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ABSTRACT. Atmospheric reduced nitrogen (NHx) mainly originates from hot spots, which 
can be considered as intensive area or point sources. A large fraction of the emitted NHx 
may be recaptured by the surrounding vegetation, hence reducing the contribution of 
these hot spots to long-range transport of NHx. This paper reviews the processes leading 
to local recapture of NHx near hot spots as well as existing models and monitoring 
methods. The existing models range from research models to more operational models 
that can be coupled with long-range transport model provided the necessary information 
on emissions is available. Local recapture of NH3 ranges from 2% to 60% within 2 km of a 
hot-spot and it is sensitive to source height, atmospheric stability, wind speed, structure 
of the surrounding canopies, as well as stomatal absorption, which mainly depends on 
green leaf area index and stomatal NH3 compensation point of vegetation, and finally, 
cuticular deposition, which depends primarily on vegetation wetness. The main 
uncertainties and limitations on NHx recapture models and monitoring techniques are 
discussed.  

 

KEYWORDS: NH3, NH4
+, reduced nitrogen, local scale, dispersion, trans-boundary 

pollution. 

1 INTRODUCTION 

Due to the decrease of sulphur and nitrogen oxides emissions under a series of UNECE protocols, 

reduced nitrogen (NHx), has become the dominant pollutant in Western Europe contributing to 

acidification of ecosystems (e.g. Vestring and Storing, 2000). At the global scale NHx and NOx 

emissions are comparable, although large uncertainties exist on NHx emissions (Dentener and 

Crutzen, 1994; Bouwman et al., 1997). Moreover, NHx deposition, with other nitrogen (N) deposition, 

leads to eutrophication and changes in the biodiversity of semi-natural ecosystems (Van Breemen and 

van Dijk 1988; Roelofs et al., 1985; Fangmeier et al., 1994, Krupa, 2003; EEA, 2003). Although 

atmospheric ammonia (NH3) is not a greenhouse gas (GHG), deposition of NHx may lead to increased 

GHG emissions (N2O) (Melillo et al., 1989) or reduced consumption of CH4 (REF). Additionally, 
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ammonium sulphate aerosols, (NH4)2SO4, contribute to half of the negative radiative forcing of the 

atmosphere due to aerosols (Houghton et al., 2001, Adams et al., 2001), as well as contributing to 

impacts of secondary aerosol on human health. 

As it is know since the end of the 19th century (Eriksson, 1952), ammonia mainly originates from 

livestock (Bouwman et al., 1997; Oudendag et al., 1998; Misselbrook et al., 2000; Dämmgen and 

Erisman, 2005). The main NHx sources are housing and waste storage (Jarvis and Pain, 1990; 

Bussink and Oenema, 1998; Pain et al., 1998; Döhler et al., 2002), and land spread manure 

(Génermont and Cellier, 1997; Asman et al., 2004). Hence the main NHx emissions are “hot spots” 

sources in the sense that they are intense and either spatially small (point sources, such as barns and 

manure storage) or temporally short (application of manure). The emitted NHx is either (i) dry-

deposited as gaseous NH3 by stomatal absorption and non-stomatal adsorption to canopy surfaces 

(e.g. Sutton et al., 1993a,b; Sutton et al., 1995a), (ii) dry-deposited as particulate ammonium (NH4
+) 

essentially by Brownian diffusion (particle size < 1 µm), (iii) wet-deposited as ion NH4
+, or (iv) 

transformed by chemical reactions with other gases or aerosols (Dlugi et al., 1997; Nemitz et al., 2002; 

2004ab, Nemitz and Sutton, 2004). But NH3 can also be emitted by the plants themselves, which can 

either act as sinks or sources of NH3 depending on their nitrogen (N) nutrition status and the 

atmospheric NH3 concentration (Farquhar et al., 1980; Sutton et al., 1995a,b, 2001a; Schjoerring et 

al., 1998; Andersen et al., 1999; Milford et al., 2001a; Hill et al., 2001). Moreover, non-stomatal 

adsorption of NH3 is influenced by the load of acidic pollutants to the surface (Erisman and Wyers, 

1993; Sutton et al., 1993c; Fléchard et al., 1999).  

The combination of hot spots sources and effective deposition processes leads to sources and 

sinks of NHx being spatially heterogeneous at a scale of a square kilometre (Sutton et al., 1998a; 

Dragosits et al., 1998; Hutchings et al., 2001a,b; Dragosits et al., 2002). Direct measurement of NHx 

deposition near hot spots is challenging due to intense local advection (Loubet et al., 2001, 2003; 

Hensen et al., 2006a). Indirect estimates using mass balance, 15N labelling, SF6 to NH3 ratio methods, 

as well as modelling studies, have estimated that the fraction recaptured within 2 km downwind from 

the source of NH3 emitted ranges between 2% and 60% (Asman, 1998; Loubet and Cellier, 2001; 

Sommer and Jensen, 1991; Theobald et al., 2001; Loubet et al., 2006). The large variability of NHx 

deposition near sources is known to depend critically on the canopy structure surrounding the source 

(roughness, side fluxes) (Klaassen, 1991; Draaijers et al., 1994; De Jong and Klaassen, 1997; 

Theobald et al., 2001; Loubet et al., 2006), the NH3 emissions from the canopy (Schjoerring et al., 

1998; Riedo et al., 2002), the litter (Nemitz et al., 2000a, 2000b), or from the soil (Génermont and 

Cellier, 1997), as well as the non-stomatal NH3 fluxes (van Hove et al., 1989; Erisman and Wyers, 

1993; Sutton et al., 1995a; Fléchard et al., 1999; Loubet and Cellier, 2001). Less known, are wet 

deposition fluxes and chemical transformations of NHx near intensive sources, as well as direct 

emissions of particulate NH4
+ (McCulloch et al., 1998). Despite this knowledge on local deposition, its 

quantitative assessment within global models is still a challenge at European scale, and probably in all 

regions having large livestock populations. As a result, options related to spatial interactions in hot 

spots have until now been little considered within mitigation strategies to reduce trans-boundary NHx 

pollution. 
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The complexity of the processes involved and the variability of the deposition fluxes near hot spots 

have led to the use of models and monitoring techniques to evaluate the fraction of NHx re-deposited 

locally.  

 

Models. There are few models for NH3 deposition near hot spots that deal with the complexity of 

the processes noted above. Some existing models treat within-canopy vertical transfer and leaf-scale 

exchange (Baldocchi, 1988; Baldocchi, 1992; Harper et al., 2000), other models that treat dispersion 

and deposition of NH3 above the canopy, DEPO1 (Asman, 1998), LADD (Hill, 1998), and FIDES 

(Loubet et al., 2001), or at larger scales (Asman and Janssen, 1987; Singles et al., 1998; Fournier et 

al., 2002, etc. See Van Pul et al., 2006). There are also models for the dispersion of tracers within the 

canopy, although without exchange processes (e.g. Wilson and Sawford, 1996). However, there are 

few models addressing within- and above-canopy dispersion together with ammonia exchange within 

the canopy and at the ground, as done by MODDAS-2D (Loubet et al., 2006). Existing overviews of 

modelling local deposition of NHx have been provided by Asman (2002) and Hertel et al. (2006). The 

main limitations of current NH3 short-range deposition models are:  

(i) a good knowledge of the emission from the hot spot, in both time and space; 

(ii) the parameterisation / modelling of the NH3 emissions from the plants, which is known to 

depend on the plant, the N and water supply (and henceforth on N deposition if it is 

intensive), the variations in global radiation, and to physiological changes throughout the 

season (Schjoerring, 1997; Milford et al., 2001a; Loubet et al., 2002); 

(iii) the non-stomatal NH3 deposition, which depends on leaf surface wetness but also on the ionic 

composition of these water films, and hence on the NHx load, but also on the interaction 

with other chemical compounds (Fléchard et al., 1999); 

(iv) the use of detailed turbulence model to precisely evaluate the sensitivity of modelled NH3 

deposition on turbulence in complex situation, such as downwind of buildings and within 

tree-belts;  

(v) accurate estimates of the NH3 emission dynamics at both the daily and the yearly time scale 

for a diversity of animal species, building types, and effluent management practices; 

(vi) the wet deposition component near hot spots, which amount should be evaluated for a range 

of climatic conditions with contrasted precipitation frequency and temperatures;  

(vii) the amount of other nitrogen compounds emissions from hot spots (aerosols, dusts, amines) 

and their subsequent nearby deposition; 

(viii) the parameterisation of chemical reactions between NH3 and acidic compounds or NOx, 

especially in “rural-urban” zones. 

  

Monitoring and effect assessment. As measuring deposition of NH3 with strong local advection is 

still challenging (Hensen et al., 2006a), alternative methods have been developed consisting in 
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monitoring NH3 concentration and nitrogen (N) enrichment in plants around hot spots (Pitcairn et al., 

1998; Sutton et, 2001b; Tang et, 2001; Pitcairn et al., 2002; Dämmgen et al., 2005). The monitoring 

methods are based on low cost techniques (acid coated denuders; filter packs; batch samples). 

Specific experiments have also been conducted to assess the deposition to tree belts (Theobald et al.; 

2001). The main limitations of the NH3 monitoring and effect assessment methods are: 

(i) To accurately measure NH3 concentrations over long periods under fluctuating conditions, in 

such a way that representative results are obtained for larger areas.  

(ii) To relate measured NH3 concentration with NHx deposition or similarly N in plants to NHx 

deposition, taking account of the tendency for deposition rates to saturate at very high 

concentrations; 

(iii) To correctly sample in time and space; 

(iv) To be able to estimate local NH3 deposition rates to sensitive receptors (e.g. nature areas) in 

the vicinity of hot spots with sufficient accuracy for regulatory screening and detailed 

assessment, where necessary accounting for corrections due to advection effects (e.g. 

Loubet et al., 2001; Milford et al., 2001b); 

(v) The challenge to provide basic level screening assessments of the effects of NH3 hot spots on 

adjacent nature areas on a routine basis at modest costs. 

2 AMMONIA EMISSIONS FROM HOT SPOTS 

Ammonia is mainly emitted from animal housings, manure storage, and land-spread manure, and to a 

smaller extent from mineral fertiliser application and grazing (Bouwman et al., 1997; Misselbrook et al., 

2000). Hence, in western countries, most NH3 sources are concentrated in small areas surrounding 

the farms, which may be defined as a hot spot. It is well known that NH3 concentration above a 

solution containing NH4
+ increases exponentially with temperature and pH of the solution (e.g. 

Génermont and Cellier, 1997). This feature, as well as turbulent exchange, is among most important 

processes involved in emissions of NH3. 

 Emissions of NH3 from housings depend mainly on the number of animals, and the feeding 

quantity, the construction of the floors, but also on the type of management (Sommer et al., 2006), the 

pH of the litter. The ventilation rate (Seedorf et al., 1998a) and the temperature inside the stables 

(Seedorf et al., 1998b; Wathes et al., 1998) are also essential factors regulating the emissions. In 

naturally ventilated stables, the rate of ventilation results from a combination of free and forced 

convection and hence depends on wind and outdoor and indoor temperatures (Hensen et al., 2006b). 

However, the emission from animal housings does not only depend on the number of animals present, 

but also partly on the manure handling system (liquid manure/solid manure, slatted floor, partially 

slatted floor, deep litter etc.) and storage system (open tanks, tanks with a crust, tanks with a cover) 

(Hutchings et al., 2001a) .  
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 Emission of NH3 after fertilisation depends on the nature of the fertiliser (animal manures are 

sometimes a more important source. Note: Spreading of solid manure may happen with no NH3 

emissions, as nothing is left after storage!), the application method and farming practices (Hutchings 

et al., 2001b), the location and time where the application takes place, manure (solid/liquid etc.), soil 

properties (essentially pH), and the meteorological conditions; mainly temperature and wind speed, 

the time-span between application and incorporation, but also precipitations (Génermont and Cellier, 

1997; Huijsmans et al., 2003; Rosnoblet et al., 2006). Emissions of NH3 storage facilities mainly 

depend on pH and outdoor temperature (see e.g. Olesen and Sommer, 1993 ). Figure 1 illustrates the 

effect of soil pH on NH3 volatilisation from land-spread manure. 

 

Figure 1. Percentage NH3 volatilised from land-spread manure as a function of soil pH, as output from the 
VOLT’AIR model, for January and July 2000, over England and Wales (Theobald et al., 2005).  

 

Temporal variation of NH3 emissions. Seasonal variability of NH3 emissions is due to a combination 

of both management practices and meteorological conditions. The application of manure and fertilizers 

occurs predominantly during spring, but to a lesser extent in autumn. Similarly animals are grazing 

outdoor only part of the year. The temperature and wind speed dependence of NH3 emissions also 

explains seasonal variations, but also induce daily variations (Asman, 1992; Battye et al., 2003; 

Gilliland et al., 2003; Anderson et al., 2003, Aneja et al., 2003). The daily variability of NH3 emissions 

from a naturally ventilated stable is illustrated in Figure 2, while Figure 3 illustrates modelled seasonal 

variability of NH3 at a national scale in Denmark. 
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Figure 2. Daily variability of NH3 emissions from naturally ventilated farm buildings containing 550 animals 
(2/3 cattle and 1/3 pigs) in Braunscheig, Germany. The estimate was obtained by an inversion method, using 
measured NH3 concentration at 230 m and a local dispersion model (FIDES-2D, Loubet et al., 2001). Also shown 
is an equivalent “convection velocity” representing the building ventilation rate, which was estimated as the sum of 
a free and forced convection term (Hensen et al., 2006b). The error-bars are ± standard deviation. 

Modelling NH3 emissions from hot spots. Many transport-chemistry models have  so far not taken 

the seasonal or diurnal variations in NH3 emissions into account. One reason is either the difficulty to 

get detailed information as input to model those variations (Hutchings et al., 2001b). However, 

improvement has been made, from constant emission models (Singles et al., 1998), and sine 

functions; which was first derived for TREND (Asman, 1992), and has also been applied in various of 

the early versions of the EMEP model (Hov et al., 1994; Olendrzynski et al., 2000), and the ACDEP 

model (Hertel et al., 1995; Ambelas Skjøth et al., 2002). Recently, with information on agricultural 

practices being more available, NH3 emissions are more often modelled in a more dynamic way 

(Génermont and Cellier, 1997; Søgaard et al., 2002; Van Jaarsveld, 2004; Pinder et al., 2004; 

Sommer et al., 2006; Pinder et al., 2006). The current versions of TREND and OPS use detailed 

parameterizations of the diurnal and seasonal variations in the NH3 emission rate that are based on 

dynamic models (Van Jaarsveld, 2004). If models are applied to smaller areas, where much more 

detailed information has been collected ,models take many more factors into account (Smits et al., 

2005).  

 Emission inventories with high spatial and temporal resolution have been implemented in a couple 

of studies. One example is the American study by Pinder et al. (2006). They combined a model for 

housing activity (Pinder et al., 2004) with a redistribution method (Gilliland et al., 2003) to obtain a 

high-resolution inventory for application in their model system. Another example is the Danish process 

based emission inventory (Ambelas Skjøth et al., 2004; Gyldenkærne et al., 2005), which accounts for 

climatic conditions, agricultural practice and meteorology. The emission inventories obtained for the 

site of one of the Danish monitoring stations Tange are shown in Figure 3 for the years 1989 and 

2003. The differences between these two years are due to changes in Danish legislation that have 

been applied over this period. Danish farmers are now forced to store the manure, and make the 

application of manure on the fields only during growth season. Model calculations based on these 

(b) 
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inventories are performed on routine basis under the Danish Background Air Quality Monitoring 

Programme (Ellermann et al., 2006). The model applied in this programme has been the Lagrangian 

long-range transport model ACDEP (Hertel et al., 1995), which was also used for the first testing of the 

inventory. Recently ACDEP has been substituted with the Eulerian model DEHM-REGINA, which has 

been shown to make a better description of the transport processes. 
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Figure 3. Seasonal variations in modelled Danish ammonia emissions in 1989 (upper plot) and 2003 (lower plot) 
simulated with a growth model combined with local meteorological data. Differences between the two years are 
due to changes in local legislation regarding application of manure on the fields in Denmark that have taken place 
over the period.  

 

Uncertainties in NH3 emissions estimates. When modelling the deposition around a single farm, 

there is usually rather detailed information available about the housing and manure handling system. 

This is usually not the case when the deposition is modelled for a larger area. The basic information 

that is usually available is the number of animals present at a certain date annually in the housings 

belonging to each farm (e.g. in a husbandry register). Estimates then have to be made about the 

housing system. The emission belonging for one animal category can e.g. vary by a factor of two, 

depending on the housing system (Hutchings et al., 2001a,b). This means that emissions in transport 

models are rather sensitive to assumptions regarding the housing and manure handling system. 

Housing and manure handling systems may show variations over countries. There is also some 

uncertainty in the position of the emission sources, since in local databases the position of the farm is 

usually that of the house where the farmer lives, which is not necessary the same as the position of 

2003 
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the animal housings and storage facilities. National emission factors are revised regularly, as in 

France, where a project started in 2006 whereby emissions of NH3 and GHG will be measured for a 

diversity of animal species, farm buildings, effluent management practices and climates. 

 

Emission of other nitrogen compounds. Although nitrogen emissions from farms are mainly in the 

form of gaseous NH3, other forms may contribute as well: N2O, NO and N2 are emitted, in particular 

from solid systems (Dämmgen and Hutchings, 2007). Primary aerosols (skin and feather particles) 

also contain nitrogen, and some nitrogen containing volatile organic compounds may also be emitted 

(REF),. Schade and Crutzen (1995) found considerable emissions of methylamine, mainly in the form 

of trimethylamine-N, which possibly can react to N2O and HCN. The deposition velocities of these 

species have however been hardly studied. Nitrous oxide (N2O) and N2 are also common in 

composting elements (Fukumoto et al., 2003). 

 

Emission of other reactive species. Other reactive species may interact with NHx in the atmosphere 

surrounding the farm as well as modyfying deposition rate of NH3 near the farm (Erisman et al., 1993). 

A first estimate of the emissions of volatile organic compounds from animal husbandry reveals a 

considerable emission of sulfur species, mainly as dimethyl sulfide (DMS) from mammals (two thirds 

of the total) and dimethyl disulfide (DMDS) from poultry (one third of the total) (Smith et , 2000a; 

Chavez et al., 2004), as well as hydrogen sulfide (H2S), from pig units (Lim et al., 2003). The overall 

emissions of these species are so large that their chemical fate needs to be considered. In general, all 

S species apart from sulphur dioxide (SO2) and sulphuric acid or sulfates (H2SO4, SO4
2-) are unstable 

under atmospheric conditions. However, SO2 concentrations in ambient air indicate that the bulk of the 

S emissions from animal husbandry is unlikely to produce SO2.  

Once released from the animal house, DMS and DMDS are likely to be oxidized (Möller, 2003; 

Sørensen et al., 1996; Saltelli and Hjorth, 1995). However, their reaction pathways and products differ: 

• Approximately two thirds of the DMS released react with OH radicals forming methane 

sulfonic acid (MSA) CH3-S(O2)-OH and dimethyl sulfone (DMSO2) CH3-S(O2)-CH3. 

These reactions do not result in the formation of SO2. Nevertheless, the reaction 

products, MSA in particular, play a role in the formation of condensation nuclei and 

should be removed from the atmosphere primarily by wet deposition, thus exhibiting 

their acidifying properties. 

• One third of the DMS reacts with OH radicals to form sulfur dioxide (SO2) and sulfuric 

acid (H2SO4). Both species are deposited dry and wet. A considerable increase of 

SO2 concentrations is not likely to occur (Shon et al., 2005). However, both species 

will contribute to acidification. The mean atmospheric lifetime of DMS is in the order of 

magnitude of a day. 
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• Within the atmosphere, DMDS reacts much faster than DMS. Its mean lifetime is 

minutes. The reactions with OH radicals result in the formation of methane sulfenic 

acid (CH3-S-OH) and methyl sulfide radicals (CH3-S). Methane sulfenic acid should 

react to form MSA (Finlayson-Pitts and Pitts ,1986); the reaction products of the 

radical should be SO2 and H2SO4. 

 

Sulfur compounds emitted from hot spots may no interact with NH3 in the gas phase, but they may 

increase the potential for NH3 recapture downwind from hot spots (Durenkamp et , 2002) by modifying 

the pH of the receptors (vegetation surfaces, ground). There is however little information to get a clear 

view of potential interactions between NH3 and sulfuric compounds deposition. 

3 MODELLING NHX LOCAL DEPOSITION 

3.1 Atmospheric diffusion 

The rapidity with which substances released into the atmosphere are dispersed depends on the wind 

speed, the turbulence and atmospheric stability (e.g. Seinfeld and Pandis, 1998). Moreover, vertical 

mixing in the atmosphere can be limited above a certain height, called the mixing height. This mixing 

height shows diurnal and seasonal variations and depends on turbulence and the atmospheric 

stability. The existence of a mixing height is especially important for dispersion and transport at 

regional scales, but during nighttime the mixing height may be so low that it also influences local 

dispersion. The turbulence and the wind field do not only depend on meteorological conditions, but are 

influenced by the presence of buildings and by the surface roughness. The wind speed increases with 

height and this will have an influence on the dispersion away from sources. 

Deflection and disturbance of the wind field by a structure (housing, storage tank etc.) has an 

influence on the dispersion of the pollutant released from this structure (see e.g. Bjerg et al, 2004). In 

the upwind displacement zone the approaching airflow is deflected around the structure. Immediately 

leeward of the structure there is a zone that is relatively isolated from the main flow, and further 

downstream there is a highly disturbed wake. If the pollutant emitted very close to the top of the 

structure and the exit velocity of any stack small, then the pollutant will be transported downward by 

“downwash” on the leeward side of the building. This will often be the case for animal houses with 

outlets on the roof. If an exit stack is relatively high, the pollutant will not be transported downward. 

The dimensions of the structure (height, width, orientation to the wind, inclination of the roof etc.) all 

have an influence on the airflow. 

The influence of building on the wind field (and hence deposition) will be at minimum at 5-10 times 

the emission height and at least as large downwind, as the buildings reach upwind (Irvine et al., 1997; 

Flesch et al., 2005). This means in practice often of the order of 50-150 m downwind. 



Background Document Working Group 3: UNECE Expert Workshop on NH3, Edinburgh 4-6 December 2006. 01/12/2006. 

page 10 / 59 

A description of the local scale transport with the option of simulating the complex flow around 

buildings may be provided with application of Computational Fluid Dynamics (CFD) models. These 

models provide a very high spatial resolution, but are in general very demanding with respect to 

computer resources. An inter-comparison of European CFD models has shown that they provide 

similar flows even for the more complex building configurations (Ketzel et al., 2002). However, there 

may be discrepancies between the CFD models concerning where the peak-values appear. The 

description of the flow very close to buildings may have considerable impact on the calculated 

concentrations and thereby also on the obtained deposition values further away from the source. CFD 

models are usually only able to generate wind/turbulence fields and concentration fields, but not 

calculate deposition. Some atmospheric transport and deposition models, such as the Lagrangian 

stochastic dispersion models may use the output of the wind/turbulence fields of the CFD-models as 

an input (e.g. Bouvet et al., 2006). 

3.2  Chemical reactions 

3.2.1 Photochemical reactions 

NH3 reacts with OH radicals (NH3 + OH → NH2 + H2O). The rate of this reaction has been estimated at 

3.3 (± 1) ×10-12 exp( -933 (± 100) / T (K)  cm3 mol-1 s-1 (Diau et al., 1990). Assuming [OH] = 

5×105 mol cm-3 the lifetime of NH3 is about 110 days, which is much longer than the actual lifetime of 

NH3. This means that this reaction is not an important sink for NH3 in the atmosphere. 

3.2.2 Reactions with acids 

Ammonia reacts with acids: H2SO4-containing aerosol (almost all H2SO4 is in the particulate form 

because it has a very low vapour pressure) and gaseous HNO3 and HCl. (NH4)2SO4 as a solid or in 

aqueous solution is the preferred form of SO4
2-. Once formed it does not evaporate again. Two 

regimes can now be distinguished (Nenes et al., 1998; Seinfeld and Pandis, 1998):  

• An NH3-poor atmosphere. In this case there not enough NH3 to neutralize all H2SO4 

and the aerosol will for that reason be acidic and the vapour pressure of NH3 remain 

low. 

• An NH3-rich atmosphere. In this case all H2SO4 reacts with NH3 and the remaining 

NH3 can then react with HNO3 or HCl to form particulate NH4NO3 or NH4Cl. NH4NO3 

and NH4Cl may exist as a solid or as an aqueous solution of NH4
+, NO3

- and Cl-, 

depending on the relative humidity, temperature as well as the presence of other 

inorganic salts (Stelson and Seinfeld, 1982). In an ammonia-rich atmosphere NH4NO3 

or NH4Cl in solid or dissolved form is generated if the concentration products in the 

gas phase, [NH3][HNO3] or [NH3][HCl], exceed threshold values. These threshold 

values decrease with temperature and decrease with increasing humidity, i.e. at lower 

temperatures and higher humidities NH4NO3 formation is enhanced. 
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The time scales to achieve gas-aerosol equilibrium vary from 1 h to several hours for fine particles 

(0.1 µm < diameter < 1 µm). For coarse particles (diameter > 1 µm) the time scale is so long that NH3 

generally is not in equilibrium with these particles.  

 The reaction rate of NH3 with acids kgpc depends on the concentrations of the acid species present 

in the atmosphere and shows temporal and spatial variations and is also dependent on the height 

above ground level. In most regions of Europe ,more acid precursors in the form of SO2 and NOx are 

present than the emitted NH3 can neutralise. Since NH3 emissions occur at or near ground level, the 

quantity of acid neutralised by NH3 diminishes with height (Erisman et al., 1988). It is likely that often 

acids are fully neutralised at ground level in large parts of Europe, though not for the whole season. 

However, in some places with low NH3 emissions, as in northern Scandinavia neutralisation of acids 

might not be reached even at ground-level (Hilde Fagerli, EMEP, Norway, personal communication, 

2006). 

 In practice kgpc can be determined from field experiments, based on many assumptions (Erisman et 

al., 1988; Harrison and Kitto, 1992), or can be inferred from fitting transport models with measured 

concentrations of gases and aerosols. Using this technique Asman and Janssen (1987) found a 

pseudo-first order reaction rate of 8×10-5 s-1 (about 30% h-1), a rate that might have been reduced 

since 1987 due to reduced emissions of SO2 in Europe (van Jaarsveld et al., 2000). The reaction rate 

is so low that it can be assumed that all released NH3 has not reacted within a few km from sources, 

but at larger distances the reaction should be taken into account. This can either be done by having a 

separate chemistry model to parameterise the reaction rate as a function of the NH3, SO2 and NO2 

concentrations and then to apply this relation to find the reaction rate of NH3 to particulate NH4
+ in an 

atmospheric transport and deposition model (van Jaarsveld et al., 2000) or by modelling the reaction 

rate within the atmospheric transport model. For the last option, emissions of participating compounds 

(NH3, SO2, NOx) are needed, preferably on the same scale. Moreover, information is also needed on 

many reaction rates, which will slow down the calculations considerably. 

 The transformation of NH3 to particulate NH4
+ produces sub-micron aerosols, which have relatively 

small deposition velocities (they are too small to settle and too large to be subject to Brownian 

motion), hence favouring long-range transport of NHx. As such, gas-to-particle conversion of NH3 is of 

great importance for trans-boundary transport of NHx, although remains an issue of secondary 

importance in detailed analysis of NH3 hot spots. 

3.3 Dry deposition 

3.3.1 General 

Although this section focuses on ammonia, sometimes some information is given on particles or other 

gaseous compounds, so that the reader gets an impression of the difference in properties. Some 

general information can e.g. be found in Sutton et al. (1995a, 1998b, 2000).  

 Transport to and from the surface occurs by turbulent and molecular diffusion. In the atmosphere 

turbulent diffusion (transport by eddies of different sizes) is responsible for the transport, and can be 
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considered the same for gases and particles smaller than ~10 µm in diameter (Wilson, 2000). For 

larger particles gravitational settling and cross-trajectory effects (due to gravitational forces and inertia, 

heavy particles do not follow the fluid trajectories exactly) cannot be neglected (Sawford and Guest, 

1991). However, ammonium-containing particles are not that large, except maybe for dusts ejected 

from housings, which may contain nitrogen. 

 Close to the surface, in the so called “laminar boundary layer” ,transport takes place by molecular 

diffusion (gases) or Brownian motion (particles). For particles with a diameter > 0.4 µm interception 

plays also a role close to the surface especially if the surface has sharp edges or is covered with hair-

like objects. For particles with a diameter > 1 µm, impaction increases deposition due to inertia (see 

e.g. Seinfeld and Pandis, 1998). 

 Gases are absorbed by diffusion through stomata, but can also be deposited onto the 

leaves/needles especially if the gases are soluble in water and the leaves are covered by a water-

layer. Stomata are closed when it is dark (no photosynthesis occurs then),when the leaves are CO2 

saturated, and during water stress. Particles diffuse too slowly and can therefore not be transported 

through the stomata. For that reason deposition of particles occurs mainly onto leaves/needles. Once 

deposited to vegetation, particles are not easily released to the atmosphere again, apart from re-

suspension for large particles. 

3.3.2 Resistance analogue models for exchange of gases between the surface and the 

atmosphere 

Models describing the exchange or gases between the atmosphere and the surface are usually based 

on the resistance analogy similar to that of Ohm’s law for electricity (Dämmgen et al., 1997). This 

analogy relies on the assumption of constant flux layer, which is satisfied in a stationary surface layer 

with no local advection. Although this assumption would make these models not applicable to local 

dispersion, there always exists a layer near the ground where no advection occur and these models 

can be applied (Loubet et al., 2001). Figure 4 shows different models for the dry deposition of gases 

that can either be used as model at the canopy scale, in which case the resistances are per unit 

surface of ground (noted with an uppercase R), or at the leaf scale, in which case the resistances are 

given per unit surface of leaf (noted with a lowercase r). 
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Figure 4. Different types of resistance models for describing exchange of gases between the surface and the 
atmosphere, with increasing complexity: (a) deposition velocity model, (b) bi-directional exchange model, (c) bi-
directional exchange model with a cuticular pathway, and (d) two-layer bi-directional exchange model with a 
cuticular pathway and an emission potential at the ground. Here χa = cair; χc = ccanopy ; χs = cstomata, χc is the 
concentration outside the leaf, Ra(zref), Rb, Rs and Rw are the aerodynamic, the leaf boundary layer, the stomatal 
and the wet surfaces resistances for NH3, respectively. (After Nemitz et al. , 2001) 

 

Deposition velocity model. Figure 4a shows the simplest model of gaseous dry deposition, whereby 

the surface is assumed a perfect sink. The aerodynamic resistance Ra(zref) describes the transport by 

turbulent diffusion in the atmosphere from z to the laminar boundary layer. It is a function of the friction 

velocity and the atmospheric stability. The laminar boundary layer resistance Rb on molecular 

diffusion, while the surface resistance Rc (the canopy as a whole, or the water surface, etc…) depends 

on processes going on at the surface. In the model of Figure 4a, the flux F can be expressed as a 

function of the dry deposition velocity Vd(zref) or the resistances Ra(zref), Rb and Rc: 

cba

refair
refairrefd

RRR

)z(c
)z(c)z(vF ++−=−=      [1] 

where cair(zref) is the concentration in the air at reference height zref. The aerodynamic resistance 

Ra(zref) is given by : 
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where κ = 0.4 is the von Karman’s constant, u* is the friction velocity (m s-1), which is a measure for 

the turbulence and increases with wind speed for the same atmospheric stability, d is the 

displacement height (m), which is about 0.7 times the height of the vegetation -If individual vegetation 

elements are packed closely together, then the top of the surface begins to act as a displaced surface. 

The height of this displaced surface is called the displacement height -, z0m the surface roughness 

length (m), which is a measure for the roughness of the surface, and is about 0.1 times the height of 

the vegetation. It is the height at which the wind speed is zero in an extrapolated logarithmic wind 

profile. Ψh is a correction function for atmospheric stability, L is the Monin-Obukhov length (m) and is a 
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measure of the atmospheric stability. If L is very large (negative or positive) the atmosphere has a 

neutral stratification, whereas if L is relatively small and positive the atmosphere is stable, and if L is 

relatively small and negative the atmosphere is unstable. For neutral conditions: Ψh = 0. For stable 

conditions: Ψh = -5(zref – d) / L. For unstable conditions: Ψh = 2 ln((1 + x2)/2), with x = (1 – 15(zref –

d)/L)1/4.  

 The laminar boundary layer resistance Rb for gases transfer through vegetation is often 

parameterized as follows (Hicks et al., 1987): 
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where Pr is the Prandtl number (dimensionless; value 0.72), Sc is the Schmidt number for gases (for 

NH3: about 0.662). Sc decreases with the diffusivity of the gas and does not depend much on 

temperature.  

 From eqns. [2-3] it can be seen that Ra(zref) and Rb decreases with increasing u*. Moreover, Vd 

cannot become higher than Vmax = 1/(Ra + Rb). The rather simple model of Figure 4a describes well 

the dry deposition of NH3 to semi-natural and natural vegetation, which have a low nitrogen status. 

 

Stomatal compensation point. NH3 exchange with plants receiving large amount of nitrogen is 

however known to be bi-directional, due to the existence of a non-zero stomatal compensation point 

concentration Cs, which mainly varies with the nitrogen status and the temperature of the plant (Sutton 

et al., 1995a; Schjoerring, 1997; Loubet et al., 2002). Indeed, agricultural crops have NH3 

compensation points that vary from 0.1 to 20 ppb (0.07 – 14 µg m-3) (Schjoerring et al., 2000), and 

even temporarily up to 40 µg NH3 m
-3 (Figure 5), which may lead to large emissions from crops 

(Schjoerring, 1991; Husted and Schjoerring, 1996; Holtan-Hartwig and Bøckman, 199). The equations 

for Figure 4b hence should rather be used in such case. The flux between the surface and the 

atmosphere is then given by: 

RsRR

c)z(c
F

ba

srefair

++
−−=         [4] 

where Rs is the stomatal resistance. The stomatal compensation point Cs results from the 

thermodynamic and chemical equilibrium between the ammonium concentration in the apoplast 

(NH4
+), and the gaseous NH3 concentration in the sub-stomatal cavity. This equilibrium is mainly 

dependent on temperature and pH of the apoplastic solution (Schjoerring, 1997; Smith et al., 2000b). 

Following Schjoerring (1997), and Nemitz et al. (2000): 

Cs  =  4.79 10-12 . Γ . exp⎝
⎛

⎠
⎞10396  

Tleaf - 25
298 × (Tleaf + 273)

    [5] 

where Γ is the ratio of the molar concentrations [NH4
+]/[H+] in the apoplast (Nemitz et al., 2000). Γ 

expresses a potential compensation point independent of temperature, which is representative of the 

plant and the ecosystem: small Γ (typically 20-100) for non-fertilised ecosystems and large Γ for 



Background Document Working Group 3: UNECE Expert Workshop on NH3, Edinburgh 4-6 December 2006. 01/12/2006. 

page 15 / 59 

fertilised ecosystems (typically 300-3000). Even fertilised ecosystems such as grazed grassland show 

a great variability in Γ (e.g. Schjoerring, 1997; Loubet et al., 2002).  

Getting into more details, the value of Γ for semi-natural grassland with short grass in Germany, 

which received fertilizer at a rate of 70 kg N ha-1 yr-1, was about 1000 (REF). This is lower than 

observed for grassland in the UK, which received 300 kg N ha-1 yr-1 where values for Γ were observed 

of 3000 (long grass, 15 cm high) and 13000 (short grass, 5 cm high) (Sutton et al., 1998b). For a 

Dutch heathland that was not fertilized, but is situated in an area with a high N deposition a value of Γ 

was observed of 1200, which is large for semi-natural vegetation (Nemitz et al., 2004a). Husted et al. 

(2000) found for oilseed rape (Brassica napus ssp. napus) Γ values of 200-500. As an example, 

Figure 5 shows the effect of Nitrogen supply on Cs for maize (Loubet et al., unpublished data):  
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Figure 5. Compensation point concentration at 25°C and Γ values in maize leaves during the vegetative growth, 
as a function of an equivalent nitrogen supply, estimated using a plant density of 100 000 plants ha-1. Averages 
are made over the period 5 leaves to flowering. Error-bars correspond to standard errors (stddev / nb).  

 

The compensation point can either be determined from the NH4
+ and H+ concentration in the leaf 

apoplastic solution (e.g. Husted et al., 2000), or inferred from flux measurements both over vegetation 

surfaces (Fléchard et al., 1999) or within chambers (Hill et al., 2001). The compensation varies with 

plant species, nitrogen status, and growth stage as well as leaf age. However, on an annual basis a 

net emission is observed from agricultural crops that will depend on the plant species, meteorological 

conditions and stress due to drought, diseases or pests. An annual average emission is of the order of 

1-5 kg N ha-1 yr-1 during a growing season (Schjoerring and Mattsson, 2001), which is consistent with 

micrometeorological measurements (e.g. Milford et al., 2001a).  

 In semi-natural areas like heathland and forest, the compensation point is generally so low that it 

does not play a role and only dry deposition occurs. In some cases, however, when air concentrations 

are very low, under very dry conditions or at high temperatures emission has been observed even 

from semi-natural ecosystems (e.g. Langford and Fehsenfeld, 1992; Erisman et al., 1994a; Sutton et 

al., 1995c; Fléchard and Fowler, 1998; Andersen et al., 1999). 
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Cuticular pathway. As a very hydrophilic gas, NH3 is readily adsorbed onto wet or humid surfaces, 

such as the cuticle of the leaves and the stems (Burkhardt and Eiden, 1994; van Hove et al., 1989). 

The last process is often represented by a cuticular deposition pathway acting in parallel to the 

stomatal pathway (Sutton et al., 1995a; Figure 4c; See Appendix A for detailed equations). The 

resistance to cuticular deposition of NH3, Rw, is often modelled as a function of relative humidity RH, 

as follows (van Hove et al., 1989; Sutton et al., 1995a; Nemitz et al.,2000b): 

Rw  = Rwmin exp⎝
⎛

⎠
⎞100 - RH

βRw
       [6] 

where Rwmin ranges between 2 and 20 and βRw is of the order of 6-12. It should be noted however, that 

cuticular deposition to “wet surfaces” may also occur without apparent dew (Duyzer et al., 1992; 

Sutton et al., 1992; Wyers and Erisman, 1998), which might be due to the presence of wet films at the 

leaf surface created by the conjunction of stomatal evaporation and the presence of hygroscopic 

aerosols deposited preferentially near the stomates (Burkhardt and Eiden, 1994). The empirical 

parametrization of Eq. [6] incorporates the effect of hygroscopy, but does not distinguish any 

dependence of Rw on Rs. Smith et al. (2000b) gives an alternative empirical expression of both 

temperature and relative humidity. Nemitz et al. (2001) included the dependence of Rw on the 

SO2 / NH3 concentration ratio.  

It should be recognized that the parametrization of Rw is, however, a steady state simplification of a 

dynamic bi-directional exchange of NH3 with leaf cuticles. An initial dynamic model of this effect was 

provided by Sutton et al. (1995a, 1998a). A simplification of that model was that the leaf surface pH 

needed to be specified. Fléchard et al. (1999) advanced this substantially, by developing a model that 

simulated leaf surface pH in response to wet and dry deposition processes and derived bi-directional 

cuticular exchange using a dynamical model that takes into account the uptake of different soluble 

pollutants their chemistry in the water layer on the leaf. In these models, the steady state value of Rw 

is effectively replaced by a capacitance of the leaf surface, a capacitance charge, with exchange 

limited by an adsorption /desorption resistance (Rd). 

Near sources, cuticular deposition is likely to be very high in humid climate due to large NH3 

concentrations. Throughfall measurements near intensive source which are reported in the literature 

may be indicative of cuticular deposition, although they might be subject to uncertainties due to dry 

deposition onto collectors, flooding under high rain events, or biochemical transformations of NHx 

deposited onto leaves (Theobald et al., 2001; Dämmgen et al., 2005; Erisman et al., 2005). Theobald 

et al. (2001) report throughfall ranging 3% and 4% of the NH3 emitted by a source releasing between 

500 and 2800 kg N-NH3 yr-1. It should be noted that at very high concentrations the value of Rw tends 

to increase, due to a partial saturation of the leaf surface sink. This effect may be treated by 

consideration of the effect of the NH3 / SO2 ratio on Rw (cf. Nemitz et al., 2001), as well as by empirical 

approaches based on observational data (Jones 2006; Pitcairn et al., 2004). 

Two layer exchange model. A two-layer resistance scheme (Figure 4d; Nemitz et al., 2001; See 

Appendix B for detailed equations) may be considered to take account of a ground level source which 
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can either be emissions from a fertilizer or from decomposing leaf litter (Denmead et al., 1976; Sutton 

et al., 1993c; Nemitz et al., 2000a). The two-layer model shows a soil or litter compensation point, 

which may be very large, especially in nitrogen rich litter (Husted et al., 2000; Nemitz et al., 2001; 

Sutton et al., 2001), where Γ can reach more than 100000 (Sutton et al., 2006). The two-layer models 

have shown to be very useful in modelling the effect of the canopy structure one NH3 exchange with 

the atmosphere (Personne et al., 2006). 

3.4 Deposition of particulate ammonium 

The dry deposition of particles to the ground can be represented by the scheme of Figure 4a, but with 

Rc = 0, and with a parallel pathway correspond to a resistance inverse to the settling velocity of the 

particle Vs. The computed deposition velocity for particles becomes simply (Slinn, 1982 ; Zhang et al., 

2001):  

bpartrefa
sd

R)z(R
1VV
+

+=       [7] 

where Rbpart is the boundary layer resistance for particle, which depends on Brownian diffusion. Vd 

depends strongly on the particle size, the characteristics of the surface (roughness) and u*. The dry 

deposition velocity Vd of NH4
+ containing particles for neutral atmospheric conditions was estimated by 

Erisman et al. (1994b) as: 

A
uV *

d =         [8] 

where: Vd and u* are in m s-1, A = 500 (dimensionless) for low vegetation and A = 100 for forests. 

Measurements show that the dry deposition velocity of NH4
+ containing particles to moorland or grass 

is of the order of 0.2 cm s-1, with a large uncertainty justifying the rough parameterisation of Eq. [8] 

(Sutton et al., 1993c; Duyzer, 1994). The dry deposition velocity to forests is higher than to moorland.  

The dry deposition velocity of NH3 is potentially relatively high and is about a factor of ten higher than 

that of particulate NH4
+. This means that NHx after conversion from NH3 to NH4

+ is not dry deposited 

very well and is transported over long distances. The only efficient removal process for particulate 

NH4
+ is wet deposition (Asman and Janssen, 1987). However, it should be noted that since agricultural 

areas are mainly ammonia sources, the overall areas that are strong sinks for ammonia (moorlands, 

forests etc) may be rather small. This points to an ongoing uncertainty on the relative atmospheric 

transport distance of ammonia and ammonium on regional scales (cf. van Pul et al., 2006). 

 

3.4.1 Measured dry deposition velocities of NH3 to (semi-) natural vegetation 

Measurement of NH3 deposition velocity to semi-natural vegetation is reported in many studies 

(Table 1). Table 1 shows higher Vd for forest than for moorland and grassland, which reflects the 

higher u* over forest. It also shows that Vd is often larger than what can be accounted for by stomatal 

uptake (Duyzer, 1994), as well as relatively high during nighttime, clearly indicating a non-stomatal 

uptake. The dry deposition velocity increases with surface wetness (Wyers and Erisman, 1998) and 
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decreased with NH3 concentration (Fléchard and Fowler, 1998). Due to the large non-stomatal dry 

deposition, dry deposition velocity of NH3 is often larger than for SO2 or O3. It should be noted, 

however that there are many other studies such as these where deposition velocity values were not 

actually reported, but instead the studies reported net (bi-directional) fluxes together with 

parametrizations of Γ, Rw, etc.  

Table 1. Example dry deposition velocity and canopy resistance data for NH3 for semi-natural ecosystems 
(moorland, unfertilised grassland and forests), as found in the literature. The deposition velocity or Rc approaches 
correspond to the simpler model of Figure 4a. 

Ecosystem type vd (cm s
-1

) Rc (s m
-1

) References 

Moorland    

 1-4 <10a) Sutton et al. (1992) 

 1.9b) 0-150 Duyzer (1994) 

 1.2 dry     : 61 

wet     : 23 

snow   : 56 

frozen  : 50-100 

Fléchard and Fowler 

(1998)c) 

Unfertilised grassland    

 1.5-2.0 3-6 Sutton et al. (1993c) 

 0.13-1.4 - Hesterberg (1996)d) 

 - 5-27 Sutton et al. (1997)e) 

Forest    

Sitka Spruce, European Larch, Lodgepole 

Pine, Noble Fir 

6.6 6 Sutton et al. (1993c)f) 

Douglas Fir 2.5 20-25 Duyzer et al. (1994)f) 

Douglas Fir 3.2 - Wyers et al. (1992)f) 

Norway Spruce 0.88 (stable atmosphere) 

1.8-4.0 (other conditions) 

- Andersen et al. (1999)f) 

Parameterisation    

Humid semi-natural ecosystems and 

forests 

 daytime wet  : 500 Erisman et al. (1994b) 

  night-time dry : 

1000 

 

  night-time wet : 0  
a) During frozen conditions Rc = 50 – 200 s m-1. b) Measurements made mainly during daytime. Estimated annual average 24-
hour Vd = 1.4 cm s-1. c) Emission observed during 6% of the time. d) A compensation point between 3 and 6 ppbv (2.1-4.2 µg m-3) 
was observed. e) Sometimes emission occurs. f) Emission observed during some periods. It should be noted that, the number of 
experimental data as well as the experimental conditions may bias the interpretation (daytime over-represented, low wind 
speeds underrepresented). Moreover, since Vd(zref) depends on zref, the Vd may not be directly comparable. Evaporation of NH3 
from NH4

+ containing aerosols deposited onto leaves may lead to slight underestimation of Vd (Nemitz et al, 2004a; Nemitz et 
al., 2004b, Nemitz and Sutton, 2004). 

 

3.5 Wet deposition 

General. Cloud droplets and raindrops are usually acidic. If NH3 is absorbed by cloud droplets or 

raindrops it reacts with H+ to form NH4
+. Both NH3 and NH4

+ containing particles can be removed by 

absorption in clouds droplets or scavenging below clouds. In general in-cloud scavenging of 

particulate NH4
+ contributes most to the NH4

+ concentration in rainwater. This holds, however, not for 

the contribution of a point source to the wet deposition close to this point source. There are two 

reasons for that: 

• At short distances from the source the NH3 plume has usually not reached the clouds and for 

that reason in-cloud scavenging of the NH3 originating from the source will not occur. 
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• Most of the NH3 will not yet have reacted with acid compounds (H2SO4 in aerosols or gaseous 

HNO3 and HCl) so close to the source (see section 7) and for that reason most of the NHx will 

be in the form of NH3. 

For that reason it can be expected that much of the NHx from a nearby source is removed by below-

cloud scavenging of NHx, which is not as efficient as in-cloud scavenging of NHx. In the following 

below-cloud scavenging of NH3 will be discussed in more detail. A short description of in-cloud 

scavenging of NH4
+ is discussed in Appendix C. 

 Wet deposition of NHx is important as a background deposition (Hov and Hjollo, 1994). It originates 

partly from groups of sources within 50-100 km (wet deposition of scavenged NH3) and partly from 

long-range transport (wet deposition of scavenged NH4
+) (Asman and van Jaarsveld, 1992). It has 

been shown from experimental results that wet deposition of NHx is correlated with the emission 

density on scales of 20-100 km (Asman and van Jaarsveld, 1992; Park and Lee, 2002; Aneja et al., 

2003). Within 0.5 – 1km from a source the contribution of the source to wet deposition of NHx is much 

less than the contribution to dry deposition. This is caused by the fact that the plume has not been 

mixed up at this distance and the NH3 concentration at ground level is relatively high. Wet deposition 

is determined by the average concentration over the whole plume height and not by the much higher 

ground-level concentration. Due to its limited importance at the very local scale wet deposition is not 

taken into account in most local models: Danish OML-DEP (Olesen, 1995), the UK LADD (Dragosits et 

al., 2002), French FIDES (Loubet et al., 2001) and MODDAAS (Loubet et al., 2006). Conversely, wet 

deposition is included in DEPO1 (Asman, 1998). 

 Sometimes high NH4
+ concentrations are measured with open precipitation collectors near sources. 

It is likely that a large fraction of these high concentrations are not caused by wet deposition, but by 

dry deposition of NH3 to the (wet) surface of the rain collector. 

 

Below-cloud scavenging of NH3. Below clouds, NH3 is taken up by falling raindrops (typical radius 

0.1 – 1 mm). Falling raindrops have a relatively high speed (0.71 - 6.5 m s-1). Moreover, they have a 

much smaller surface to volume ratio than cloud droplets. As a consequence, with the exception of 

small raindrops, it is unlikely that any droplet becomes NH3-saturated in the plume. For convective 

conditions, a maximum scavenging coefficient can be derived following Asman (1995): 

616.051085.9 mmb I−×=λ        [9] 

where λb is the below-cloud scavenging coefficient for NH3 (s
-1). This gives the fraction of the plume 

concentration that is removed per second; Imm is the rainfall rate (mm h-1, unit usually reported). 

Equation [9] shows that the removal rate of NH3 by below-cloud scavenging increases with the rainfall 

rate. Although the uncertainty on λb is about a factor of 2, if we consider a low rain event (1 mm h-1), 

and a shower (10 mm h-1), and a plume moving 2 m s-1 downwind from a hot-spot (hence taking 500 s 

to travel a 1000 m), we found from Eq. [9] that between 5% and 20% of the NH3 is removed from the 

plume during a rain event. If we combine this with the frequency of rain events (5-10% of the time in 

humid regions), we estimate that an order of magnitude of between 0.25%-2% of NH3 scavenged by 
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wet-deposition up to 1000 m downwind from sources. This amount is much smaller than typical near 

source removal by dry deposition. 

 It should be noted that if the assumption of NH3-unsaturated droplets hold, below-cloud scavenging 

should not change the concentration gradients within the plume. Moreover, as scavenging affects the 

whole air column, it should only decrease with lateral dispersion and not vertical dispersion of NH3.  

 

Below-cloud scavenging of particulate NH4
+
. The efficiency of below-cloud scavenging of particles 

depends on the particle size (distribution) and the raindrop size distribution, which is a function of the 

rainfall rate. In the atmosphere NH4
+ is predominately found in the fine particles (0.1 < diameter < 1 

µm). For this size range the scavenging coefficient is very low: of the order of 1×10-7 s-1 for a rainfall 

rate of 0.5 mm h-1 and 1×10-6 s-1 for a rainfall rate of 25 mm h-1. It is likely, however, that there are also 

larger particles (1 µm < diameter < 10 µm) emitted by housings that may have adsorbed NH3 and 

therefore contain NH4
+. These will be scavenged at a higher rate, but will also be dry deposited at a 

relatively high rate. 

 

3.6 Short description of existing models NHx local deposition  

There are many different types of local atmospheric transport models for ammonia and ammonium. 

The reason for that is that they are made for different purposes. One of the things that can vary is e.g. 

the scale. Some models are only suited to model the deposition up to 1 km from one source. Other 

models are able to give local depositions for a whole country. Some models are especially developed 

to study the results of one NH3 field experiment, whereas others are models that describe the 

transport of and deposition of air pollutants in general. Which processes are incorporated into which 

detail in a model depends on the purpose of the model. If e.g. the recapture of NH3 emitted from the 

soil by overlaying vegetation should be described it is necessary to have a multi-layer model that has 

the soil and vegetation in different layers. Sometimes a cascade of models is used, where the output 

of long-range transport models forms the background deposition onto which the results of a local 

deposition model are added as is the case with the combination DDR/LRTAP (Asman and Maas, 

1986), DEPO1/TREND (Asman, 2004), FRAME/LADD (Theobald et al., 2004) and DEHM-REGINA in 

combination with OML-DEP (see Table 2). An overview of dispersion models, which may be suitable 

for modelling local dispersion of NH3 and be coupled with deposition of NH3,is given in Appendix D 

and is therefore not detailed here. 
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Table 2. A non-exhaustive list of local atmospheric transport and deposition models for NHx. 

Mod. Brief description Parameters Pluses Minuses Scale 

(km) 

Big Leaf / 

Multi-layer 

Refs. 
D

D
R

 

3-D statistical Gaussian surface depletion 

model, first order reaction, mixing height 

Frequency distribution wind 

speed, Pasquill classes, 

precipitation statistics and 

rate for each wind direction 

Can cover a very large area 

with great detail, both point 

and area sources, can cover 

long periods 

Meteorology, z0, vd 

everywhere the 

same, no detailed 

chemistry 

0.01 – 500 Dry 

deposition 

velocities 

1) 

2) 

T
R

E
N

D
/ 

O
P

S
 

3-D statistical Gaussian dispersion model, first 

order reaction depending on actual 

concentrations, mixing height 

Representative u*, L, 

precipitation statistics and 

rate for each stability class for 

each wind direction 

Can cover a very large are 

with great detail, both point 

and area sources, some 

possibilities for variation in z0 

and Rc, can cover long 

periods 

Meteorology the 

same everywhere, 

no detailed 

chemistry 

0.01 – 2000 Big leaf and 

two-layer 

model 

3) 

4) 

5) 

L
A

D
D

 

Hybrid model, with Lagrangian column 

following the mean flow and vertical diffusion 

law, coupled with surface exchange 

one version has been extended to include 

compensation point 

u*, zo, d, LMO 

Ssrce, source location 

rs, rw (mins and slopes) 

Cs 

3D  

Fast 

Land use predefined 

Cs and Rs used 

No inside canopy 

transfer 

 

 

0.001 – 2000 Big-leaf 6) 

D
E

P
O

1
 

Gaussian-3D model coupled with canopy 

compensation point resistance model, Includes 

reaction, dry deposition of NH4
+ and wet 

deposition (below-cloud/in-cloud) of NH3 and 

NH4
+, and the existence of a mixing height. 

u*, zo, d, LMO 

Ssrce, source location 

rs, rw (mins and slopes) 

Cs, rainfall rate, scavenging 

ratios, pseudo-first order 

reaction rate 

Can treat compensation 

points, point sources, areas 

sources, can cover a large 

area and long periods 

Meteorology and z0 

constant 

understand  

0.01 – 500 Big-leaf 7) 

8) 

F
ID

E
S

 

 

Analytical solution of the diffusion equation 

coupled with resistance analogue model at the 

canopy scale in 2D 

z0, d, u*, LMO 

Ssrce, size source  

Rs, Rw 

Cs 

Process based 

Fast 

Few parameters 

Only in 2D 

z0 constant 

no side flux 

0.001 – 5000 Big-leaf 9) 

 

M
O

D
D

A
A

S
 

Lagrangian Stochastic dispersion model 

coupled with a leaf scale resistance analogue 

model in 2D 

U(zref), LMO(zref) 

Ssrce, source location 

rs, rw (mins and slopes) 

Cs 

lad(z) and h(z)  

Process based 

Multi-sources 

Multi-canopies 

Inside canopy transfer 

Only 2D 

Slow 

Large no. of 

parameters 

turbulence 

parameterised 

0.001 – 2000 Multi-layer 10) 

D
A

M
O

S
 The DAMOS (Danish Ammonia Modelling 

System) is a combination of the Eulerian long-

range transport model DEHM-REGINA and the 

local scale plume model OML-DEP 

u*, z0, LMO 

Ssrce, source location 

pseudo-first order reaction 

rate, land use  

High temporal and 

geographical resolution in 

emissions – good description 

of transport 

High demand for 

computer time 

0.4 – 1000 Big-leaf 11) 

12) 

13) 

14) 

1) Asman and Maas, 1986; 2) Asman et al., 1989; 3) Asman and van Jaarsveld, 1992; 4) van Jaarsveld, 1995; 5) van Jaarsveld, 2004; 6) Hill, 1998; 7) Asman, 1998; 8) Asman et al., 2004; 9) Loubet 
et al., 2001; 10) Loubet et al., 2006; 11) Hertel et al., 2006; 12) Frohn et al., 2001; 13) Tilmes et al., 2002; 14) Olesen, 1995. 
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DDR. DDR is a 3-D Gaussian surface depletion model (Asman and Maas, 1986; Asman et al.al., 

1989). The way dry deposition is treated is derived from Horst (1977), but a pseudo first order reaction 

velocity (NH3 to NH4
+), dry and wet deposition and the existence of a mixing height are build into the 

model. A surface depletion model was chosen, because the dry deposition velocity of NH3 is so large 

that dry deposition cannot be described adequately by The basic concept of a surface depletion model 

is that the deposition flux to the surface is represented by sources (or sinks) at the earth’s surface with 

an equivalent negative source strength, The concentration distribution is then calculated as the sum of 

the non-depositing plume from the primary source plus the (negative plumes from all upwind surfaces 

that account for dry deposition. The dry deposition is then calculated as the near-surface 

concentration multiplied by the dry deposition velocity. This model is a statistical model in the sense 

that it uses frequency distributions of Pasquill stability classes and an average wind speed for each 

wind-direction for each class. The model has been used to model the NHx deposition close to farms 

(0-500 m), as well as the background depositions on a 5x5 km2 scale in the Netherlands including 

foreign contributions that were partly calculated with a long-range transport model that covers whole 

Europe (Asman and Janssen, 1987). The dry deposition was modelled using dry deposition velocities. 

 

TREND/OPS model. TREND and the derived short-range model OPS is a Gaussian diffusion model 

that uses meteorological statistics and can cover whole Europe. (Asman and van Jaarsveld, 1992; van 

Jaarsveld, 1995; van Jaarsveld, 2004). It is used to calculate concentrations and depositions over 

longer time periods (month – 10 years). A meteorological pre-processor creates the meteorological 

input for the model from e.g. hourly meteorological observations. The meteorological input of the 

model consists of information on the frequency of occurrence of different stability classes for different 

wind directions. For each class for each wind direction there is a representative value of u* and L, 

information on the mixing height and information on the precipitation (precipitation probability, 

precipitation intensity, length of rainfall period). The model takes into account diurnal and seasonal 

variations of the meteorological parameters. The wind speed and diffusivity in the model are height-

dependent. Close to the source the model is based on a detailed description of the plume, whereas 

further away where the plume has reached the mixing height the process descriptions are simplified. 

Dry deposition of NH3 and NH4
+ are modelled using the big-leaf model or a two-layer model and wet 

deposition of both components is described with below-cloud and in-cloud scavenging coefficients. 

The model is a source depletion model that however, mimics the results of a surface depletion model. 

The model uses a pseudo-first order reaction rate to describe the reaction from NH3 to NH4
+. The 

reaction rate can be based on the results of detailed chemistry models taking into account actual 

concentrations of NH3, SO2 and NOx. The model can treat both point sources and area sources. 

 

DEPO1 and derived models. DEPO1 (Asman, 1998) is a steady state model, where vertical diffusion 

is treated with a K-model and cross-wind horizontal diffusion with friction and stability dependent. The 

model assumes the same surface roughness length everywhere. Wind speed and diffusivity in the 
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model are height-dependent. The dry deposition velocities are modelled using the big leaf approach. 

The model can treat compensation points. Compensation points and surface resistances can vary 

over the model area. A pseudo-first order reaction rate of NH3 to NH4
+ is included in the model, but 

other components and more complicated reactions can be included as well. Below-cloud and in-cloud 

scavenging for NH3 and NH4
+ are calculated using scavenging coefficients. For below-cloud 

scavenging of NH3 the scavenging coefficients of Asman (1995) are used. The model uses hourly 

meteorology (u*, L, rainfall rate) as an input, but is also used to calculate deposition over long periods 

(10 years). DEPO1 was used to derive transfer matrices that were build into a GIS-system that was 

used to calculate the deposition on a 100x100m2 scale for an area of about 80x80 km2 size and which 

gives the user the opportunity to study the effects of emission reductions or different spatial 

distributions in an easy way (Asman et al., 2004).  

 

LADD. The LADD (Local Atmospheric Dispersion and Deposition) model is used to simulate 

atmospheric dispersion of NH3 within domains of up to a few km. (Hill, 1998; Dragosits et al., 2002). 

LADD is a Lagrangian model that simulates atmospheric dispersion and surface deposition by moving 

a vertical column of air along straight-line trajectories across a grid (Figure 6). This air column is 

divided into layers of increasing depth up to the height of the planetary boundary layer and moves 

across the grid at a rate equal to the mean wind speed for the trajectory direction. As the column 

moves across the grid, NH3 is emitted into the layers containing sources and is mixed vertically within 

the column at a rate determined by the turbulent diffusion coefficient (K). This coefficient is calculated 

from the mean wind speed for the trajectory, the roughness length (z0) assigned to the grid square, the 

height within the column, the boundary layer height and the atmospheric stability following the 

methods of Pasquill and Smith (1983) and Ayra (1988). Deposition from the lowest layer to the surface 

is calculated using z0, the resistance of the surface to NH3 deposition (Rc), atmospheric stability and 

mean wind speed. Within the model each grid square in the domain is assigned a value of z0 and Rc, 

which are dependent on the land use. For each trajectory direction, parallel trajectories are modelled 

sequentially until the entire domain has been covered. The trajectory direction is then increased by a 

user-defined increment (e.g. 1°) and the process is repeated for all directions. Wind direction 

frequencies (for each 10° sector) are used to weight the contribution to NH3 concentrations from each 

trajectory. The model input data are the emission strength and height for each grid square, the land 

cover for each grid square, the mean wind speed and the wind direction probability for each 10° 

sector, the height of the atmospheric boundary layer and the NH3 concentrations at the domain 

boundaries. Once all trajectories have been modelled, the mean NH3 deposition and the mean 

concentration (at various heights) for each grid square are output as well as the amount of NH3 that is 

exported out of the domain.  
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Figure 6. Diagram explaining the principles of the LADD model. The blue column of air moves along a trajectory 
indicated by the red grid squares. As the column moves across the grid three processes occur: NH3 is emitted into 
the column; NH3 is deposited from to the surface and the ammonia within the column is dispersed vertically. 

 

FIDES-2D. The FIDES model (Flux Interpretation by Dispersion and Exchange over Short Range) is a 

steady state, two-dimensional model described in Loubet et al. (2001). No chemical reactions are 

considered in the atmosphere. The canopy height h and the roughness length z0 are assumed 

constant, and wind speed and turbulence are assumed to be horizontally uniform. The big-leaf 

assumption is made, which considers the canopy as a unique layer at height zs (larger than z0), for 

heat, momentum, evaporation and NH3. To assess the concentration Ca(x,z) and the fluxes, the model 

(as does the MODDAAS-2D model) is based on the general superposition principle (Thomson, 1987), 

which relates the concentration at a location (x,z), Ca(x,z), to the source strength at another location 

(xs,zs), S(xs,zs), with the use of a dispersion function D(x,z/xs,zs) (in s m-3) : 

  ca(x,z)  =  cbgd  +  ⌡⌠
all xs

 

 S(xs,zs) D(x,z / xs,zs) dxs        [10] 

where Cbgd is the background concentration, assumed to be constant with height. A negative source 

strength (in µg NH3 m
-1 s-1) denotes a sink. To estimate Ca using Eq. [10], D(x,z/xs,zs) and S(xs,zs) are 

first calculated using an exchange and a dispersion model, respectively. The dispersion model is 

taken from Huang (1979), which describes diffusion from a line source, based on the assumption that 

wind speed and diffusivity are power functions of height. The deposition model is the two-pathway 

resistance model of Figure 4c. 

 

MODDAAS-2D. The MODAAS-2D model results from the coupling of a Lagrangian Stochastic 

Dispersion (LS) model with a leaf scale ammonia exchange model. MODDAAS-2D is similar to FIDES-

2D in that it is a steady state and two-dimensional model, with no chemistry, which is also based on 

the superposition principle of Eq. [10]. However, the model is different in that it is a multi-layer model 

which considers explicitly the transfer through the canopy. The dispersion matrix approach (which is 

also used in FIDES) is used: the concentration in each grid cell is the sum of the contribution of all the 

sources weighed by the dispersion matrix element which has a unit of m s-1. The LS model gives the 

dispersion matrix, using a parameterised or a given flow, following the approach of (Thomson, 1987). 
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The source terms Si depending on the concentration in the grid cell Ci are resolved by solving the 

linear system corresponding to the discretisation of Eq. [10]. The radiation inside the canopy is 

estimated with an exponential attenuation. The exchange model follows in each grid cell is that of 

Figure 4c. The emission and deposition terms of the exchange flux are split as in FIDES in order to get 

a linear system for the concentration in each grid cell of the canopy. Details of the MODDAAS-2D can 

be found in (Loubet et al., 2006).  

 

DAMOS. The Danish Ammonia Modelling System (DAMOS; sketch in Figure 7) is a combination of 

the Eulerian long-range transport model DEHM (Christensen, 1997; Frohn et al., 2002) and the 

Gaussian local scale transport-deposition model OML-DEP (Olesen, 1995) for the dry deposition 

making use of the surface depletion method from (Horst, 1977) with a pseudo first order reaction 

velocity (NH3 to NH4+, Asman et al., 1989). The DEHM calculations are performed for the entire 

Northern Hemisphere with 2-way nesting; the outer domain using a 150km x 150km resolution, for 

Europe a 50km x 50km resolution is applied, and for Denmark and nearby areas using a 16.67km x 

16.67km resolution. These calculations are based on meteorological data generated by MM5 (Grell et 

al., 1994). The local scale model OML-DEP is applied for a 16km x 16km domain that covers the 

nature area for which detailed deposition mapping is needed. DEHM background concentrations of 

ammonia and sulphur dioxide are obtained for each hour by interpolation between up to three grid 

cells upwind from the OML-DEP domain. Meteorological data are from the MM5. OML-DEP 

calculations are performed for 40 x 40 receptor points evenly distributed over the domain each 

representing a 400m x 400m area. The dry deposition velocities are in both DEHM and OML-DEP 

performed with the same module which is based on the methodology in the EMEP model (Simpson et 

al., 2003). The ammonia emissions are computed using the parameterisations with high spatial and 

temporal resolution (Gyldenkaerne et al., 2005; Skjoth et al., 2004). The high resolution in the 

inventories has shown to be very important for the model performance (see the discussion in Hertel et 

al., 2006). 

EtaEtaDEHMDEHM

Regional 
data

Regional 
data

OML-DEP

EtaEta

Regional scale Local Scale Output

Tables 
and 

figures

THOR-ATMI THOR-ATMI

 

Figure 7. Sketch to illustrate the DAMOS (Danish Ammonia Modelling System) for assessment of atmospheric 
ammonia loads from livestock farms. 

 

OTHER MODELS. An interesting approach has been used in Switzerland where mountains make 

modelling quite challenging. Spatially very detailed emission inventories were made for NH3 



Background Document Working Group 3: UNECE Expert Workshop on NH3, Edinburgh 4-6 December 2006. 01/12/2006. 

page 26 / 59 

(200x200m2 or less), that formed the input for the calculations. In stead of using complicated 

atmospheric transport models they used a function of deposition vs. distance that was developed for 

The Netherlands (average for 10 years, averaged over all wind directions) (Rihm and Kurz, 2001). 

Although this should not be done in principle as the Swiss climates differ from the Dutch climate, a 

good correlation was obtained between modelled and measured values for 17 sites, Later Thöni et al., 

(2004) refined the method adjusting the function distance vs. so that an optimum correlation was 

obtained for this function that then should be more representative of the Swiss situation. one of the 

reasons why the method is a bit questionable is that the dry deposition in Western Europe can show 

differences of a factors 2-5 between different wind directions, mainly because the difference in 

frequency. Nevertheless this type of approach, or a spatially very detailed model such as DEPO1 

could then be used to redistribute the dry deposition of NH3 calculated for 50x50 km2 in such a way 

within the grid element that a reasonable inputs to nature areas can be estimated. 

3.7 Available datasets for validating local scale deposition models 

Validation of the NH3 recapture model is a crucial point. Although NH3 deposition should be used 

for validation, it is often not measured. Most datasets only contain concentration measurements at 

several distances downwind from a source, which is either controlled or measured. Table 3 gives an 

overview of the known datasets that could be used for validating local recapture models.  

Table 3. Known datasets that could be used to validate short-range NHx deposition models. 

Dataset Name 

 

Year 

 

Brief description References 

Burrington 

Moor 

(Grassland) 

1998 Slurry spread on a U shape 20 m width x 600 m long band.  

NH3 emission measured with a 5 heights, denuder, mass 

balance .  

Concentration measured at 1 height down to 300 m 

downwind 

Sutton et al., 1997 

Loubet et al., 2006 

Bretagne 

(Grassland) 

1999 Slurry spread on a 30 m width x 90-150 m long band.  

NH3 emission measured with a 3 heights, bubbler, mass 

balance .  

Concentration measured at 1 height down to 180 m 

downwind 

Loubet et al., 2006 

Davron 

(maize) 

1997 Controlled NH3 line source of 200 m long. 

NH3 emission controlled with a flow-meter and measured 

with a 7 heights Ferm denuder mass balance.  

Concentration measured at 7 heights within the maize canopy 

and above down to 160 m downwind 

Loubet et , 2003 

Woodland 2001 Controlled NH3 line source of 30 m long. 

NH3 emission controlled with a flow-meter  

Concentration measured at several heights within the forest 

down to 60 m downwind 

Turbulence measured 

Throughfall measurements 

Theobald et al., 2001 
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4 METHODS FOR EFFECT ASSESSMENT AND AIR MONITORING IN NH3 HOT 

SPOTS  

4.1 Key issues for effects assessment and NH3 monitoring in hot-spots  

Interest in the effects of NH3 concentrations and deposition in hot-spot areas often arises when a 

semi-natural site (e.g. nature reserve) is considered to be at risk from exposure to atmospheric NH3 or 

N deposition. Frequently in these cases, national- or regional-scale dispersion and deposition 

modelling is not sufficiently detailed to assess whether vulnerable semi-natural sites are at risk or not. 

For example, national-scale modelling with a spatial resolution of 5 km can provide an estimate of 

average concentration and deposition for the grid-square containing the site but due to the spatial 

variability of concentrations and deposition the actual values at the site may be very different. Local 

dispersion and deposition modelling can provide a better estimate of concentration or deposition at the 

site and can also take into account the location of sources relative to the site and detailed land cover 

and land use information. Modelled concentration and deposition data can be used to assess the 

potential impact on the site (e.g. by comparison with effect thresholds) and these analyses can be 

used by governments, local authorities or conservation organisations to determine the impact on the 

site in relation to conservation, human health and planning issues. The local-scale modelling is often 

done in conjunction with field measurements or long-term monitoring to provide an alternative method 

of impact assessment as well as data that can be used to verify the outputs of the modelling. The 

following paragraphs give an overview of existing measurement and monitoring techniques, the 

application of local-scale modelling and how these can be combined to estimate effects on semi-

natural sites. 

4.2  Review of methods for monitoring NH3 concentrations and deposition in hot spots 

NH3 concentrations and deposition are generally variable over long time periods (e.g. > 1 year) and 

therefore monitoring needs to be carried out over at least this time period and at the shortest temporal 

resolution possible. Factors leading to this temporal variability are mainly due to the changing 

meteorological conditions, which affect the NH3 source strengths, the atmospheric dispersion and dry 

deposition, the wet deposition and the canopy characteristics. Another important temporal factor is the 

agricultural activity and management throughout the year. Concentrations and deposition are also 

highly spatially variable and therefore it is often important to monitor these quantities at several 

locations to get information on the spatial variability, the potential effects on different ecosystems and 

the extent of these effects. Measurements should be placed at the locations that the effects need to be 

determined (e.g. edge of nature reserves closest to source or an ecosystem type of interest) as well 

as locations that would be useful for verifying any dispersion modelling (e.g. logarithmically spaced 

downwind of a source). The requirement for long-term monitoring at multiple locations means that it is 

normally only possible to use low-cost monitoring techniques.  
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Two complementary sampling strategies may be used for measuring ammonia in local hot-spot areas. 

Firstly, low temporal resolution monitoring (e.g. monthly resolution) provides information on spatial 

patterns and long-term trends. By using low-cost methods for such sampling, many sites can be 

compared, allowing assessments of local gradients and spatial representativity. The disadvantage of 

such methods is that they do not allow detailed diurnal interactions to be easily assessed. Therefore, a 

second, complementary approach, is to conduct detailed time resolved (e.g. half hourly) continuous 

measurements of NH3 concentration at 1 or 2 sites and relate the measured concentrations to wind 

direction, local meteorology and emissions. The second approach requires expensive continuous 

devices that generally require mains electricity supply, which can limit the flexibility where such 

measurements can be made.  

Among the simpler methods for measuring NH3 concentrations are passive diffusion samplers (e.g. 

Thijsse et al., 1998, Tang et al., 2001), acid-coated denuders (Ferm, 1979) and filter packs (Appel et 

al., 1988; Sutton et al., 1993a,b). Diffusion tubes rely on the process of atmospheric NH3 diffusing 

along the inside of a tube towards an acid-coated filter. The NH3 is captured by the filter as it reacts 

with the acid (e.g. citric acid or oxalic acid) to form an ammonium salt. The ammonium can then be 

extracted in the lab for analysis and the mean atmospheric NH3 concentration over the exposure 

period can be calculated from the mass of ammonium present (Ferm, 1979). Acid-coated denuders 

are usually glass tubes coated on the inside with an acid. Atmospheric air is drawn through the 

denuder by a pump and the NH3 in the air reacts with the acid to form an ammonium salt. This 

technique allows the selective removal of NH3 on the denuders and subsequent collection of 

particulate NH4
+on a downstream filter pack (e.g. Ferm 1979, Sutton et al., 2001; Tang et al., 2003). In 

a similar way to the diffusion tubes, after exposure, the ammonium is extracted and the mean 

atmospheric NH3 concentration for the period that the pump was on can be calculated from the mass 

of ammonium present. The Ferm denuder method is tuned for hourly to daily measurement periods 

(e.g. Ferm, 1979). More recently, a modified system architecture has been used to allow simple 

denuders to measure monthly time-integrated samples, making them more suited to low cost, long 

term monitoring (Sutton et al., 2001a). 

Filter packs work on a similar principle to diffusion tubes except atmospheric air is drawn through the 

acid-coated filter using a pump, with a pre-filter used to collect particulate compounds (Appel et al., 

1988; Sutton et al., 1993a). After exposure, the filters are analysed in a similar way to those in 

diffusion tubes. However, phase interactions in the collected samples give rise to uncertainty to the 

partitioning between gaseous NH3 and aerosol NH4
+. Therefore, the data are typically reported as the 

sum of the nitrogen species (TIA, Total Inorganic Ammonium). A developing method of monitoring NH3 

concentrations is the use of bio-monitors such as lichens (Van Dobben and Ter Braak, 1998; Wolseley 

et al., 2006). Physiological measurements on the lichens (e.g. nitrogen content) can be linked to 

atmospheric concentrations of NH3 and therefore provide a method of estimating long-term 

atmospheric concentrations of NH3 (see posters, this workshop). Concentration measurements can be 

compared with threshold concentrations (such as critical levels; see Section 4.4) to estimate the 

effects of toxicity to ecosystems and humans. It is also important to assess effects by estimating the 

deposition (wet and dry) to the site in question. It is possible to estimate dry-deposition rates from 
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concentration measurements but the estimates are often uncertain. Methods to do this will be explored 

later in this Section.  

It is possible to measure rates of dry deposition directly using a range of techniques. The most 

accurate methods of dry deposition measurement are eddy-covariance (Famulari et al., 2004), 

continuous gradient techniques (Sutton et al., 2001b) and relaxed eddy accumulation (e.g. Fowler et 

al., 2001; Nemitz et al., 2001). However, these techniques tend to be the most expensive and, for the 

reasons given above about the need for multiple measurements over long time periods, will not be 

covered in this document. It is however possible to carry out low-cost gradient techniques. The 

COTAG (COnditional Time-Averaged Gradient) technique uses the low-cost denuders (Sutton et al., 

2001) to measure atmospheric NH3 concentrations at several heights to derive time-integrated 

exchange rates (e.g. Fowler et al., 2001). The equations needed to calculate a deposition (or 

emission) flux are only valid for a certain range of atmospheric stability conditions and to allow use of 

these equations, air is only sampled during periods with these atmospheric conditions. Provided this 

sampling time represents the vast majority of the measurement period, the sampled atmospheric 

concentrations can be used to calculate the flux (Fowler et al., 2001; Erisman, 2001). Throughfall 

measurements can also be used to estimate deposition to a plant canopy (e.g. Draiijers et al., 1994; 

Cape et al., 1995). Throughfall is the precipitation that is collected on the ground below the canopy 

and represents the sum of dry and wet deposition to the leaves minus the NHx that has entered the 

leaves either via the stomatal or cuticular routes (see Section 3) or has flowed down the plant 

stems/trunks (stemflow). In the AMBER experiment (Theobald et al., 2004), throughfall measurements 

were made beneath a tree canopy to estimate the amount of dry deposition to the trees from an 

artificial NH3 line source. It should be noted that throughfall measurements will underestimate 

deposition of NHx since the component that has entered the leaves and the stemflow are not included. 

Dry deposition to leaves and branches can be estimated by washing the branches or leaves with 

deionised water after a measured period following the last precipitation event. In a similar way to the 

throughfall measurements, the NHx washed off the leaves will represent the dry deposition to the plant 

minus the NHx that has entered the plant either via the stomatal or cuticular routes (see Section 3.4) 

and stemflow since the last precipitation event.  

Total deposition (wet plus dry) to short vegetation can also be estimated using the ammonium 

concentrations of pots of vegetation before and after being placed at the site of interest (Sommer and 

Jensen, 1991; Leith et al., 2004). It is unadvisable to use bulk wet deposition measurements (i.e. wet 

and dry deposition to an open collector) as an estimate of total NHx deposition, since the deposition 

characteristics of the collector will be different to that of vegetation the deposition rate will not be 

representative for the ecosystem in question.  

As stated above, it is possible to relate concentration measurements to deposition estimates. 

Exchange of NH3 with surface vegetation is a complex process (see Section 3). In some situations the 

exchange is bi-directional resulting in emissions from the vegetation to the atmosphere as well as 

deposition from the atmosphere to the vegetation. Models such as those detailed in Section 3 can be 

used to calculate a deposition flux from a measured concentration (Nemitz et al., 2000b). However, 
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these models require a lot of site specific input data (e.g. plant and soil physiological data, micro-

meteorological data) and are often, therefore, too detailed to use for effects assessments. Deposition 

is the dominant exchange process close to sources of NH3 since the atmospheric concentrations are 

generally higher than the compensation points of the vegetation. The deposition process can be 

simplified substantially by reducing the parameters down to just one; the deposition velocity. This 

avoids the complexity of having to parameterise many site-specific factors. In this simple scheme the 

deposition rate is calculated by multiplying the NH3 concentration at the ground (or just above) by a 

dry deposition velocity specific to the ecosystem (Erisman et al., 1994; Neirynck et al., 2005). This 

approach needs to be used with knowledge of the uncertainties since it is not a very accurate method 

but is useful for screening purposes to calculate an approximate deposition rate. 

4.3 Dispersion modelling techniques for effects assessments 

Dispersion modelling is often used in a effects assessments either on its own or in conjunction with 

monitoring. There is no substitute for accurate measurements for effects assessments but the use of 

modelling instead provides a faster and often cheaper way for these assessments. When done in 

conjunction with monitoring, the measurement data provide a method of model verification and also 

can be used for model improvement and development. It is important that the correct type of model is 

used for the task. Factors governing the type of model necessary depend on factors such as the 

process that you are trying to estimate (e.g. dry deposition, atmospheric concentration, advection, 

recapture), the input data available, the spatial/temporal scale necessary and the resources (time, 

equipment, money etc.) available. Once a suitable model has been selected, the input data necessary 

for the model must be collected (e.g. meteorological, soil, land cover, source data). The model is then 

run using these input data and the required output (concentrations, deposition etc.) is obtained. If 

monitoring data are available they can then be used to verify the model output. The output data are 

the used to estimate the potential impacts to the any vulnerable sites within the modelling domain. In 

addition to simulating real impacts, models can be used to investigate scenarios by varying the input 

data to look at the effects of source strengths, source locations, land cover changes, climate change 

etc. 

4.4  Review of effects assessment of NH3 in hot spots and experiments 

After the completion of the modelling and/or monitoring the data can to be used to estimate the 

potential effects of the NH3 concentrations and deposition on the receptor of interest: semi-natural 

ecosystems or humans. Most assessments take the form of comparing concentration and deposition 

estimates (measured or modelled) with relevant thresholds. For effects on semi-natural ecosystems 

ammonia concentrations are usually compared with ‘critical levels’, which are defined as “the 

concentration of a pollutant in the atmosphere, below which vegetation is unlikely to be damaged 

according to present knowledge” (Postumus, 1988). It should be noted that the critical level value for 

ammonia (8 µg NH3 m
-3) is now considered by many scientists to be out-of-date and not sufficiently 

precautionary. In particular, it can be shown that exceedance of the critical loads occurs at much lower 
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concentrations than the critical levels. (i.e. ammonia concentrations of >1-2 µg m-3 are sufficient in 

most cases to lead to exceedance of the critical load). This indicates that the issue of most concern 

from ammonia is the indirect impact of nitrogen from ammonia deposition, rather than the direct toxic 

effect of ammonia concentrations. Deposition rates are usually compared with ‘critical loads’ which are 

defined as “the amount of pollutant deposited below which significant harmful effects on specified 

elements of the environment do not occur, according to present knowledge” (Nilsson and Grennfelt, 

1988). Therefore if the deposition rate is less than the critical load (i.e. it is not exceeded), then it is 

usually assumed that significant harm to the ecosystem will not occur. Much recent work has gone into 

defining critical loads for different ecosystem types. The most recent culmination of this work was the 

Expert Workshop of 2002 in Switzerland (Bobbink et al., 2003). This meeting agreed on many of the 

currently used empirical critical loads for nitrogen deposition for a range of ecosystem types. Many of 

these critical loads were based on data from experimental field studies. Following the effects 

assessment, information on potential exceedances of critical loads and levels can be used by 

government departments, planning committees or conservation bodies to conclude whether an impact 

on a semi-natural site will probably occur as a result of the process (ammonia source) being studied. 

5 MAIN RESULTS FROM MODELLING AND MONITORING DEPOSITION NEAR 

HOT SPOTS 

5.1 Example of NH3 deposition modelling in a tree-belt downwind from a controlled source 

The dispersion of NH3 was modelled through a tree belt of 10 m height, located 15 m downwind of 

a line source placed at 2 m above ground. Figure 8 shows that the highest deposition and 

concentration occurs with the smallest wind-speed because with increasing wind speed the NH3 is 

more diluted into air and also it passes under the crown of the trees, which lies roughly above 4 m. 

This illustrates the singularity of local deposition which depends on dilution / dispersion and 

deposition, as compared to deposition over homogeneous surface where deposition basically 

increases with decreasing aerodynamic resistance and hence increasing wind speed (see e.g., 

Seinfeld and Pandis, 1998). 
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Figure 8. NH3 concentration field in a tree-belt of 30 m long and 10 m height, 5 m downwind from an intensive 
line source placed at 2 m above grassland for different wind speeds, as modelled with the MODDAAS-2D model.  

5.2 Sensitivity of local deposition of NHx to environmental conditions 

The modelled developed for NH3 recapture near hot spots, have been used to assess the influence 

of environmental conditions on local dispersion. Asman (1998) has shown that NH3 recapture at 

2000 m downwind from a farm can represent up to 60% of the emissions, and that it increases with (i) 

increasing source height, (ii) increasing atmospheric stability, (iii) decreasing wind-speed, (iv) 

increasing surface roughness, and (v) decreasing compensation point of the surface. Asman (1998) 

has also shown, based on hourly meteorological data spanning over two years, that most frequently 

NH3 recapture varies between 10% and 40% of the emission. Loubet et al. (2006) have confirmed, 

based on the within canopy transfer mode MODDAAS, that the predominant factors controlling short-

range deposition are turbulent mixing at the source height, which is influenced by wind-speed, 

atmospheric stability, surface roughness and source height, as well as the stomatal compensation 

point Cs, the cuticular resistance Rw, and the stomatal resistance. In these studies information was 

given on the accumulated deposition as a function of the distance to the source, but not on the 

deposition as a function of the distance to the source. 

 Figures 9-11 illustrate the sensibility of local recapture of NHx within 200 m downwind from hot 

spots to environmental conditions, based on simulations using the FIDES-2D model (Loubet et al., 
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2001). The environmental factors looked at are those affecting the turbulent mixing (source height, 

wind speed (U), roughness length (z0), stability of the surface boundary layer), as well as those 

affecting the transfer rate to the surface Cs, Rw and Rs. Aerosols deposition is also considered to 

discuss the issue of NH4
+ from farm buildings, as either recently created aerosols or dust transporting 

a fraction of nitrogen. The base scenario considers (1) an area source emitting 

500 µg NH3 m
-1 s-1 (roughly corresponding to 800 kg year-1 for a 50 m x 5 m wide building) infinite in 

the crosswind direction (along-wind dispersion) of 5 m width, at hs = 2 m height, (2) a wind speed of 

3 m s-1 at the source height, (3) a roughness length (z0) of 10 mm, (4) a zero displacement height (d), 

(5) thermal neutrality of the boundary layer, (6) a stomatal resistance Rs = 80 s m-1, (7) a cuticular 

resistance Rw = 20 s m-1, and (8) a compensation point Cs = 0 µg NH3 m
-3. The model used for 

particles deposition is adapted from the FIDES model: the same dispersion model is assumed (which 

is a strong hypothesis for particles larger than 10-20µm), while the surface exchange scheme 

considers a resistance estimated following Seinfeld and Pandis (1998). 

 

Figure 9. NH3 deposition downwind from a 500 µg NH3 m
-1

 s-1 source of 5 m width at 2 m height, as a function of 
downwind distance, as estimated with the FIDES-2D model. The base scenario is described in the text. Several 
effects are considered: wind speed at the source height (1 or 6 m s-1); boundary layer thermal stratification 
(unstable L = -20 m, stable L = 20 m, where L is the Monin and Obukov length); surface roughness (Smooth z0 = 
1 mm, Rough z0 = 1000 mm); surface resistance (only stomatal absorption Rw = ∞, surface completely absorbing 
Rc = Rb, where Rb is the boundary layer resistance of the canopy). 

 

Figure 9, shows the qualitative effect of environmental conditions on local deposition: 
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- Increasing wind speed leads to decreased local deposition of NH3, due to more dilution 

of the emitted NH3, at the source and downwind; 

- Surface layer stability favours local deposition of NH3 due to decreased turbulence, 

and hence dilution, whereas instability decreases local deposition, due to increased 

turbulence. Note also that the distance of peak deposition increases in the order 

unstable < neutral < stable, due to the plume width increasing faster under unstable 

conditions; 

- The rougher the surface is the larger deposition is very close toe the source, but also 

the faster it decreases with distance, hence in the end, rougher surface leads to 

smaller cumulated deposition (see Figure 11). This is due to rougher surfaces inducing 

larger turbulence rate and hence faster dilution of the plume (which also reaches more 

quickly the ground); 

- Perfectly absorbing surfaces (which is represented by Rw = 0 s m-1) leads to larger 

local deposition than surfaces with stomatal and cuticular absorption (base scenario), 

which itself is lower than stomatal absorption only (Rw = ∞). It should be noted however 

local NH3 deposition is not linearly related to the “deposition velocity”, because 

increasing deposition rate also leads to a faster depletion of the plume and hence 

decreases deposition further downwind; 

 

Figure 10. NH3 deposition downwind from a 500 µg NH3 m
-1

 s-1 source of 5 m width at 2 m height, as a function 
of downwind distance, as estimated with the FIDES-2D model. The base scenario is described in the text. Several 
effects are considered: canopy compensation point (canopy receiving large amount of nitrogen 
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Cp = 20 µg NH3 m
-3, canopy saturated with nitrogen Cp = 30 µg NH3 m

-3); source height (source very close to the 
ground hs = 1 m, source at the roof of a building hs = 10 m); particles of 1µm or 10µm and dust of 20 µm and 
40 µm. 

 

Similarly Figure 10 shows that: 

--  An increase of the stomatal compensation point Cs decreases local deposition of NH3 

and can even lead to emissions of NH3 at distances larger than 100 m downwind from 

hot spots;  

--  Increase in source height decreases local deposition of NH3 and inversely. However, 

similarly to effects of increased surface deposition, increased deposition with smaller 

height also decreases deposition at further distance, due to increased depletion of NH3 

from the plume. The peak distance also increases with increasing source height, as it 

then takes more distance for the plume to reach the ground;  

--  Particles of 1µm show almost no deposition, while 10 µm particles show deposit of 

about a tenth of the base scenario, whereas particles of 20 µm and 40 µm show larger 

deposit than the base scenario. It should however be noted that the FIDES-2D model 

for particles does not properly describes the dispersion of particles of 20-30 µm and 

that hence these results should be taken as qualitative.   

  

Figure 11 synthesises the results of Figures 9-10, by displaying the fraction of NH3 emitted that is 

recaptured at 200 m from the source for each scenario. The deposition at 2000 m is also shown to 

allow comparison with the work of Asman (1998). This allows to quantitatively compare the effect of 

each scenario. Figure 11 shows that up to 30% of NH3 is recaptured at 200 m downwind from the 

source in the base scenario and that it varies between 12% and 55% depending on the environmental 

conditions (not considering particles). Apart from stability and wind speed, which are influential but can 

not be easily modified by abatement techniques (though wind-speed at the source height might be), 

the most influential parameters are (1) the source height, (2) the surface roughness, (3) the surface 

resistance, and (4) the stomatal compensation points. Hence, abatement techniques should 

preferentially focus on one of those parameters. In a simplified view, abatement techniques should try 

to maximise deposition very close to the source. Results of Figure 11 suggests that this could be 

achieved by shading the emission from wind (both by setting the source at the lowest possible height, 

or having trees around), and by ensuring an effective sink around it (well watered canopy, with well 

evaporating vegetation on the ground). One effective way might be to have tall trees with small LAI 

and an under-storey well watered arable crop.  
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Figure 11. Fraction of NH3 re-deposited at 2000 m and 200 m downwind from a 500 µg NH3 m
-1

 s-1 source of 5 m 
width at 2 m height, as a function of downwind distance, as estimated with the FIDES-2D model. The base 
scenario is described in the text. Several effects are considered: wind speed at the source height (1 or 6 m s-1); 
boundary layer thermal stratification (unstable L = -20 m, stable L = 20 m, where L is the Monin and Obukov 
length); surface roughness (Smooth z0 = 1 mm, Rough z0 = 1000 mm); surface resistance (only stomatal 
absorption Rw = ∞, surface completely absorbing Rc = Rb, where Rb is the boundary layer resistance of the 
canopy);canopy compensation point (canopy receiving large amount of nitrogen Cp = 20 µg NH3 m

-3, canopy 
saturated with nitrogen Cp = 30 µg NH3 m

-3); source height (source very close to the ground hs = 1 m, source at 
the roof of a building hs = 10 m); particles of 1µm or 10µm and dust of 20 µm and 40 µm. At 2000 m, the fraction 
re-deposited for the scenarios Cs = 20 and 30 µg NH3 m

-3 are not shown for clarity: the cumulated emission at 
2000 m downwind amount 65% and 125% of the emission from the farm, respectively.  

5.3 Comparison of three approaches to model recapture of NH3 to tree belt near hotspot 

Figure 12 shows the recapture of NH3 to a tree belt surrounding an intensive source of 

11.9 kg N yr-1 for several scenarios (base scenario given in Table 101). The tree canopy presents a 

crown located in the upper part of the canopy, which allows a flow below the crown to take place. 

Three models are compared: the FIDES model (Loubet et al., 2001), the LADD model (Hill, 1998), 

both models not taking account of within canopy horizontal transfer, and the MODDAAS model 

(Loubet et al., 2006), which take account of within canopy transfer. Since the three models do not 

used similar inputs, the FIDES and the LADD models were adapted so as to give the same conditions 

as the MODDAAS model.  

 LADD. In LADD, the canopy height is not used and therefore a surrogate parameter was needed. 

The roughness length (z0) was used since this scales approximately linearly with canopy height. Leaf 

area index (LAI) is also not used by LADD and instead, an adjustment to the canopy resistance was 

made, assuming that it is inversely proportional to LAI. 
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 FIDES. The canopy is adjacent to the source making it difficult to simulate the effect of sources at 

different upwind distances. The best approximation was to spread the source further upwind to 

simulate moving the source in that direction e.g. to simulate a source 10 m upwind of the canopy, the 

source region covered 0-10 m upwind of the canopy edge and the emission strength reduced 

accordingly. In a similar way to LADD, z0 was used as a surrogate for canopy height and the canopy 

resistances (stomatal and cuticular) were adjusted to simulate different LAIs. 

Table 101. Parameters used in the base scenario of Figure 12 for modelling recapture of NH3 emitted from a farm 
to a surrounding tree belt. 

 

Source 

height 

Distance from 

source 

Canopy 

length 

Canopy 

height 

Leaf Area 

Index 

Wind Speed at 

2 m 

Atmos. 

stability 

  (m) (m) (m) (m)  (m s
-1

)  

Base scenario 2 5 30 10 5 3.1 Neutral 

  

 In Figure 12 the units of the y-axes are the deposition to the canopy per unit width in the crosswind 

direction. The source used in the scenarios is assumed to be a line source running in the crosswind 

direction and therefore the deposition in these plots represents the modelled deposition from each 

metre of source. For example, the NH3 release rate is 11.9 kg N yr-1 per unit crosswind distance. 

Therefore a deposition in the plot of 2 kg N yr-1 represents a recapture of 16.8% of the emitted NH3. In 

general, FIDES gives a similar deposition rate to LADD, which is greater than that from MODDAAS.  

 The effect of moving the source upwind (Figure 12a) is to decrease the deposition in FIDES and 

LADD since the NH3 is given more time to mix vertically before reaching the canopy. For MODDAAS, 

the effect is different with a peak in deposition when the source is 10 m upwind of the canopy. This is 

due to the canopy structure, since most of the recapture surfaces (leaves and branches) are above a 

height of about 4 m. If the source is too close to the canopy the NH3 will pass underneath the densest 

part of the canopy in the MODDAAS model: an effect that cannot be simulated by the FIDES and the 

LADD models. 

 Figure 12b shows the effect of changing the source height. LADD gives greater recapture for lower 

sources and so does FIDES apart from when the source is at ground level. This is due to both a larger 

time for the plume to reach the ground while it is mixed, and a larger mixing efficiency of the plume 

due to increasing turbulent diffusivity with canopy height (and hence roughness). A ground level 

source was not modelled by MODDAAS but, for the heights modelled, the recapture increased with 

source height. This is also because of the canopy structure; the lower the source, the more NH3 

passes under the region of high canopy density in the MODDAAS model.  

 Increasing the wind speed (Figure 12c) decreases the recapture for all three models with LADD 

giving the largest gradient response. This is probably because the advection wind speed used in 

LADD is constant with height whereas FIDES and MODDAAS use a wind speed profile that changes 

with height.  
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Figure 12. Ammonia dry deposition to a modelled tree belt (per crosswind unit length) for 7 scenarios using the 
FIDES, the LADD and the MODDAAS models. The units of the y-axes are deposition per m in the direction 
perpendicular to the wind, therefore (for a source strength of 11.9 kg N yr-1 per unit source length) a deposition of 
2 kg N yr-1 represents a recapture of 16.8% of the emitted NH3. 
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 Both LADD and FIDES display a decrease in recapture as the atmospheric stability changes from 

stable through neutral to unstable (Figure 12d). This is due to the increased mixing of the atmosphere 

dispersing the NH3 more vertically. The response of the MODDAAS model peaks at neutral stability. 

The low recapture during stable conditions is probably due to the NH3 plume staying close to the 

ground and therefore not reaching the densest part of the canopy. 

 Increasing the tree belt width (i.e. the downwind extent of the canopy), increases the recapture in 

all three models in a very similar way (Figure 12e), whilst increasing the tree height has the effect of 

reducing the recapture (Figure 12f). This last effect may appear unexpected and requires 

interpretation of the different models. A taller tree canopy increases vertical mixing over the tree belt 

leading to more rapid dilution of NH3 concentrations in the LADD and FIDES models, which has the 

effect of reducing the deposition. In the case of the MODDAAS model, increased tree height has the 

effect of ‘moving’ the densest part of the canopy upwards and away from the NH3 plume, which for the 

base run was released at 2 m height, so that the plume passed under the model trees. Caution is 

therefore needed interpreting the results of this sensitivity test. Using MODDAAS as the most detailed 

of the models, it could also be shown a) that design of the woodland structure could increase the 

ammonia recapture of ammonia passing under the main canopy and b) that recapture of a plume the 

height of which was matched to the height of maximum canopy density, would increase with tree 

height.  

 Changing the LAI increases the deposition modelled by FIDES only slightly whereas for the LADD 

model the increase is proportional to the LAI (Figure 12g). This is because in FIDES it is the stomatal 

and cuticular resistances that are changed but in LADD it is the canopy resistance. For the MODDAAS 

model, increasing the LAI from 3 to 5 increases the recapture because there is a higher density of 

recapture surfaces but as the LAI is increased to 7, the canopy is getting too dense and the NH3 

plume is funnelled below the region of greatest density and therefore there is little change in the 

recapture.  

 The example simulations in Figure 12 shows that detailed models gives better insight than 

simplified models into the processes involved in local recapture by tree belt. The FIDES simulations in 

Figure 11 suggested that maximum recapture should be achieved by shading the emission from wind 

and ensuring an effective sink around it. Figure 12 confirms this statement but also gives precisions in 

what it means in terms of source location: the source should be located upwind of the densest part of 

the canopy in order for the plume not to pass below the crown of the canopy. 

5.4  Simulation of NHx deposition at landscape scales 

The question of integrating local recapture of NHx at regional and continental scale is a major 

concern in order to evaluate the weight of local to diffuse deposition. However, in order to integrate 

from the local scale to larger scales, there is the need to consider the intermediate “landscape scale”, 

at which the deposition to each individual hot spot can be aggregated to provide estimates of 

averaged NHx deposition at larger scales. Other information on NHx deposition can also be estimated 
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at this scale, such as the percentage area, which exceeds nitrogen critical load. This intermediate 

“landscape scale” is also the scale at which the abatement techniques can be reasoned as a whole. 

Asman et al. (2004) have modelled both the background deposition of NHx and NOy with the TREND 

model on a 5×5 km2 grid (van Jaarsveld, 1995), and the local NHx deposition using the DEPO1 model 

on a much finer scale (100×100 m2). Figure 13 shows the modelled sum of NHx and NOy, wet and dry 

deposition in this area. It can be seen that the background deposition is very large in this area (larger 

than 12.5 kg N ha-1 yr-1), but also that deposition around hotspots can reach up values larger than 

50 kg N ha-1 yr-1 over areas as large as 2 km, and even values larger than 100 kg N ha-1 yr-1 over 

smaller areas. Figure 13 also shows how patchy the NHx deposition is, which illustrates the difficulty of 

measuring the concentration/deposiition in such an area from only a few measurements. 

 

Figure 13. Sum of wet and dry deposition of NH3 and NOx and reaction products for Vejle County (domain 270 
km2) on a 100×100 m2 scale (kg N ha-1 yr-1), as modelled using the TREND model for background NHx and NOy 
deposition (all European sources) and the DEPO1 model for local NHx deposition. From Asman et al. (2004). 

 

In the UK, the LANAS (Landscape Analysis of Nitrogen and Abatement Scenarios) project carried out 

under the Global Nitrogen Enrichment (GaNE) programme of the NERC linked together four N flow 

models (farmyard, arable field, grazed field and atmospheric dispersion) to simulate the N flows and 
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interactions within a study area in East Anglia (Theobald et al., 2004). The study area consisted of 

arable land, rough grazing and intensive pig and poultry rearing. Figure 14 shows a map of the total N 

deposition flux for the study area highlighting the large predicted deposition fluxes near to the 

intensive pig and poultry rearing activities (in the east). These deposition rates were estimated by the 

LADD model. Since this model calculates NH3 dry deposition velocities based on the land cover type 

(using the parameters z0 and Rc), the deposition flux is influenced strongly by the land cover type. This 

is apparent in Figure 14 for a heathland (highlighted by the red oval) where the deposition flux is 

higher than that to the surrounding land cover types (arable and grassland). 

 

Figure 14: Map of NH3 dry deposition for an area of East Anglia (8 km x 12 km, domain 96 km2), England 
calculated by the LANAS model at a 25 m grid resolution (From Theobald et al.al., 2004).  

5.5 Main monitoring results. 

Duyzer et al. (2001) conducted a study with many passive NH3 samplers in four agricultural areas in 

The Netherlands. For this type of sampler continuous comparison with standard concentration 

measurement methods are needed. The standard deviation for the annually averaged concentration is 

1%-5% at a typical concentration of 20 µg NH3 m
3. The concentrations vary typically between 10 and 

40 µg NH3 m
-3 within a few kilometres within these areas. It was shown that when 8 evenly distributed 

samplers were placed in a 5x5 km2 area the accuracy in the average concentration for the whole area 

was better than 30%. This means that it is impossible to get an idea of the average NH3 concentration 

within a country from measurements at a few sites only. 

Velders et al. (2002) report on a project where the NH3 concentration was measured during one year 

with passive samplers, where 1 sampler was placed in each of the 15x15 km2 grid elements that were 

covering the whole Netherlands (159 sites). This project was started to obtain better information on the 

concentration patterns over the country. Kriging was used as a technique to interpolate the 
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concentration between the sites. The average annual concentration over the country was 6.6 µg m-3, 

whereas the average concentration of the stations that were continuously measuring with AMOR 

monitors was 7.8 µg m-3 for the same period. The error in duplo measurements at one site is about 1 

µg m-3. The error in the interpolation for The Netherlands as a whole is about 2.4 – 2.8 µg m-3. This 

means that the relative error in the concentrations is about 50-80% in the areas with low 

concentrations and 15% in the areas with the highest concentrations (15 µg m-3). The average NH3 

concentration in The Netherlands varied from 4.0 µg m-3 in autumn 2000 to 9.6 µg m-3 in May 2001. 

Locally there can be large influences of point sources leading to concentrations of between 20 and 

70 µg m-3. 

Smits et al. (2005) conducted a study in an agricultural area in The Netherlands to investigate potential 

discrepancies between modelled and measured NH3 concentrations and possible uncertainties in the 

emissions. In this study very detailed information farms and on activities on the farms as a function of 

time was collected during one year in a 3x3 km2 are, and some less detailed information for a larger 

surrounding area. With this information and meteorological measurements in this area a very detailed 

emission inventory (place, time) was made, which was used as an input to the OPS atmospheric 

transport and deposition model. At the same time the NH3 was measured continuously at two sites in 

this area using an AMOR ammonia monitor. During the same period the average NH3 concentration 

was measured during 14-day period at 50 sites within the area. Figure 15 shows how the measured 

and modelled average NH3 concentrations for the whole area compared with the modelled 

concentrations. One of the conclusions is that there is a large discrepancy in spring which probably 

could be caused by saturation of the vegetation with NH3 (a high compensation point) and maybe also 

by an underestimation of emission during application of manure in periods with high solar radiation. 

Although the emissions are not measured and hence there is uncertainty in the emission rates it could 

be worthwhile for modellers to have access to this data set. This is maybe possible in the future if the 

farmers would agree to that, which would mean that the data would become available in an 

anonymous form. 

  

Figure 15. Modelled (“berekend”) vs. measured (“gemeten”) area averaged concentrations for a 3x3 km2 area in 
The Netherlands, for the period July 2002 – September 2003 using the OPS model (Smits et al., 2005). 
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6 CONCLUSIONS AND RECOMMENDATIONS 

Hot spots may be defined as areas where intensive NH3 emissions occur, which are mainly farms and 

their surroundings, where grazing and manure application take place, as well as slurry spread fields. 

The emissions from hot spots depend mainly on the number of animals in the farm but are also 

dependent upon environmental conditions, especially temperature and wind-speed, which are 

important parameters to consider for modelling deposition near hot spots. Other nitrogen components 

may be emitted by farms, such as NOx, N2O, N2, VOC, or primary aerosols. Other reactive species 

(DMS, DMDS, H2S), also emitted by farms may interact with NHx deposition near hot spots. 

 Deposition of NHX within one kilometre from hot spots ranges from 2% to 60% of emitted NHx, and 

is mainly due to dry deposition of NH3, since wet deposition, in a temperate climate, is evaluated as 

less than 5% recapture of the emitted NHx. Moreover, photochemical reactions and chemical reactions 

with gaseous acids are unlikely to greatly affect local dispersion and deposition of NHx near hot spots.  

 Dry deposition of NH3 near hot spots results from a combination of turbulent dispersion, stomatal 

absorption, and non-stomatal deposition:  

• Turbulent dispersion depends upon the topography of the site, the shape of the farm buildings, 

the structures of the surrounding canopies, the height at which NHx is released into the 

atmosphere, the wind speed and atmospheric stability. Dry deposition is sensitive to all of 

these parameters. The height of release, or more generally the wind speed at the source 

height, is probably one of the most important parameter. However, little has been studied on 

the detailed turbulence surrounding the source and hence no definitive conclusions can be 

drawn onto which parameter is the most influential on dispersion in the case of farm buildings. 

In the case of emission from fields, there is less unknowns. 

• Deposition due to stomatal absorption is large, and hence the “green” LAI of vegetation 

surrounding hot spots, as well as the vegetation water stress are major parameters influencing 

NHx deposition.  

• Deposition of NH3 to external surfaces of plants is also a major influential process, which is 

also dependent upon the leaf surface and their wetness. Non-stomatal deposition can 

increase local NHx deposition by a factor of two or three.  

A range of models of local deposition of NHx exist, either based on Lagrangian or Eulerian dispersion 

models of different complexity. The NH3 deposition schemes range from deposition velocities to multi-

layer approaches, big-leaf being the most common scheme. Some of the models take account of wet 

and aerosols deposition, as well as chemical reactions in the gas phase. Their spatial scales range 

from 1 m downwind from the source to several kilometres, with models being more adapted for very 

short range and others more adapted to “meso-range” NHx deposition. Some of the models have been 

intensively validated against datasets that are available to the community. These models have proven 

their usefulness for studying the sensitivity of NHx deposition to environmental conditions as well as 
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the efficiency of abatement techniques. Some example of coupling of local scale NHx deposition 

models with larger scale chemistry models and GIS emission databases also exist.  

A range of method have been developed and proved adapted for long term monitoring of NHx in the 

vicinity of hot spots. These methods are advantageous if used in conjunctions with dispersion models 

as they can be used both for estimating deposition of NHx near hot spots and NHx emissions from the 

farm with inverse modelling. There is however no available routine method to estimate NHx dry 

deposition under local advection conditions.  

It should be noted that there a lack of systematic studies of NHx deposition near hot spots at the 

European scale, which could tell the magnitude of NHx recaptured near hot spots at such a scale. The 

scale is important in that it means a range of farm managements, ecosystems, and climates that 

spans over the whole Europe.  

From existing studies, it appears that the main uncertainties on estimating NHx recapture near hot 

spots are linked with: 

• Good estimates of hotspots sources and their seasonal and daily variability at larger scales. 

• Measurements of NHx dry deposition near hot spots to validate the local deposition models, 

which were, until now, mostly validated against monitored NH3 concentrations. 

• Modelling correctly night-time dispersion and deposition of NHx near hot spots. 

• Modelling the effects of farm buildings and tree belts of different shapes on the turbulent 

dispersion and the deposition of NHx. 

• Examining the potential saturation of the cuticular sink of NH3 under strong NH3 load and its 

subsequent de-saturation after rain events. 

• Parametrizing the stomatal compensation point of the vegetation over the season, and its 

possible evolution due to deposited NHx (and other compounds emitted from the farm). 

Getting more information on the relative emissions of other N compounds from hot spots nd the 

potential impacts of other reactive species emissions on NHx deposition near hot spots (sulphur 

compounds, acid compounds, …). 
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APPENDIX A: A SINGLE-LAYER MODEL FOR EXCHANGE WITH STOMATA AND 

CUTICULE 

This appendix gives the set of equations that describes the bi-directional exchange model of Figure 

4c. The equation for the flux for model in Fig. 14c can be derived easily by assuming that a canopy 

compensation point exists (ccanopy in e.g. kg m-3), which is linked to the stomatal resistance and the 

stomatal compensation point on the one hand and to the resistance for deposition to water layers rw 

(m s-1) on the other hand. The flux from the atmosphere to the canopy and including the soil is then: 

( ) ( )
( ) brefa

canopyrefair

ref
rzr

czc
zF

+

−
−=

)(
     [A1] 

The flux can then be split up in a flux to the stomata and a flux to the canopy (including the soil). The 

flux to the stomata is: 
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The flux to the canopy (including the soil is): 
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Mass conservation implicates that: 
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In these equations ccanopy can now be eliminated: 
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Note that this is the equation of Smith et al. (2000b) corrected for a typing error. 
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APPENDIX B: TWO-LAYER MODEL FOR EXCHANGE WITH THE STOMATA, 

CUTICULE AND THE GROUND  

This appendix gives the set of equations that describes the two-layer bi-directional model of Figure 4d. 

As with the single-layer model with stomatal and cuticular resistances the canopy compensation point 

ccanopy has to be eleminated by expressing it in compensation points and resistances (Nemitz et al., 

2001). In this model also a concentration cair(z0m) is needed which is the concentration in the air just 

above the canopy (kg m-3). The canopy compensation point can be found from (Nemitz et al., 2001): 

 

The total flux Ft (kg m-2 s-1) is: 
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The flux Fs from the canopy to the stomata is: 
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The flux Fw from the canopy to the cuticula is: 
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The flux Ff from the air just above the canopy to the canopy is: 
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The flux Fg from the air just above the canopy and the ground is: 
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In this equation cground is the compensation point at ground level (kg m-3), rac is the in-canopy 

aerodynamic resistance (s m-1) and rbg is the ground boundary layer resistance (s-1). Mass 

conservation implicates that: 

wsf FFF +=         [B6] 

and 

gft FFF +=         [B7] 

Which after little manipulation gives 
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In this equation rg = rac + rbg.  

An alternative expression for cair(z0m) can be obtained: 
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An equation for ccanopy can be simplified to yield: 
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Once ccanopy is known Fs and Fw can be found and then also the sum of them: Ff. From Ff then cair(z0m) 

can be found and then Ft and Fg can be calculated. The in-canopy resistance rac (s m-1) at height (d + 

z0m) (sum of the roughness length and the displacement height) is (Nemitz et al., 2000b): 
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where KH is the eddy diffusivity for heat (m2 s-1), which is also often taken to describe exchange of 

gases and particles. 
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where α (z) is a dimensionless height dependent constant (Nemitz et al., 2000b). 

For neutral conditions, Nemitz et al. (2000b) mention that Shuttleworth and Wallace (1985) provide the 

following equation, which only holds for neutral atmospheric conditions: 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−−

−
=+

c

m

c

c
m

h

zd
nn

dhkn

h
zd 0

0 1expexpα   [B13] 

where hc is the height of the canopy, k is the von Karman’s constant (dimensionless; value: 0.4) and n 

an exponential-decay constant (see e.g. Monteith and Unsworth, 1990). No information is apparently 

available on a parameterization for stable or unstable conditions. Nemitz et al. (2001) note that for 

unstable conditions (free convection) it is likely that scaling with w* would be more appropriate. 

The boundary layer resistance at ground surface rbg (s m-1) can be parameterized as (Shuepp, 1977): 



Background Document Working Group 3: UNECE Expert Workshop on NH3, Edinburgh 4-6 December 2006. 01/12/2006. 

page 56 / 59 

g

bg
ku

z
Sc

r
*

1

0ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

δ

       [B14] 

where Sc is the Schmidt number (dimensionless), δ0 is the distance above ground (m) were the 

molecular diffusivity equals the eddy diffusivity, and z1 is the upper height of the logarithmic wind 

profile that forms above the ground of which u*g/k is the slope. Nemitz et al. (2001) note that there are 

no comprehensive datasets for hc, α(z), u*g, δ0 and z1 for a wide range of plant species and vegetation 

stages. 
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APPENDIX C: IN-CLOUD SCAVENGING OF NH3 AND NH4
+ 

Although in-cloud scavenging of NH3 and NH4
+ is probably not a process that might be highly 

important for deposition of NHx near hot spots, a short description of its magnitude is given in this 

appendix. 

Due to the high solubility of NH3 in the acidic cloud droplets and the large surface to volume ratio, 

most NH3 in clouds will be taken up into cloud droplets within a few seconds. Aerosols of the size that 

contains most NH4
+ act as condensation nuclei, so most NH4

+ in clouds will also be found in cloud 

droplets. For these compounds the scavenging rate is determined by the removal rate of cloud water 

by precipitation. The in-cloud scavenging coefficient λi,NH3,NH4 for NH3 and NH4
+ is: 

78.04

,, 105.3
43 mmNHNHi I−×=λ   (for clouds with a temperature ≥0°C) [C1] 

mmNHNHi I4

,, 104.2
43

−×=λ   (for clouds with a temperature <0°C) [C2] 

The rainfall rate decreases with the cloud height. From the equations it can be seen that both NH3 and 

NH4
+ are removed at a somewhat higher rate by in-cloud scavenging in the lower part of the cloud 

than by below-cloud scavenging. 
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APPENDIX D: SHORT DESCRIPTION OF DISPERSION MODELS THAT ARE BE 

USED IN LOCAL DEPOSITION MODELS FOR NH3 

Two classes of dispersion models are often considered: the Eulerian models, which solve the time 

variation of a concentration field, and Lagrangian models, which follows the plume or the air column in 

space. Both Eulerian and Lagrangian approaches lead to a range of models from very simple 

(Gaussian-like models) to fairly complex models (CFD, Lagrangian Stochastic models). As NH3 

deposition near hot spots is large and evolves quickly with distance, it may be necessary to consider 

both dispersion within the canopy and the flow distortion due to the farm buildings and elements of 

vegetation, which may be treated with specific CFD codes. This section gives an overview of the 

existing dispersion models used or applicable to NH3 dispersion and deposition near hot spots. 

Gaussian-like models. Gaussian models (Gash, 1985), are a solution of the Advection-Diffusion 

Equation (ADE) with the assumption of constant wind speed (u) and diffusivity (Kz). Analytical 

solutions of the ADE that include variation of u and Kz with height are numerous e.g. (Smith, 1957; 

Philip, 1959; Huang, 1979; Wilson, 1982). There is existing analytical models including a deposition 

velocity (Chrysikopoulos et al., 1992; Lin and Hildemann, 1997), though these models are not well 

adapted for NH3 exchange, which is bi-directional. Other analytical models based on Lagrangian 

similarity, such as the (Horst and Slinn, 1984) model, are also well suited for modelling NH3 deposition 

over the short-range (Asman, 1998). However, some ill-defined parameters that need to be adjusted 

for different stability class make them less attractive. The approach proposed by (Raupach, 1989) is 

very interesting for within-canopy dispersion, but its use is less justified for above-canopy transfer. 

Other approaches, which gives similar results but are more flexible, consist in solving numerically the 

above-canopy advection-diffusion equation (Asman, 1998). The main limitation of the previous models 

is that they only consider above-canopy dispersion and hence cannot deal with side fluxes (De Jong 

and Klaassen, 1997),  

 Air column models. Air column models are hybrid models that follow the air column as 

Lagrangian models, and solve the diffusion vertically in the column in an Eulerian framework. They are 

also based on constant wind speed (the column velocity), but consider a diffusivity that evolves with 

height. The LADD model (Hill, 1998), the FRAME model (Singles et al., 1998), the TREND model 

(Asman, 1992) are all air column models. The main limitations of these models are as Gaussian-like 

models that they cannot deal with within side fluxes, but also that they poorly deal with lateral 

dispersion. 

 Within canopy dispersion models and CFDs. There is a great number of dispersion models that 

could potentially be used for modelling dispersion within the canopy and henceforth dispersion in a 

woodland near a farm building. These are first order Eulerian models e.g. (Zeng and Takahashi, 2000) 

which limits are that they are based on flux-gradient relationships, which may be broken due to 

intermittency of the turbulence within the canopy e.g. (Aylor et al., 1993). Second or higher order 

Eulerian models are used to overcome this problem e.g. (Poggi et al., 2004), though these introduce 
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new parameters which are uneasy to set for within canopy transfer. CFD models are among these 

models, and they can be used to model the flow distortion around buildings. Large Eddy Simulation 

models are probably the most adapted for within canopy transfer modelling, though they also need a 

parameterisation of the sub-grid-scale variances e.g. (Su et al., 1998). One main interest of Eulerian 

dispersion models is that they can predict both turbulence and concentration, as affected by canopy 

structure. 

The Lagrangian Stochastic (LS) are another class of models (Rodean, 1996) that can be used for 

modelling within canopy dispersion. They are well adapted to simulate non-diffusive fluxes such as 

encountered in a canopy (Wilson and Sawford, 1996). Their main weakness is that they need the 

turbulence field as input ; Hence a turbulence model is needed as input of LS dispersion models to 

simulate dispersion.  


