3B and Hepa1-
6) and in experimental mice. In vitro, SELENOP levels increased strongly in response to G418, whereas 
expression of the glutathione peroxidases GPX1 and GPX2 was marginally affected. Se content of G418-
induced SELENOP was dependent on Se availability, and was completely suppressed by G418 under 
Se-poor conditions. Selenocysteine residues were replaced mainly by cysteine, tryptophan and arginine 

in a codon-specific manner. Interestingly, in young healthy mice, antibiotic treatment failed to affect 
Selenop biosynthesis to a detectable degree. These findings suggest that the interfering activity of 
aminoglycosides on selenoprotein biosynthesis can be severe, but depend on the Se status, and other 

parameters likely including age and general health. Focused analyses with aminoglycoside-treated 

patients are needed next to evaluate a possible interference of selenoprotein biosynthesis by the 
antibiotics and elucidate potential side effects.

Aminoglycoside (AG) antibiotics interact mainly with the small ribosomal subunit of prokaryotes, and to a lesser 
extent of eukaryotes, resulting in errors in amino acid insertion during protein biosynthesis1. Although AGs are 
rapidly excreted via the kidney, they may exert toxic side e�ects in patients and potentially contribute to oto- and 
nephrotoxicity2. Due to these risks, their application is limited in the clinics to local applications or serious sys-
temic infections such as severe neonatal sepsis3. In veterinarian medicine, AGs are more widespread in use and 
even applied as a prophylactic treatment4.

AGs mainly a�ect the function of the prokaryotic 30S ribosomal subunit where they impair the proofreading 
activity during translation5. �e increased error rate causes insertion of wrong amino acids into the growing pep-
tide chain or may even result in premature termination of biosynthesis, eventually leading to non-functional pro-
teins. Similarly, AGs also a�ect the eukaryotic 40S ribosomal subunit and may cause misreading of stop codons, 
thereby promoting extended translation products or suppressing premature stop codons (non-sense mutations). 
Accordingly, AG-induced stop codon read-through is explored as an adjuvant treatment option in speci�c inher-
ited diseases, e.g., in the suppression of premature stop codon mutations in the CFTR or DMD gene in patients 
su�ering from cystic �brosis or Duchenne muscular dystrophy6, 7. �is line of research receives increasing atten-
tion in recent years, as 10–12% of genetic diseases seem to result from in-frame nonsense mutations8, 9.

�e opal-codon UGA has been identi�ed as most sensitive with respect to the suppressing e�ects of AGs10. 
Importantly, UGA has dual functions and depending on context, it speci�es stop or the insertion of the 21st pro-
teinogenic amino acid selenocysteine (Sec) into selenoproteins. A complex biosynthesis machinery is necessary 
for this decoding step, involving the UGA codon, a selenoprotein-speci�c tRNA, the Sec-speci�c elongation 
factor eEFSEC and a speci�c stem loop structure within the 3′-untranslated region of the mRNA, the so-called 
Sec-insertion sequence (SECIS) element. �e 25 genes encoding selenoproteins in humans comprise a number 
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of well-characterized and essential enzymes, including the members of the glutathione peroxidase (GPX), thiore-
doxin reductase (TXNRD) and iodothyronine deiodinase (DIO) families11.

A seminal study has indicated that the AG geneticin (G418) interferes with GPX1 biosynthesis in COS7 cells12. 
Subsequent studies provided the �rst comparative data on di�erent AGs a�ecting the expression of individual 
selenoproteins in a gene-speci�c manner13. �e net e�ect of AGs on selenoprotein biosynthesis appears to depend 
on a set of parameters, including the nature of the SECIS-element, the opal-codon context (UGAN) and the 
actual selenium (Se) status of the cell14. In contrast to the other selenoprotein transcripts containing a single 
UGA codon, the open reading frame encoding the liver-derived Se-transporter selenoprotein P (SELENOP) 
contains ten UGA codons, and thus allows co-translational incorporation of up to ten Sec residues per SELENOP 
molecule. Moreover, the transcript harbors two separate SECIS-elements di�ering in their e�ciency of UGA 
recoding15.

Regular SELENOP biosynthesis appears of high physiological importance for development, growth and Se 
metabolism, as gene knockout studies in mice indicated a number of phenotypes resulting from Selenop de�-
ciency16, 17. In general, SELENOP is a reliable biomarker of Se status, correlating over a wide range with the 
Se intake in healthy humans18. In vitro, the expression of SELENOP is negatively a�ected by hypoxia19 and 
pro-in�ammatory cytokines20, and an intracellular re-distribution of newly-synthesized SELENOP in response 
to ER stress has been reported21, 22. In animals and humans, it quali�es as a negative acute phase reactant23–25. All 
of these adverse conditions coincide in severe sepsis, where AGs are applied under pro-in�ammatory conditions, 
potentially contributing to a strong and health-relevant suppression of SELENOP biosynthesis and interruption 
of SELENOP-dependent Se-transport to target organs. For these reasons, we decided to study its biosynthesis and 
sensitivity to AGs in more detail. SELENOP proved to be a most sensitive target of the disrupting e�ects of AGs, 
causing biosynthesis of Se-poor SELENOP variants in hepatocytes in culture. �e nature of the Sec-replacing 
amino acids was not uniform but UGA codon-speci�c. �e resulting Se-poor SELENOP variants may constitute 
inactive Se-transporters likely interfering with regular Se metabolism and target organ Se supply, especially in Se 
de�cient subjects.

Results
Effects of aminoglycosides on hepatocyte-derived SELENOP. Se-depleted HepG2 cells were incu-
bated with G418 or gentamicin; cells supplemented with 100 nM Na2SeO3 served as control (Fig. 1A). SELENOP 
secreted by G418-treated cells (10 or 50 µg/ml) was found in the medium in almost equal amounts as compared 
to that secreted by cells supplemented with selenite. In comparison, the intracellular levels of GPX1 and GPX2 
were only slightly di�erent between these conditions. �e e�ect of gentamicin on SELENOP expression was less 
pronounced, but still detectable and showed a dose-dependency in HepG2 cells (Fig. 1B). �e strong e�ect of 
G418 was qualitatively reproducible with human hepatoma Hep3B cells (Fig. 1C), and similarly detectable in 
the murine cell line Hepa1-6 (Fig. 1D). �e characteristic pattern of immuno-reactive SELENOP-isoforms was 
una�ected by the AG-treatment as judged by Western blot analyses.

The AG-dependent increase in SELENOP expression was verified by quantitative ELISA analysis. 
G418-induced SELENOP production di�ered under Se-de�cient and Se-supplemented conditions (Fig. 2). In 
these experiments, the e�ects of gentamicin were not signi�cant while G418 e�ects were strong. Next, the e�ects 
of AG treatment on gene expression were analyzed. DNA damage-inducible transcript 3 (DDIT3) was chosen 
as positive control26, and increased dose-dependently in response to G418 or gentamicin treatment (Fig. 3A). 
Similarly, dose-dependent elevated transcript levels of GPX1, GPX2 and SELENOP were detected in response to 
G418 treatment (Fig. 3B–D).

Se-content of AG-induced SELENOP. As there were no indications of truncated SELENOP variants by 
Western blot analysis, the relative Se content of AG-induced SELENOP was determined. HepG2 cells were sup-
plemented with 100 nM selenite and subjected to SELENOP-speci�c IP as positive control. �e protocol e�-
ciently removed SELENOP and all protein-associated Se from the samples (Fig. 4A). �is indicates that no other 
major Se-containing protein besides SELENOP was present in the conditioned media. Next, HepG2 cells were 
treated with selenite, G418 or G418 in combination with increasing selenite concentrations. Se-content of Se- and 
G418-induced SELENOP di�ered considerably (Fig. 4B–C). Supplemental selenite induced SELENOP, and addi-
tion of G418 led to a further increase in secreted SELENOP concentrations (Fig. 4B). In the absence of supplemen-
tal Se, the G418-induced SELENOP was not containing detectable amounts of Se, i.e., G418 led to biosynthesis 
of Se-free SELENOP variants (Fig. 4C). Supplemental selenite increased the net biosynthesis of G418-induced 
SELENOP in a dose-dependent manner and increased the relative Se content per secreted SELENOP molecule 
gradually (Fig. 4D). �ese results indicate an additive e�ect of G418 and selenite on SELENOP biosynthesis, 
with selenite increasing the Se content of SELENOP, whereas G418 increased the fraction of Se-poor SELENOP 
variants.

Characterization of the amino acids replacing Sec during AG treatment. In order to better char-
acterize the molecular effects of AGs on SELENOP biosynthesis, purified protein was analyzed by LC-MS/
MS. SELENOP was isolated by IP from HepG2 cells treated with 100 nM Na2SeO3, 200 µg/mL G418 or their 
combination. �e amino acids inserted at three central UGA positions (SEC3, SEC4 and SEC5) were identi�ed 
(Fig. 5). SELENOP secreted from cells supplemented with selenite carried almost exclusively the expected Sec 
at these positions (Fig. 5A). In contrast, supplemental G418 caused mis-incorporation at UGA codons, occa-
sionally inserting cysteine (C) instead of the Sec (U) at position SEC5 (Fig. 5B). �e ratio of incorrectly inserted 
residues at positions SEC3 and SEC4 was higher than at SEC5, and cysteine (C), tryptophan (W) and Sec (U) 
were detected at position SEC3 in almost stoichiometric amounts. �e AG-induced mis-incorporation under 
Se-de�cient conditions was almost complete at all three UGA positions. �e incorrectly inserted residues showed 
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Figure 1. In vitro e�ects of G418 and gentamicin on selenoprotein biosynthesis. (A) HepG2 cells were 
incubated for 48 h in FCS-free medium with supplemental selenite (100 nM), G418 or gentamicin. Western 
blot analysis indicates increased secreted SELENOP protein levels in response to selenite and G418 treatment. 
Intracellular protein levels of selenoenzymes GPX1 and GPX2 were marginally a�ected. (B) �e e�ect of 
gentamicin was veri�ed in a dose-dependent analysis. (C) �e e�ects of G418 on SELENOP secretion were 
replicated in human Hep3B, and (D) murine Hepa1-6 hepatocytes.

Figure 2. Interplay between AG and supplemental selenite on SELENOP concentrations. HepG2 cells 
were incubated for 48 h in the presence of G418 or gentamicin with or without supplemental selenite 
(100 nM). Secreted SELENOP (SEPP1) was quanti�ed by ELISA analyses. G418 strongly induced SELENOP 
concentrations in the conditioned medium, whereas gentamicin showed no e�ect. �e e�ect of G418 was 
augmented by supplemental selenite. (Mean ± SEM, n = 6, ANOVA followed by Dunnett’s).
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some codon-speci�c features, with SEC3 and SEC4 showing a predominance of tryptophan (W), while cysteine 
(C) and arginine (R) dominated at the SEC5 position (Fig. 5).

Effects of G418 and gentamicin in vivo. Wild-type C57BL/6 J mice were chosen to test whether these 
rodents constitute a suitable model system for testing the consequences of the AG-induced misreading of UGA 
codons in selenoprotein expression in living organisms. �e applicability of murine cells was supported by the 
results obtained before with the murine hepatocytes in culture (Fig. 1D). �e animals were raised on a Se-de�ned 
diet for three weeks, then received supplemental selenite via the drinking water or not, and were injected twice 
with relatively high amounts of G418, gentamicin or the respective solvent, as described27. E�ciency of AG treat-
ment was veri�ed by quantifying renal Ddit3 mRNA expression, which increased strongly in response to the 
G418-treatment (Fig. 6A). In comparison, there were no signi�cant e�ects of G418 on hepatic Ddit3 transcript 
concentrations. No e�ect of the injected AG on circulating Selenop or Gpx3 protein concentrations was evident 
by Western blot analyses (Fig. 6B). Serum Se concentrations were higher in the selenite-supplemented group, 
but no e�ects of the injected AG on serum Se were detectable (Fig. 6C). �e same applies to the fraction of 
protein-bound Se in serum, which was higher in the selenite-supplemented mice than in Se-deprived mice, but 
remained una�ected by the AG treatment under the experimental conditions chosen (Fig. 6D).

Discussion
The physiological transport of the essential trace element Se in the circulation depends on liver-derived 
SELENOP, which can be taken up by target cells in a receptor-dependent manner18. �e use of transgenic mouse 
models revealed that many physiological processes, e.g. growth, immune function, brain development, male fer-
tility, etc., depend on regular selenoprotein expression28. Analyses of inherited defects in humans support this 
notion, and show that brain, bone, the endocrine and immune responses, along with muscle and skin, are systems 
depending on selenoprotein function and being sensitive to impaired Se supply and disrupted selenoprotein 
expression29. For these reasons, any signi�cant disturbance in selenoprotein expression needs to be considered as 
potentially harmful, no matter whether it is due to inborn errors of metabolism, nutritional de�cits or side e�ects 
of pharmacological interventions.

In previous studies, AGs have been identi�ed as potential disrupters of regular selenoprotein expression in 
vitro, based on the analyses of GPX112, GPX4 or TXNRD113. �e consequences may be dramatic, as GPX4 and 

Figure 3. E�ects of AG treatment on selenoprotein transcript levels. HepG2 cells were treated with G418, 
gentamicin or Se for 48 h and mRNA expression was determined by qRT-PCR using 18 S rRNA as reference. 
(A) DDIT3 served as control gene for AG e�ects, and transcript levels increased in response to AG treatment 
in a dose-dependent manner. (B–C) Supplemental selenite and G418 increased SELENOP (SEPP1) and GPX1 
transcript levels. (D) Supplemental selenite or gentamicin had no e�ect on GPX2 transcript levels, whereas 
G418 showed a moderate e�ect. (Mean ± SEM, n = 4, ANOVA followed by Dunnett’s).
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Figure 4. Se-content of SELENOP in relation to G418 and supplemental selenite. (A) �e protein fraction of 
conditioned media from HepG2 cells was immobilized on a nitrocellulose membrane before and a�er immuno-
precipitation of SELENOP (SEPP -IP). �e SELENOP-IP procedure e�ciently removed SELENOP (SEPP1), 
and with it all the detectable Se from the culture medium. (B) Supplemental selenite and G418 increased 
immuno-detectable SELENOP (SEPP1). (C) Se content of SELENOP preparations varied strongly between the 
di�erent incubation conditions. (D) A comparison of the Se/SELENOP (Se/SEPP1) ratio indicates that G418 
induces Sec-free SELENOP variants, whereas selenite increased the Se content of SELENOP in the presence of 
G418. (Mean ± SEM, n = 3).

Figure 5. Amino acid insertion at UGA codons SEC3, SEC4 and SEC5 in SELENOP. HepG2 cells were treated 
with 100 nM Se, 200 µg/mL G418 or their combination. SELENOP was puri�ed by immuno-a�nity and 
subjected to LC-MS/MS analysis. (A) Sec in SELENOP was detected almost exclusively at the positions SEC3, 
SEC4 and SEC5 when cells were supplemented with selenite. (B) �e pattern of amino acids inserted at the three 
Sec codons varied strongly when cells were grown in the presence of 100 nM selenite and 200 µg/mL G418. (C) 
SELENOP synthesized in the absence of supplemental selenite but in presence of 200 µg/mL G418 was devoid 
of Sec residues at the three positions available for analysis (SEC3-5). �e amino acids replacing Sec were mainly 
tryptophan (W), cysteine (C) and arginine (R), but their relative proportions were Sec-codon speci�c.
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TXNRD1 are essential for life30. However, due to the hierarchical principles of selenoprotein biosynthesis, both 
enzymes become preferentially supplied with Se under conditions of Se de�ciency31. Accordingly, they may not 
represent the most sensitive targets of AG-induced Sec insertion interference. In comparison, SELENOP is nei-
ther essential nor preferentially supplied with Se. Moreover, its transcript carries 10 in frame UGA codons, poten-
tially rendering it particularly prone to AG-induced translational errors. �is hypothesis was tested and veri�ed 
in this study. SELENOP biosynthesis was strongly a�ected in all hepatic cell lines tested, and the e�ects were 
dose-dependent. �e Se content of the AG-induced SELENOP variants correlated to the basal Se supply, i.e., 
supplemental Se was capable of competing with the disrupting e�ects of AG. �is �nding is of clinical relevance 
when considering adjuvant supplementation as therapeutic option for counteracting the disrupting AG e�ects. 
Surprisingly, the spectrum of amino acids replacing Sec was codon-speci�c. However, the strong AG-dependent 
e�ects on selenoprotein biosynthesis were not replicated in an animal model of young and healthy mice fed 
Se-de�cient or Se-su�cient diets, indicating that this rodent model may not constitute a good choice for charac-
terizing these interactions in vivo.

At �rst sight, it is di�cult to reconcile these seemingly contradictory �ndings from the in vitro and in vivo 
experiments. �e e�ects in cell lines were consistent and in line with previous reports on the disrupting activ-
ities of AG on selenoprotein expression, especially with respect to G418 as a most potent aminoglycoside12, 13. 
Hepatocytes qualify as a relevant and suitable model, as the e�ects can reliably be monitored from the analyses 

Figure 6. E�ects of AG treatment on selenoprotein expression in mice. Mice fed Se-de�cient or Se-su�cient 
diets were treated with G418 or gentamicin. (A) Ddit3 was analyzed as an AG-responsive gene in kidney and 
liver, and signi�cantly increased Ddit3 mRNA concentrations were observed in kidney upon G418 injection 
(ANOVA followed by Dunnett’s). (B) Western blot analyses of Gpx3 and Selenop showed no di�erences in 
expression levels in response to G418 or gentamicin in Se-treated or Se-de�cient mice. (C) Se concentrations 
were higher in the selenite-supplemented mice than in mice raised on a Se-de�cient diet. No e�ect of AG 
treatment on serum Se was detectable. (D) Se concentrations of precipitated protein from serum were higher in 
Se supplemented than in Se-de�cient mice. Di�erences between the AG treatment groups were not detectable. 
(Mean ± SEM, n = 7).



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 4391  | DOI:10.1038/s41598-017-04586-9

of secreted SELENOP, facilitating the molecular analyses as SELENOP was abundant and constitutes the sole 
Se-containing protein in the conditioned media. Accordingly, a direct competition between G418 and selenite 
for supporting Sec-insertion into SELENOP became evident, reminiscent of the e�ects of thiophosphate supple-
mentation on the balance of Cys versus Sec insertion into the selenoenzyme TXNRD132. A relevance of such a 
competition at the UGA codons for Sec insertion in living subjects was recently demonstrated by showing that 
8% of the position encoded by UGA3 in SELENOP isolated from a human plasma pool was occupied by Cys 
instead of Sec33. It is thus possible that a similar disruption of regular Sec insertion into SELENOP takes place in 
patients treated with high AG concentrations in the clinics, especially during applications of AG as therapeutics 
of severe sepsis or modulators of translational termination by supporting stop codon read-through in diseases 
caused by premature stop codons6, 7. �is notion is supported by our recent analyses of the Se status in newborns 
with connatal infections, where we found indications that the AG treatment disrupted the linear Se to SELENOP 
ratio, likely due to an increased biosynthesis of Se poor SELENOP variants34.

Selenop biosynthesis by murine Hepa1-6 cells was also sensitive to G418, indicating commonalities of AG 
e�ects in humans and mice. �is is of special interest, as the e�ciency of AG-driven translational read-through 
depends among other factors on the base-context of UGA (especially position +4)20, which varies between 
murine and human SELENOP transcripts35. Gentamicin, an antibiotic with more widespread clinical use, espe-
cially in developing countries3, had a weaker but still detectable e�ect on disrupting Sec insertion into SELENOP 
in vitro. Importantly, the gentamicin used in our study was not a puri�ed compound, but a mixtures of several 
related aminoglycosides. Only a minor component of gentamicin, i.e., gentamicin B1, appears to be primarily 
responsible for inducing translational read-through9. When considering a clinical application of gentamicin for 
treating diseases with nonsense mutations, this minor compound will likely be highly e�cient at much smaller 
dosages than currently applied and eliciting fewer side e�ects. According to our results, it may be meaningful 
to also monitoring the Se status and avoid Se de�ciency in such clinical trials, in order to minimize the risk for 
inducing non-functional selenoproteins that may be involved in the oto- and nephro-toxicity observed in treated 
neonates2. �is risk might also be of importance in veterinary medicine, where AGs are more widely and inten-
sively used4.

Besides a�ecting translation and amino acid insertion, AGs may a�ect the stability of selenoprotein transcripts 
by modulating the degree of nonsense-mediated decay (NMD) and/or the ribosome density downstream of UGA 
Sec codons, which both contribute to the hierarchical expression of essential selenoproteins relative to so-called 
housekeeping selenoproteins36, 37. And indeed, strongly elevated SELENOP and GPX1 mRNA expression was 
observed in response to AG treatment in hepatoma cells, likely indicating an increased translational activity suc-
cessfully competing with NMD of selenoprotein transcripts38. As shown by Western blot analyses, AG treatment 
does not a�ect the apparent size of newly synthesized SELENOP, i.e., no premature translational termination is 
evident. Further analysis via LC-MS/MS revealed the postulated exchange of Sec by other residues. Interestingly, 
the amino acids inserted in place of Sec varied between the positions SEC3, SEC4 and SEC5, although the critical 
base at +4 was the same for all these Sec codons. While insertion of Cys in place of Sec might be less disrupting 
due to the ability of Cys to form disul�de and selenenyl-sul�de bonds, replacement of Sec with Trp or Arg is 
expected to lead to more severe structural changes, potentially interfering with receptor-mediated uptake.

Still, the discrepancy of the strong e�ects observed in hepatic cells in culture and the lack of e�ects in the 
mouse experiment is puzzling. Several factors might have contributed to these �ndings. a) Western blot analysis 
is not a very quantitative technology and small interfering e�ects might have gone unnoticed. b) �e animals 
were young and healthy, and exposed to AGs for a short period of time only, which is dissimilar to the clinical 
situation. c) Despite being raised on a Se-de�cient diet, the remaining Se, still available for selenoprotein bio-
synthesis, might have over-competed the interrupting e�ects of AGs. d) Much of the antibiotics may be excreted 
in live mice, in contrast to cultured cells or diseased patients, so the e�ects on selenoprotein expression may be 
less obvious. e) AG are known to accumulate more in kidney than in liver tissue, which is compatible with our 
�ndings of stronger e�ects on renal than hepatic Ddit3 transcript concentrations and undetectable e�ects on 
liver-derived Selenop in healthy animals. It can be speculated that any disrupting e�ects of AG on selenoprotein 
expression may become more detectable and more relevant in the clinics, where additional noxae like in�amma-
tory cytokines23, hypoxia19 or poor nutrition and limited Se supply36 may synergize in impairing regular seleno-
protein expression. Given that AGs are intensively used in both veterinary and human medicine, a continuation 
of this line of research appears promising, especially in view of the recent �nding that human SELENOP contains 
on average only 5.4 Se atoms per SELENOP molecule in human subjects39.

Collectively, our data indicate strong disrupting e�ects of AGs on the faithful insertion of Sec residues during 
hepatic selenoprotein biosynthesis. Among the selenoproteins tested, SELENOP proved to be particularly sen-
sitive. Depending on the speci�c UGA codon, Sec may be replaced by Cys, Trp or even Arg, likely a�ecting the 
structure and function of SELENOP. �e resulting Sec-poor SELENOP variants may induce ER stress, lose their 
capacity of transporting Se and might even become immunogenic, promoting autoimmunity. A �rst evidence for 
SELENOP-speci�c autoantibodies has recently been reported, in line with previous concerns about a generally 
increased AG-induced autoimmunity40. Also in the situation of severe illness, characterized by low SELENOP 
concentrations, treatment with AGs may further aggravate the situation by interfering with the Se metabolism 
and transport. �is may become of speci�c relevance when patients are treated with AGs over longer periods of 
time, e.g. in cystic �broses, or when the organism is relatively vulnerable, e.g. adults and children in the intensive 
care units. Respective analyses are urgently needed, as our experiments as well as both animal and clinical studies 
have indicated that supplementation strategies may e�ciently overcome pathophysiological symptoms resulting 
from insu�cient selenoprotein expression.
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Material and Methods
Cell culture. Human HepG2 and Hep3B hepatoma cells were cultured in DMEM/Ham’s F-12 (Life 
Technologies) medium containing 10% fetal bovine serum (FBS) in a humidi�ed incubator at 37 °C in 5% CO2. 
Murine Hepa1-6 hepatoma cells were grown in DMEM with 10% FBS under the same conditions. To determine 
AG- and Se-e�ects, cells were grown to con�uency in six-well culture dishes, starved in DMEM/Ham’s F-12 
without additives overnight, washed with 1xPBS and incubated with serum-free medium and the respective sup-
plemental AG and/or Se for an additional 48 h. Conditioned medium was removed and stored at −20 °C until 
analysis. Cells were washed and scraped in homogenization bu�er (250 mM sucrose, 20 mM HEPES, 1 mM EDTA 
in H2O, pH 7.4) with 0.1% Triton X-100 (Merck, Darmstadt, Germany).

Animal experimentation. Male wild-type C57BL/6 J mice were obtained from Janvier Labs (Le 
Genest-Saint-Isle, France). �e animals received humane care in compliance with the Guide for the Care and 
Use of Laboratory Animals as prepared by the German National Academy of Sciences. Animal experimenta-
tion was approved by the local governmental authorities in Berlin (LAGeSo, approval no. G0064/15). �e ani-
mals were raised on regular lab chow. Four weeks before treatment, all animals were adapted to a Se-de�cient 
diet (<0.08 ppm Se, Ssni� GmbH, Germany). Starting one week before the �rst injection, the Se-supplemented 
group was supplied with additional Se via the drinking water (0.4 ppm Na2SeO3). Animals were subcutaneously 
injected on two consecutive days with solvent, G418 (25 mg/kg b.w.) or gentamicin (50 mg/kg b.w.), essentially as 
described27. Twenty-four h a�er the last injection, animals were sacri�ced and tissues were prepared, frozen on 
dry ice and stored at −80 °C until analysis.

LC-MS/MS analysis of SELENOP. HepG2 cells were grown to con�uency in 125 cm2 cell culture �asks, 
starved for 24 h in serum-free medium and incubated for a further three days in 20 mL of serum-free medium 
containing the respective supplements (Na2SeO3 and/or G418). �e conditioned medium was collected, pooled to 
a �nal volume of 500 mL and SELENOP was isolated by a�nity puri�cation. In brief, a SELENOP-speci�c mon-
oclonal antibody (ICI-immunochemical intelligence GmbH, Berlin, Germany) was coupled to AminoLink Plus 
coupling gel (2 mL bed volume, Pierce Biotechnologies, Inc., Rockford, IL). Coupled antibody-loaded resin was 
incubated with the pooled media overnight, subsequently washed and resin-bound protein was eluted by 50 mM 
citric acid. Isolated SELENOP was prepared for analysis by reduction and alkylation of Cys and Sec residues 
with iodoacetamide. �e alkylated protein samples underwent trypsin digestion and were analyzed essentially as 
described earlier33.

Quantitative PCR. For quantitative PCR (qRT-PCR), HepG2 cells were seeded at 0.5 × 106 cells per well 
in a six-well cell culture dish and incubated for 48 h with 100 nM Na2SeO3, G418 or gentamicin. Total RNA 
was extracted using peqGOLD TriFast Reagent (PEQLAB, Erlangen, Germany) and reverse transcribed using 
the iScript™ cDNA Synthesis Kit (BIO-RAD, Munich, Germany). QRT-PCR analyses were performed using the 
iCycler-System (BIO-RAD) and the ABsolute qPCR SYBR Green Fluorescein Mix (�ermo Scienti�c, Schwerte, 
Germany). Di�erent housekeeping genes were tested for normalization and reliability under the given conditions. 
Finally, 18S rRNA along with the 2−(∆∆ct)-method was used for data evaluation. Primer sequences were as fol-
lows; human SELENOP: 5′-TATGATAGATGTGGCCGTCTTG-3′ and 5′-TGTGATGATGCTCATCATGGTA-3′; 
GPX1: 5′-GGGCAAGGTACTACTTATCGAG-3′ and 5′-TTCAGAATCTCTTCGTTCTTGG-3′; DDIT3: 
5 ′-TGGGGAATGACCACTCTGTT-3 ′  and 5 ′-CTCCTGGAAATGAAGAGGAAGAA-3 ′  and 18S 
rRNA: 5′-TTGACGGAAGGGCACCACCAG-3′ and 5′-GCACCACCACCCACGGAATCG-3′, mouse 
Ddit3: 5′-CGAAGAGGAAGAATCAAAAACT-3′ and 5′-TCCTTCTCCTTCATGCGTTG-3′ and Actb 
5′-TGCTATGTTGCTCTAGACTTCG-3′ and 5′-CACTTCATGATGGAATTGAATG-3′.

Western Blot analysis. For Western blot analysis of conditioned medium, equal volume was mixed with 4x 
sample bu�er (200 mM Tris-HCl, pH 7.5; 50% glycerin; 4% SDS; 0.04% bromophenol blue and 125 mM DTT). 
For cell lysates, protein concentrations were quanti�ed by Pierce BCA Protein Assay Kit (�ermo Scienti�c) and 
equalized to same protein concentration. For mouse serum, samples were 10-fold diluted in 4x sample bu�er. 
Samples were incubated for 5 min at 95 °C, cooled down and size fractionated using SDS-PAGE. Proteins were 
transferred to a nitrocellulose membrane by semidry blotting (BIO-RAD). Immunodetection of proteins was 
achieved by speci�c antibodies and overnight incubation: SELENOP (1:2,500 dilution, ICI, Berlin), Selenop 
(1:1,000 dilution, as described41), GPX1 (1:1,000 dilution, Abcam), GPX2 (1:5,000 dilution, kind gi� of Dr. A. 
Kipp, DIfE, Germany) and ACTB-Peroxidase (1:25,000 dilution, Sigma-Aldrich). Quanti�cation was performed 
using ECLTM Western Blotting Detection Reagents (GE Healthcare, UK).

Se-determination. For the determination of the Se-content of SELENOP, 1 mL of conditioned medium 
was transferred to a nitrocellulose membrane via Dot-Blotting (BIO-RAD). De�ned punches (4 mm in diame-
ter) were taken and protein was lysed by 20 µL of 60% HNO3 (with added Gallium (Ga)-Standard of 1000 µg/L) 
followed by an incubation at 70 °C for 30 min in a thermocycler. To test whether the immobilized Se origi-
nates from SELENOP, conditioned media from HepG2 cells treated with 100 nM Na2SeO3 was depleted by 
immuno-precipitation (IP) with a SELENOP-antibody coupled resin (1 mL resin in 5 ml conditioned medium, 
incubation overnight at 4 °C). Membrane–bound protein was quanti�ed for its Se content before and a�er IP. To 
determine Se content of murine serum proteins, 40 µL of serum was diluted with water to a �nal volume of 200 µL 
and 50 µL trichloroacetic acid (100% w/v) was added. Samples were incubated on ice for 15 min, centrifuged 
(12,000 rpm for 10 min at 4 °C), and the resulting pellet was washed twice with ice-cold acetone. A�er drying 
at room temperature for 30 min, 40 µL of 30% HNO3 (containing 1000 µg/L Ga as internal standard) was added 
to each pellet and the samples were lysed in a thermocycler at 70 °C for 3 h. �e acidic lysates were applied to 
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total-re�ection X-ray �uorescence (TXRF) sample holders, and Se was quanti�ed via TXRF (Picofox, Bruker 
Nano). For serum Se analyses, serum was diluted 1:1 with the Ga-standard and measured as described above.

SELENOP quantification by ELISA. A�er incubation with AGs or 100 nM Na2SeO3 and collecting the 
HepG2-conditioned media, or a�er recovery from membrane punches, SELENOP concentrations were quanti-
�ed by a SELENOP-speci�c sandwich ELISA (Selenotest®, ICI, Berlin).

Statistical analyses. Statistical analyses were performed using GraphPad Prism v4.0 (GraphPad So�ware 
Inc., San Diego, USA). Results are presented as mean + SEM. Number of replicates and tests for signi�cance are 
indicated in the �gure legends. �e signi�cance is assigned if P < 0.05 (*), P < 0.01 (**) or P < 0.001 (***).
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