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AMME: an Automatic Mental Model Evaluation to analyse
user behaviour traced in a finite, discrete state space
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To support the human factors engineer in designing a good user interface, a method
has been developed to analyse the empirical data of the interactive user behaviour
traced in a finite discrete state space. The sequences of actions produced by the user
contain valuable information about the mental model of this user, the individual
problem solution strategies for a given task and the hierarchical structure of the
task—subtasks relationships. The presented method, AMME, can analyse the action
sequences and automatically generate (1) a net description of the task dependent
model of the user, (2) a complete state transition matrix, and (3) various quantita-
tive measures of the user’s task solving process. The behavioural complexity of
task-solving processes carried out by novices has been found to be significantly
larger than the complexity of task-solving processes carried out by experts.

1. Introduction

The method AMME (Automatic Mental Model Evaluation) was developed to support
the cognitive scientist in studying user behaviour. ‘Cognitive ergonomics is oriented
towards optimizing human-machine systems, according to three types of criteria:
characteristics of human cognitive processes, software science knowledge, and
knowledge in diverse work domain technologies’ (Green and Hoc 1991: 301). Several
methods are used to study ‘cognitions’: questionnaires (Scott et al. 1979), ratings
of observable behaviour (e.g., ‘scoring rationales’, McDaniel and Lawrence 1990),
protocol analysis (Ericsson and Simon 1984), formal models (Kieras and Polson
1985).

There are different formalisms for constructing user models: MAD (Scapin and
Pierret-Golbreich 1990), TAG (Payne and Green 1986), CLG (Moran 1981), CCT
(Kieras and Polson 1985), GOMS (Card et al. 1983), and various kinds of grammars
BNF (Reisner 1981), etc. Using any of these formalisms, the investigator must always
categorize user behaviour as appropriate regarding the chosen model and design the
more of less pure (= ‘error free’) user model in a top-down approach based on
empirical data. Then she or he can try to test her or his model with empirical
data, which has to be cleaned up before testing to become more or less ‘error free’
(e.g., Churchill 1992). This is often difficult and depends on the expressive power of
the used formalism.

If there is a possibility to construct user models in an automatic, bottom-up
approach thus avoiding classification of user behaviour as ‘defective’, then the
handling with formal models becomes easy, productive and valid in an empirical
“sense. Thus, an alternative method to analyse observed empirical process descriptions
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without normative constrains like ‘defectiveness’, etc., are of interest. AMME is a
method to construct user models in a clear objective way using full information of
the complete process description. It is an automatic, bottom-up approach to construct
a formal description of user behaviour. The selected formalism is the net theory.
Bauman and Turano (1986) showed, that Petri nets (Petri 1980) are equivalent to
formalism based on production rules (like CCT of Kieras and Polson 1985). Finite
state transition nets are subsets of Petri nets (Peterson 1981). By modelling the user’s
knowledge with finite state transition nets Sanderson et al. (1989) showed that the state
space approach can also be applicd in the domain of process control.

Nets are appropriate to describe models in both quantitative and qualitative form.
The description of models with quantitative measures allow= calculation of applied
statistics based on samples of empirical data. Quantitative measures of finite state
transition nets are: size (e.g., number of states, number of transitions), complexity
(e.g., amount of inter-connectivity), etc.; Qualitative descriptions of nets are: content,
form, gestalt, structure (e.g., special pattern), etc. First, the basic idea of the method
AMME is presented; the tool and its usage is then described. The last part of this
paper presents results of an experimental investigation (Rauterberg 1992a), in which
AMME has been applied.

2. Method

What is the main concern of a user interacting with a technical system? The user must
build up a mental representation of the system’s structure and gain knowledge about
the functions of this system with respect to a set of tasks. Furthermore, he must learn
the ‘language’, i.e., a set of symbols, their syntax, and operations connected to them,
to evoke interaction sequences (the interactive ‘processes’) related to task and subtask
functions. Thus, the user’s representations of the system structure are models of a
virtual machine. A ‘virtual machine’ is defined as a representation of the functionality
of a system (functional units and their behaviour). The most important point for the
user is the relation between task and machine, rather than the internal structure of the
machine’s system. Consequently, the task for the human factors engineer is to model
a suitable interface as a representation of the virtual machine which can serve as a
possible mental representation for the user.

The symbolic representation of the machine system consists of the following
elements: (1) objects (things to operate on); (2) operations (symbols and their syntax);
and (3) states (the ‘system states’). The mental model of the user can be structured in
representing objects, operations, states, system structure, and task structure.

2.1. The basic idea
Given a finite action space, each state corresponds to a system context, and each
transition corresponds to a system operation. A trace (= sequence) of states and
transitions in this action space can describe a complete or partial task solving process.
Each finite trace in the action space is called a ‘process’ (see for example figure 1). A
task-solving process contains three different kinds of information: (1) all necessary
states and transitions itself; (2) the amount of repetition of each necessary state and
transition; and (3) the sequential order of all these states and transitions.

Finite state transition nets can be completely described with Petri nets, which have
a clear semantic (Peterson 1981). A Petri net is a mathematical structure consisting of
two non-empty disjoint sets of nodes, called S-elements and T-elements, respectively,
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s0 a sl a 52 K3 s3 s3

s3 _ (=2 TAB K2 s3 TAB
CR s3 _ s3 K9 —> h s0

Figure 1. A sequence generated by a user operating a relational database program (see
Rauterberg 1992a). The whole process of the shown example is based on 12 transitions
(#AT) and 12 + 1 = 13 states (#AS). The representation of this process is given ina
complete ...—>(state) —> [transition] —> (state) —>... description. Legend: (sO)=main
menu state, (s1) = module ‘data’ state, (s2) = routine‘browse’ state, (s3) = wrong input
state; [_] = ascii key ‘BLANK’, [a] = ascii key ‘a’, [d] = ascii key ‘d’, [h] = ascii key ‘h’,
[CR] = carriage return, [K2]=function key °‘F2’, [K3]= function key °‘F3’,
[K9] = function key ‘F9’, [TAB] = tabulator key.

and a binary relation F, called the flow relation. F connects only nodes of different
types and leaves no node isolated. Petri nets can be interpreted by using a suitable pair
of concepts for the sets S (signified by a circle ‘( )’) and T (signified by a square )
and a suitable interpretation for the flow relation F (signified by an arrow ‘—>’).
The means/activity interpretation allows one to describe the static structure of a system -
with several active and passive functional components: means (S) = real or informa-
tional entity, and activity [T] = (repeatable) action of a system. The flow relation F
signifies: [a]—>(m), the activity a (e.g., a system operation) produces means m
(e.g., a system state); (m)—>[a], activity a uses means m.

The main operations (relations) between two nets are abstraction, embedding and
folding (Genrich et al. 1980). The ‘folding’ operation is the basic idea of the alternative
approach presented in this paper. Folding a process means to map S-elements on to
S-clements and T-elements on to T-clements while keeping the F-structure. The aim
of the ‘folding’ operation is to reduce the eclements of an observed empirical task
solving process to the minimum number of states and transitions, with the reduced
number of elements being the ‘performance net’. Folding a task solving process
extracts the embedded net structure and neglects the information of the amount of
repetition and of the sequential order.

The shortest meaningful part of each process is an ‘clementary process’:
(s)—>[¢]1—>(s"). If the observable behaviour can be recorded in a complete
...—>(state) —> [transition] —> (state) —> ... process description (see figure 1), then the
analysis and construction of the net structure of this process can be done by counting
the number of all different states (#DS) and transitions (#DT) used, or to mark the
frequencies of each state and transition used in the process on a list of all possible
states (transitions, resp.). But, if the observable behaviour can only be recorded in a
more or less incomplete process description (e.g., ...—>(state)—> [transition] —>
[transition] —> ...; or ... —> (state) —> (state) —> [transition] —> .. .), then the analysis and
construction of the net structure of this process is difficult: one has to find out the
correct state (transition, resp.) between both transitions (states, resp.). Unfortunately,
this is the most frequent case in practice. For these cases automatic tool support is
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necessary. The program AMME is a tool which offers computer aided support in
analysing incomplete recorded processes. This obstacle can be overcome with a
description of the complete state transition space in advance, which can be used by the
tool AMME to control the correct interpretation of the incomplete process description.

2.2. Net extraction with AMME

First of all the investigator has to define a state list: a complete description of all states
of the interactive system. All possible transitions between different or equal states
restrain the action space of the user. One special transition must be taken into account:
the ‘empty’ user action. This is the case when the system automatically changes from
one state to another without any user input. )

Second, the investigator has to determine a complete action list as a pre-post state
matrix: a description of all allowed user actions (resp. transitions) changing the actual
system state (pre state) to the post state; pre and post states can, but need not be
different. The pre-post state matrix is a compact and complete description of all
possible elementary processes in the action space. We also designate the pre-post state
matrix the ‘adjacency matrix’ (see figure 3).

The program AMME looks for all elementary processes in the sequence, counts
the frequency of each observed elementary process to analyse first order Markov
chains, and writes this information in the output file with the ‘frequency matrix’. The
composition algorithm (the folding operation) of AMME is now able to build up the
embedded Petri net combining all observed elementary processes. The result of the
folding operation of our example sequence above is the Petri net given in figure 2. This
special net with four different states (#DS) and nine different transitions (#DT) is the
minimal net structure we need to reproduce the process given in figure 1. Each ‘folded’
Petri net is a formal description (‘model’) of the observed performance of the user’s
behaviour.

One valuable feature of a net presentation is the possibility for qualitative analysis:
one can directly identify specific types of pattern in the net structure. One special
pattern, the so called ‘corona’ pattern around the state s3, is given in the net of
figure 2. One possible explanation of this pattern could be given as follows: if the
cognitive knowledge base of a user is not elaborated enough, and if the interface does
not support the user in an appropriate way (e.g., adequate visual feedback), then this
user is headed for an interactive deadlock situation. This type of situation is character-
ized by the fact, that the user does not know, how to leave the actual dialogue context
in an appropriate way (in our example state s3). In such deadlock situations only trial
and error behaviour helps (sometimes!). This trial and error behaviour results in the
‘corona’ pattern (see figure 2). The behavioural complexity of the ‘performance net’
with interactive deadlocks increases with the quota of trial and error strategies solving
the same task.

2.3. Input and output files for AMME

In the context of our research domain (HCI) the tool environment of AMME consists
of four different programs: (1) the dialogue system with the logfile recording feature;
(2) the analysing program AMME (Rauterberg et al. 1992¢), which extracts the net of
the task and user specific processes and calculates different quantitative aspects of the
generated net structure; (3) the Petri net simulator PACE (Dihler 1989); and (4) the
analysing program KNOT (Interlink 1991, Schvaneveldt 1990).
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State list: Transition list:

a \ s0 : main menu _ : ascii key "BLANK"
sl : modul "data* a : ascii key "a"
£2 : routine *browse* d : ascii key "d"

h 83 : "wrong input® state h : ascii key "h"

CR: carriage rsturn
K2: function key “2°"
K3: function key "3"

999999
58886634

s0 K9: function key "9°*
TAB:tabulator key
K3
d h

K9 \

sl
CR

PFOLDING
s3 - a K9 _

TAB TAB

?

Y
K3 a3

J CR

K2

s3 K2

elementary procaessas Petri net

Figure 2. The nine observed elementary processes of the example process shown in figure 1
and the folded Petri net generated by AMME., This folding procedure operates on all
elementary processes (S0)—> [d] = (S1), ...: all elementary processes of the simple net’
example (figure 1) are shown on the left side. The semantic labels of all states and
transitions are presented on the right side above.

AMME needs two input files: (1) the complete system description on an appro-
priate level of granularity (the complete state list and the pre-post state matrix); and
(2) the process description of a specific individual task solving process corresponding
to the granularity level of the system description (see figure 3). The process descrip-
tions can be automatically generated by an interactive system (the ‘logfile recording’
technique) or hand written by the investigator (e.g., based on protocols of observa-
tions).

AMME produces five different output files: (1) a Petri net description file in a
special syntactical form for the Petri net simulator PACE; (2) a plain text file with the
adjacency matrix for KNOT; (3) a plain text file with the frequency matrix for first
order Markov chain analysing software, (4) a plain text file with different quantitative
measures of the whole task solving process and the folded net structure; (5) a
PostScript file to print the net structure in a graphical form for qualitative pattern
matching.

Analysing a set of different process descriptions with AMME is normally an
iterative procedure, if the description of the total interactive system is quite large and
therefore at the beginning incomplete. With each new process description analysed by
AMME the input file with the provisional ‘complete’ system description must then be
updated with ‘new’ states and/or transitions. After analysing the whole sample of
process descriptions in the first trial all process descriptions must be reanalysed in a
second trial. This procedure guarantees that the calculation of all quantitative measures
of each analysed net is based on the same system description.
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logfile- -~
system records hand written records
> based on
) observations
-
m
desc;y;g)n
__ the analyzing program AMME 1| = =
B
ascii text gmphic.
outputfile with outputfile in

quantitative PostScript

state transition net adjacency matrix frequency matrix measures format
« simulation » learning « personal » complexity » interface
« task-subtask - » MDS styles « routine design
» simillrity

Figure 3. The analysing program AMME requires two input files and generates five different
output files: (1) a net description for the Petri net simulator PACE, (2) an adjacency
matrix for the Pathfinder software KNOT, (3) a frequency matrix to analyse first order
Markov chains, (4) a plain text file with the quantitative measures, and (5) a graphic
output of the net structure in PostScript format.

2.4. Hardware platform for AMME

The current version of AMME is restricted to descriptions of processes which can be
traced in a finite, discrete state space. AMME is shareware and available for Apple
computers (Mac II with operating system 2> 7.0) and for IBM or compatible PCs (with
MS-Windows 2= 3.0).

3. Quantifying the task solving process
Our approach is based on the actual observation of users performing a specific task.
The key to the interpretation of the process descriptions is a ‘map’ of the complete task
solving domain (action space = state U transition space), in which the behaviour of
individual processes is traced. The task solving domain in the following example is the
whole dialogue net structure of an interactive software program (a relational data base
system).

Each observed task-solving process can be quantified with three different
measures: task solving time (#7'ST), number of all used transitions (#AT), number
of all occurring states (#AS). Each observed task solving process is always a sequence
and can be characterized by #AS = #AT + 1. These measurements can easily be
calculated based on the logfiles.

The extracted net structure can be quantified with the number of different transi-
tions (#DT') and the frequency of each transition as well as the number of different
states (#DS) and the frequency of each state. The accounts of #DT and #DS depend on
the size of the embedded net structure. These measurements are done by AMME.
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3.1. Experimental setting and task description

In our experiment (Rauterberg 1992a) all users had to play the role of a camping site
manager. This manager uses a relational database system with a data base consisting
of three data files (‘basis relations’): PLACE, GROUP, and ADDRESS.

Novices and experts were classified and selected by their amounts of experiences
with electronic data processing in advance. Their experience with electronic data
processing was measured with a 115-item questionnaire and with structured inter-
views. The novice group (n = 6) was then instructed in handling of the database system
for 1-5h. The expert group (n = 6) already had 1740 h each of experience in handling
of the database system. Their total computer experience of approximately 7500 h was
the result of their daily work using various types of computers and software systems.
The duration of the individual task solving session was about 30 min. Each keystroke
with its corresponding time was recorded automatically in a logfile. Each user needed
about 1 h for the whole experiment which consisted of 4 tasks in individual sessions.
All users had to solve the following four different tasks in operating the database
system:

Task 1: “Please find out how many data records are in the file ADDRESS, in the file
PLACE, and in the file GROUP.’

(The user has to activaté a specific menu option (‘Datafile’ in module ‘Info” of the menu

interface) and to read the file size (solutions: PLACE = 17 data records, GROUP =27 data

records, ADDRESS = 280 data records).)

Task 2: ‘Delete only the last data record of the file ADDRESS, the file PLACE, and
the file GROUP (sorted by the attribute “namekey™).’

(The user has to open (sorted according to the given attribute), select, and delete the last data ’

record (file: PLACE, GROUP, ADDRESS).)

Task 3: ‘Search and select the data record with the namekey ‘D..8000C O M’ in the
file ADDRESS, and show the content of all attributes of this data record on
the screen. Correct this data record for the following attributes:

State: Germany
Place number: 07
Remarks: Database system dealer can give a demonstration.’

(The user must select a certain data record (file: ADDRESS), update the data record with regard

to the three attributes: State, Place number, Remarks.)

Task 4: ‘Define a filter for the file PLACE with the following condition: all
vacationers arrived on 02/07/87. Apply this filter to the file PLACE, and
show the content of all selected data records in the mask browsing mode on
the screen.’

(The user must define a filter for the attribute ‘arrival data’, apply the filter to the data file -
PLACE, and display the content of each data record found on the screen.)

Each user was instructed to carry out a complete solution for each task as quickly as
possible. The investigator checked the completeness of each task solving process.

3.2. Results and discussion

A routine task can be identified by a large process description (=long logfile;
e.g., #AT»10) and a small size of the embedded net structure (e.g., #DT < 10). The user
is always running in loops and using the same system operations to solve the task; we
designate this kind of task ‘routine’. The ratio of ‘total number of transitions in the
process description’ ( = the lcngth of the logfile; #AT) to the ‘number of different
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Table 1. Results of the two factor analysis of variances of the ‘degree of routinization’ (#R)
of novices and experts for four different tasks. The variables ‘no. of different states
(#DS)’ and ‘task-solving time (#TST)’ are used as covariates.

Covariate #TST:

Dependent variable #R: Covariate: Covariate #DS:

‘routinization degree’ without ‘no. of different states’ ‘task-solving time’
Source of variation da F p df F p df F p
‘Expertness’ 1 669 0013 1 9.88  0-003 1 140 0243
‘Tasks (1-4) 3 1451 0001 3 1544 0-001 3 11.16 0-001
‘Expertn. ‘®’ tasks (1-4) 3 222 0101 3 205 0-054 3 170 0182

o4
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1 2 3 4
novices experts tasks

Figure 4. These two Box-and-Whisker Plots show the ‘degree of routinization’ (#R) for
‘novices—experts’ and ‘tasks 1-4’ (n = 48) (separately). The box in each case covers the
middle 50% of the data values, between the lower and upper quartiles. The extension lines
indicate the extremes, while the central line marks the median.

transitions in the folded net’ (#DT) is a good measure of the ‘degree of routinization’
(#R).

‘degree of routinization’: #R = #ATADT

ey

This measure combines the information of the total amount of repetition of each
transition (#AT) with the information of all necessary transitions (#07'). The informa-
tion of the sequential order of all transitions is neglected.

We calculated the ‘degree of routinization’ (#R) of these four different tasks and
analysed this measure with a two factor analysis of variances (table 1). A statistically
significant difference between novices and experts and between the four different
tasks (figure 4) was found. The difference between novices and experts can be fully
explained using the ‘task-solving time’ as a covariate in the analysis of variances, but
not the difference between the four tasks (table 1, last column). This is a strong
indication, that the ‘degree of routinization’ (#R) is a task feature rather than a
characteristic of users.

The ‘editing’ Task 3 in our investigation was found to be the task with the largest
#R (figure 4). The size of the observable task solving process of task 3 is on average
10 times larger than the underlying net structure.
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4. Quantifying the behavioural process ‘

One important difference between novices and experts is the complexity of their
mental model (Bainbridge 1991: 343). The novices have a simple mental structure, so
they have to behave in a more heuristic manner to operate an interactive system. On
the other hand, the structure of the mental model of the experts are more or less correct
representations of the system structure, so they can behave in a straightforward fashion
to solve given tasks. We therefore assume that the mental model of an expert is more
comprehensive than that of a novice. This assumption can be tested by comparing the
complexity of the observable behaviour of novices and experts.

We call the complexity of the observable behaviour the ‘behaviour complexity
(#BC)’. This behaviour complexity can be estimated by analysing the recorded
concrete task solving process (‘logfiles’). The complexity of a given work system
(the ‘action space’) we call ‘system complexity (#SC)’. The account of #SC is given
by the complete pre—post state matrix, which contains all possible elementary
processes. The complexity of the observable behaviour (#BC) of novices should be on
average larger than the complexity (#BC) of the observable behaviour of experts.

4.1. Definition of complexity

To measure complexity we introduce the Ceyce metrics (the ‘cyclomatic number’) of
McCabe (1976). Ceycie is a measure to calculate the number of linear independent
cycles of a plane and coherent net. Ceycre is a useful quantity that measures the amount
of interconnectivity (complexity). The advantages and disadvantages of four different
quantitative measures of complexity in the context of our empirical investigation
have been discussed on different occasions; Ceyqe proved to be the most effective
(Rauterberg 1992b).

The complexity measured with Cyc is defined by the difference of the total
number of connections (#7T": transition) and the total number of states (#S: state). The
parameter P is a constant that corrects the result of Formula 1 in the case of a sequence
(#T — #S = — 1); the value of P in this context is 1. The semantic of Ceyce can be
described by the number of ‘holes’, ‘loops’, or ‘cycles’ in a net.

‘cyclomatic number’: Coycle =#T-#S+ P withP =1 2)

The measure Ceyoe Of the net example in figure 3 s
#DT — #DS + P = 9 — 4 + 1 = 6; the complexity of the observed task solving sequence
shown in figure 1 is #AT — #AS + P = 13 — 12 + 1 = 0; for each sequence Ceyc is Zero
(a sequence has no cycles!).

4.2. Results and discussion

Cognitive complexity has been defined as ‘an aspect of a person’s cognitive func-
tioning, which at one end is defined by the use of many constructs with many relation-
ships to one another (complexity), and at the other end by the use of few constructs
with limited relationships to one another (simplicity)’ (Pervin 1984: 507). Transferring
this broad definition to human—computer interaction could imply that the complexity
of the user’s mental model of the dialogue system is given by the number of known
dialogue contexts (‘constructs’) on one hand, and by the number of known dialogue
operations (‘relationships’) on the other. In order to measure the complexity of a
mental mode] which generates an observable process, a ‘mapping’ procedure from the
observable process description to the embedded structure of this process is necessary.
This ‘mapping’ procedure can be done with the folding operation in the context of Petri
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Figure 5. These two Box-and-Whisker Plots show the ‘behavioural complexity’ (#BC) for
‘novices—experts’ and ‘tasks 1-4° (n = 48) (separately). The box in each case covers the
middle 50% of the data values, between the lower and upper quartiles. The extension lines
indicate the extremes, while the central line marks the median.

Table 2. Results of the two factor analysis of variances of the ‘behavioural complexity’ (#BC)
of novices and experts for four different tasks. The variables ‘no. of different states
(#DS)" and ‘task-solving time (#TST)’ are used as covariates.

Dependent variable #BC: . Covariate: Covariate #DS: Covariate #7ST:
‘behavioural complexity’ without ‘no. of different states” ‘task-solving time’
Source of variation df F P df F p df F )2
‘Expertness’ 1 1034 0-003 1 1535 0-001 1 007 0792 -
‘Tasks (1-4)’ 3 325 0032 3 134 0276 3 607 0002

‘Expertn. ‘®’ tasks (1-4) 3 032 0810 3 049 0693 3 112 0354

nets. The ‘behaviour complexity’ of the folded net (based on the ‘cyclomatic number’)
is defined as:

‘behaviour complexity’: #BC = #DT - #DS + 1 3)

We can show, that the complexity of the observable task solving behaviour (the
‘behaviour complexity’; #BC) of novices is significantly larger than the complexity of
the observable behaviour of the experts (see figure 5 and table 2). The difference
between novices and experts can be fully explained using the ‘task-solving time’ as a
covariate in the analysis of variance, but not the difference between the four tasks
(table 2, last column). This is a strong hint, that the ‘behaviour complexity’ (#BC)
depends only on task features.

The Spearman rank correlation (r) between the ‘total computer experience’
(measured with the questionnaire) and the mean of #BC (averaged over tasks 1-4)
is r= —0-682 (n = 12; p <0-02). This important result indicates, that the complexity
of the observable behaviour correlates negatively with the complexity of the cognitive
structure (the ‘mental model’). So, the complexity of the necessary task knowledge can
be either observed and measured with #BC or is embedded in the cognitive structure.
If the cognitive structure is too simple, then the concrete task-solving process must be
carried out with a lot of heuristics or trial and error strategies. Learning how to solve
a specific task with a given system means that #3C decreases and the complexity of
the mental model increases (#CC).



Automatic Mental Model Evaluation 1379

5. Conclusions

In general a user interaction with a system can be described with a finite, discrete state
transition net, and behaviour patterns can be traced with a sequence of states and
transitions (s)—>[t']>(E")—>[t"] > ()—=> 1> (") —=>[t"]—... To investigate
the interaction processes with this kind of more or less complex systems, support of
special tools is necessary. AMME is a computer-aided tool which analyses incomplete
sequences of states and transitions, and generates the underlying net structure and
different measures of complexity of the interactive process described by the state
transition sequence.

In comparing the size of the observed task solving process with the size of the
embedded net structure we are able to measure the. ‘degree of routinization’ (#R) of
tasks. This measure #R allows us to differentiate between different types of tasks in a
clear quantitative way.

Based on the empirical result that the complexity of the observable behaviour of
novices is larger than the complexity of experts, we conclude that the behavioural
complexity is negatively correlated with the complexity of the mental model. Thus it
is possible to estimate the cognitive complexity based on the measurement of the
behavioural complexity, the measurement of the system complexity and the measure-
ment of the task complexity (for a more detailed discussion see Rauterberg 1992b).
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