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Abstract 

Fertiliser nitrogen (N) contributes to ammonia (NH3) emissions, which European Union 

member states have committed to reduce. This study evaluated NH3-N loss from a suite of N 

fertilisers over multiple applications, and on gaining insights into the temporal and seasonal 

patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The 

fertilisers evaluated were: calcium ammonium nitrate (CAN), urea, and urea with the N 

stabilisers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT, 

and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was 

applied in five equal applications over the growing season at two grassland sites (one for 

MIP). Mean NH3-N losses from CAN were 85% lower than urea which had highly variable 

loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not 

decrease loss but NBPT caused a 78.5% reduction, and when combined with DCD, a 74% 

reduction compared with urea alone. Mean spring and summer losses from urea were similar, 

although spring losses were more variable with both the lowest and highest loss levels. 

Maximum NH3-N loss usually occurred on the second day after application. These data 

highlight the potential of stabilised urea to alter urea NH3-N loss outcomes in temperate 

grassland, the need for caution when using season as a loss risk guide and that urea 

hydrolysis and NH3-N loss in temperate grassland is rapid. Micrometeorological 

measurements focused specifically on urea are needed to determine absolute NH3-N loss 

levels in Irish temperate grassland.   

 

Key words: ammonia, volatilisation, urea, ammonium nitrate, inhibitors, grassland, fertiliser 

 

 



Introduction 

Global ammonia (NH3) emissions from fertiliser nitrogen (N) are estimated at 10 to 

12 Tg N/yr
 

(Beusen et al., 2008). These emissions are of concern from economic, 

environmental, and national policy perspectives. As addition of supplemental fertiliser N is a 

cornerstone of many agricultural systems N lost as NH3-N must be replaced, typically at an 

economic and environmental cost, in order to sustain agro-ecosystem productivity. Ammonia 

lost from agricultural systems may be re-deposited contributing to eutrophication and 

acidification of terrestrial and aquatic ecosystems (Sutton et al. 1992) and indirect emissions 

of nitrous oxide (N2O), a potent greenhouse gas. In terms of national policy, EU member 

states have committed to reducing NH3-N emissions under the National Emissions Ceiling 

Directive (EU, 2001).  

The use of urea in place of ammonium nitrate-based fertiliser has some potential for 

mitigating fertiliser N related N2O emissions (Dobbie & Smith, 2003). However, urea is 

vulnerable to NH3 volatilisation (Chambers & Dampney 2009). Promisingly N stabilised 

using N inhibitors can play a role in mitigating losses of NH3-N (Watson et al., 2009), N2O 

(Di et al., 2007) and nitrate
 
leaching (Dennis et al. 2012). These inhibitors can be divided into 

two groups: i) urease inhibitors and ii) nitrification inhibitors. Urease inhibitors reduce NH3 

volatilisation from urea by inhibiting the enzyme urease which catalyses urea hydrolysis. The 

urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) has been shown to reduce NH3 

loss from urea (Watson et al., 1990, 1994; Goos et al., 2013). The maleic and itaconic acid 

polymer (MIP) has been marketed globally and claims to be a urease and a nitrification 

inhibitor. However, a number of studies (Franzen et al., 2011; Goos et al., 2013) have shown 

that urea treated with MIP did not reduce NH3 loss from urea. Nitrification inhibitors, such as 

dicyandiamide (DCD), inhibit ammonia monooxygenase, which catalyses oxidation of 

ammonium (NH4
+
) to nitrite (Kim et al. 2012). Although effective for reducing N2O 



emissions and leaching, nitrification inhibitors may increase NH3 emissions. In a meta-

analysis, Kim et al. (2012) reported that the effect of DCD on NH3 emissions was 

inconsistent, with increased NH3 emissions in 26 studies, no change in 14 studies and 

decreased emissions in 6 studies. They linked nitrification inhibitor related increases in NH3 

loss to increasing soil pH and decreasing cation exchange capacity (CEC).    

Previous studies have evaluated NH3 loss from urea and urea with inhibitors, 

particularly in cropping systems; however field measurements in temperate grassland are 

more limited. To address this knowledge deficit, the current study assessed NH3-N loss from 

fertiliser formulations with and without N stabilisers over multiple applications.  

Materials and methods 

Site description and experimental design 

Experiments were conducted at grassland sites located at Hillsborough (HB), Co. 

Down, Northern Ireland (54°46′N; 6°08′W) and Johnstown Castle (JC), Co. Wexford, Ireland 

(52°17′N; 6°30′W). Hillsborough is a moderately drained loam classified as a Dystric Umbric 

Stagnosol (FAO, 2014) (45% sand, 33% silt, 22% clay, 11% organic matter, pH 5.6, CEC 

24.43 cmol
+
/kg). Johnstown Castle is a moderately drained loam classified as a Stagnic 

Cambisol (FAO, 2014) (52% sand, 34% silt, 14% clay, 7% organic matter, pH 5.8, CEC 

15.46 cmol
+
/kg). Swards were dominated by perennial ryegrass (Lolium perenne L.). 

Precipitation, ambient and soil temperature were measured by a meteorological station (ca. 

500 m from the study site). A HH2 moisture meter (Delta Devices, Burwell, Cambridge, 

England) was used to measure soil volumetric moisture content on site.  

Fertiliser treatments were applied in five equal split applications. Treatments were CAN, 

urea, urea+NBPT, urea+DCD, urea+NBPT+DCD and at JC only urea+MIP. All treatments 

were applied at 200 kg N/ha and both sites also included a urea 400 kg N/ha/yr treatment. 



The source of the urease inhibitor NBPT was Agrotain® which was coated onto urea 

granules at 660 ppm NBPT (on a urea weight basis). Koch Agronomic Services supplied the 

urea+DCD granules, where DCD had been added to urea at the molten stage at the rate of 

3.5% on a urea-N basis. Urea+DCD granules were coated with Agrotain® on site to make 

urea+NBPT+DCD. The source of MIP was commercially available urea treated with 

Nutrisphere®. A randomised block design with three replicates was used except for the urea 

400 kg N/ha/yr and urea+MIP treatments at JC, each of which had two replicates. Fertiliser 

treatments were applied between March and September 2014 (Figures 1 and 2).  

Ammonia measurements 

Ammonia loss from the treatments was measured using a system of wind tunnels 

similar in design to Lockyer (1984) and Meisinger et al. (2001). In brief, each wind tunnel 

unit consisted of a 0.5 m x 2 m polycarbonate canopy with an integrated inlet air sampling 

line, an axial fan to draw air through the canopy, an anemometer to measure air speed, which 

was 0.9 to 1.0 m/s at the anemometer, and an outlet air sampling line. A control box housed a 

diaphragm pump for air sampling, a flow meter and a critical orifice for both air sampling 

lines. Inlet and outlet air NH3-N was measured by passing through individual conical flasks 

containing 100 ml of 0.02 M orthophosphoric acid. If the difference in concentration between 

the inlet and outlet acid trap was negative the loss was set to zero. The NH3-N flux rate was 

calculated by dividing the emission by the exposure time. 

Measurements were conducted for between 14 and 19 days following each fertiliser 

application (Figure 1 and 2) and in all cases until NH3-N emissions had returned to 

background levels. Each plot (2.5 m by 2.5 m) could accommodate wind tunnel moves 

sequentially through three positions on each acid trap change occasion to minimise 

interference of the wind tunnel canopy on precipitation reaching the plots. The fourth move 

returned the wind tunnel to its starting position. Acid solutions were changed at each wind 



tunnel move and NH4
+
-N content was determined colormetrically using a QuAAtro 3 (Seal 

Analytical, Fareham, U.K.) at HB and an Aquakem 600A Analyser (Thermo Electron OY, 

Vantaa, Finland) at JC.  

Data analysis and interpretation 

The acid trap change period varied during the study, consequently the time-integrated 

hourly flux (g N/ha/hr) (Engel et al., 2011) is presented with the flux indicated at the mid-

point of the sampling period in Figures 1 and 2. A repeated measures analysis of variance 

was conducted for both i) the time-integrated flux of NH3-N and ii) the percentage NH3-N 

loss using the PROC MIXED procedure of SAS (2002-2010, SAS Institute Inc., Cary, NC, 

U.S.A.). The sources of variation in the model were time (of sampling in the case of time-

integrated NH3-N flux or application date in the case of per application loss) and fertiliser N 

treatment. A generalised linear mixed modelling approach was used to test for a fertiliser N 

treatment effect on annual NH3-N loss using the PROC GLIMMIX procedure of SAS 9.3. 

Differences between fertiliser treatments were determined using the F-protected least 

significant difference (LSD) test at the 95% confidence level.  

Results and discussion 

Ammonia loss from CAN and urea 

The mean NH3-N loss from CAN of 4.2% was higher than the mean emission of 0.8% 

reported by Black et al. (1985). Higher losses from CAN in the present study may be partially 

attributable to more rapid dissolution of the calcium carbonate (CaCO3) in CAN, which 

causes a small initial rise in soil pH around the granule (Black et al., 1985). In contrast, the 

average loss from urea was much higher at 25.1% for HB and 30.6% for JC and spanned a 

wide range (7.5 to 52.8%) across the five 40 kg N/ha applications. While these average 



values are similar to the 30% reported by Chambers & Dampney (2009) in UK grassland, 

also using wind tunnels, they are much higher than those of Black et al. (1985) who reported 

average loss over four seasons of 11.9% for urea. Black et al. (1985) state that, due to the 

measurement method these losses were likely near the upper limit for grassland in 

Canterbury, New Zealand. Similarly, we suspect that the losses recorded by the wind tunnels 

in the current study are at the upper limit of losses for Irish temperate grassland. One reason 

is that in a parallel study (Harty et al., 2015) there were similar apparent N fertiliser 

recoveries in herbage of 65% for CAN and 60% for urea. Also the average urea-N losses of 

25.1 to 30.6% are similar to the 27% loss measured by Schwenke et al. (2014) from urea 

applied on neutral to alkaline grassland with limited or no precipitation for two weeks after 

application, conditions expected to promote NH3-N loss. Our sites were acidic (pH 5.6 at JC 

and 5.8 at HB) and significant precipitation was a feature of many periods following fertiliser 

application. It is known that NH3-N losses measured by wind tunnels can differ from 

integrated horizontal flux (IHF) because wind tunnels interfere with wind speed and 

precipitation in particular. Schwenke et al. (2014) used the IHF micrometeorological 

approach. Ryden & Lockyer (1985) demonstrated that where precipitation was not a factor, 

urea NH3-N loss measured by wind tunnels differed from a micrometeorological approach 

when the wind speed difference between the wind tunnel canopy and external conditions 

varied by >20%. Additionally, Ryden & Lockyer (1985) found that wind tunnels can 

overestimate NH3-N losses by a factor of 2.4 to 6 during periods of rainfall. In the current 

study, wind tunnels were moved daily to minimise effects on rainfall although such effects 

are potentially not completely excluded. Wind tunnels were chosen for the current study 

because they permitted inter-comparison of a large suite of fertilisers in replicate, which 

would not have been practical using IHF which requires homogeneous fetch and relatively 

large land areas.     



Temporal pattern of ammonia loss from urea  

The maximum rate of NH3-N loss from urea typically occurred on the second day 

after urea application (8 out of 10 cases), but in all cases within < 3 days (Figure 1 and 2). 

This indicates rapid hydrolysis of urea in Irish temperate grassland, in agreement with 

Watson & Miller (1996) who reported that 1.3% of N remained in the urea form in the soil 

1.75 days after application. Black et al. (1985) also reported a one to three day delay in 

maximum loss rate from urea in New Zealand pasture. Grass and thatch is a zone of very high 

urease activity, 18 to 30 times higher than the soil (Torello & Wehner, 1983), which 

promotes rapid hydrolysis of urea in the presence of adequate moisture. Moisture limitation 

can inhibit urea hydrolysis and NH3-N loss (Ferguson & Kissel, 1986) however such 

limitation is rare in Irish grasslands even in the absence of significant precipitation e.g. JC on 

March 10 (Figure 1) and HB on September 8 (Figure 2). In these examples, appreciable NH3-

N loss occurred rapidly (within <2 days) although precipitation was limited or absent. Urea is 

a hygroscopic substance with a critical relative humidity of 80% at 20
o
C (Adams and Merz, 

1929), a humidity level frequently surpassed in Irish grassland. In the two examples above 

mean relative humidity on the days of application was c. 87%. Additionally, dew in the 

evening and/or mornings could have provided additional moisture.  

Effect of precipitation  

Urea granules absorb moisture, therefore hydrolysis and resultant NH3-N loss 

proceeds quickly with maximum loss rates occurring within 3 days in this Irish temperate 

grassland study. Holcomb et al. (2011) reported that 14.6 mm irrigation immediately 

following application reduced urea NH3-N losses by 90% however these levels were not 

reached in the present study. The highest precipitation level on the day post application was 

5.8 mm on May 6 at HB and the resultant loss was 8% (Table 1), much lower than the 



average loss of 25.1% at this site. This initial 5.8 mm was followed by daily precipitation of 

1.8 to 3.6 mm/day for three days and 11.6 mm on the fifth day. A similar rainfall input of 5.4 

mm on July 7 at JC followed by 0.6 mm on the day after produced a loss of 26% (Table 1). 

Temperatures were warmer in July than in May, however if NH3-N loss reduction only is the 

goal, the importance of precipitation approaching 15 mm on the day of application or 

sustained lower levels of precipitation over several days is apparent. The trade-off between 

NH3-N abatement and potential N leaching and/or runoff risk potential requires evaluation. 

The highest losses occurred after the March 10
 
application at JC under cool air and 

soil temperatures (Figure 1), with peak loss from urea occurring on the third day. There was 

little precipitation in the week following March 10, thus loss was not suppressed (Figure 1) 

and losses continued at appreciable levels over at least seven days. Similarly, in an incubation 

study using Irish soils, McGarry et al. (1986) observed high losses at 8
o
C with maximum loss 

> 3 days following application and loss rates remaining high for up to 9-16 days. 

Accordingly, large NH3-N losses from urea can occur over time in temperate grasslands when 

precipitation does not arrest loss even under cooler conditions as was seen following the 

March 10 application at JC. This finding is in agreement with Engel et al. (2011) who 

showed that large NH3-N losses can occur from urea applied to wheat stubble in Montana 

under cold or frozen conditions.  

However, the effect of precipitation is not straightforward; McInnes et al. (1986) 

previously reported that small precipitation inputs enhance rather than suppress loss. 

Accordingly the minor precipitation levels observed at JC (<0.3 mm/day) in the week 

following March 10 (Figure 1) are likely to have promoted loss, thus at least partially 

explaining very high loss at this site. The implication is that the timing, volume, and duration 

of precipitation following urea application all affect the influence of precipitation on urea 

NH3-N loss. While precipitation patterns make this difficult to achieve farmers can maximise 



suppression of NH3 loss from urea by applying shortly before the onset of appreciable and 

sustained precipitation. Development of more specific guidance based on a larger dataset is 

warranted. 

Seasonality  

Traditional advice in Ireland that urea is less vulnerable to loss of NH3-N in spring 

due to cooler temperatures is supported by the HB data with average loss of 32.3% in 

summer and 14.5% in spring. Conversely, the average NH3-N loss at the JC site was 25.3% in 

summer and 39% in spring. Temperatures (Figure 1 and 2) and soil moisture (Table 1) were 

broadly similar between sites in spring yet losses were very different. The notable difference 

was the occurrence of almost daily precipitation following urea application at HB in spring 

(Figure 2) and the near absence of precipitation in the first two days following application at 

JC. The high losses in spring are compatible with McGarry et al. (1987) whose laboratory 

study using Irish soils showed that appreciable NH3-N loss can occur not only from 

warm/cool-dry [18/8°C, 35% field capacity (FC)] but even from cool-wet (8°C, 85% FC) 

soils. As discussed earlier, important differentiating factors in spring loss outcomes appear to 

be time until precipitation onset and precipitation persistence.  

Previous researchers have also noted that the seasonal effects are not pronounced. 

Black et al. (1985) noted no marked seasonal pattern of NH3-N loss from urea in New 

Zealand grassland with 13.1, 15 and 11.2% from a summer, autumn and winter application, 

respectively, although there was a slight tendency for lower loss in spring at 10%. We also 

observed this slight tendency with average loss of 26.8% in spring and 28% in summer but 

spring NH3-N losses were more variable (8 to 53%) than summer losses (20 to 33%). What is 

clear from this study is that NH3-N loss from urea can be a significant issue in both spring 

and summer.  



Influence of N stabilisers  

Nitrification inhibitors can potentially reduce both N2O emissions (Smith et al., 2012; 

Chen et al., 2010) and nitrate leaching (Di & Cameron, 2005; Díez-López et al., 2008) whilst 

increasing plant N use efficiency (Abalos et al., 2014). Nitrification inhibitors may also affect 

NH3-N loss from urea, although Kim et al. (2012) reported that the effect was inconsistent. 

The current data show that this is also an issue in temperate grassland, with DCD 

significantly increasing NH3-N loss at JC at three applications (by 15.8% to 23.9 percentage 

points, Table 1) and having no effect at two applications. The cumulative effect was a 36% 

increase in NH3-N loss attributable to using DCD (Table 2). Aisling et al. (2008) reported 

that NH4
+
 remains in the soil longer when a nitrification inhibitor is used, with approximately 

40% more NH4
+
-N in the soil one day after application when DCD was used with urea. Fox 

& Bandel (1989) suggested that a reduction in nitrification by DCD reduces soil acidification, 

thereby prolonging the pH spike caused by hydrolysis, thus increasing the period of NH3-N 

emission. Gioacchini et al. (2002) suggested that maintaining NH4
+
-N in the soil causes a 

priming effect mineralising soil organic N. At JC, there is evidence of a more protracted 

period of NH3-N loss from the DCD treated urea when losses increased significantly i.e. 

following the March 10, April 28 and August 18 applications (Figure 1). A longer duration of 

emission from DCD treated urea is compatible with the suggestions that NH3-N remains in 

the soil for longer and that the soil pH peak is prolonged, although this could not be 

confirmed in the current study.  

In contrast, a significant decrease in NH3-N loss in four out of five applications was 

observed for urea+DCD at HB, with an annual mean loss reduction of 45% compared with 

urea only (Table 2). A meta-analysis by Kim et al. (2012) also reported a limited number of 

cases where DCD decreased NH3-N emissions but the reduction was much lower than that 

observed at HB. One possible mechanism may be associated with non-target effects of DCD 



on the soil nitrogen mineralisation-immobilisation turnover (MIT) at HB. In a field study on 

MIT at HB McGeough et al. (2014) observed significant but inconsistent effects of DCD on 

MIT including net immobilisation of N. Furthermore, Ernfors et al. (2014) in a laboratory 

study with slurry found that the effects of DCD on MIT varied between soils. Increased net 

NH4
+
-N immobilisation could, therefore be a possible mechanism for reduced NH3 loss with 

urea+DCD. However, further detailed process studies would be needed to understand this 

mechanism. It is clear that use of DCD adds to the NH3-N loss uncertainty associated with 

using urea as its effects on loss were so variable. With regard to the non-significant effect of 

DCD observed on June 3 and July 7 at JC and on May 6 at HB (Table 1) this was associated 

with lower initial peaks in NH3-N loss from urea and the early onset of precipitation.  

The urease inhibitor NBPT was effective in reducing NH3-N emissions from urea in 

nine out of ten split applications (Table 1). For the single application where NBPT did not 

produce a significant reduction (May 6 2014 at HB) NH3-N emissions from urea were not 

significantly different from CAN because of precipitation following application. Averaged 

across the two sites, NBPT reduced NH3-N emissions from urea by 78.5% which is similar to 

Chambers & Dampney (2009) who reported an average 77% reduction in UK field studies 

and Watson et al. (2008) who found on average a 79% reduction in laboratory studies with 

granular formulations (at 500 mg/kg NBPT).  

When the urease inhibitor NBPT was included with urea+DCD, NH3-N losses were 

74% lower than for urea (Table 1). This is similar to the 78.5% reduction when the urease 

inhibitor was used alone, thus NBPT inclusion with DCD may be a strategy for overcoming 

the variable NH3-N loss responses associated with DCD.  

MIP is a co-polymer of maleic and itaconic acid which is marketed as both a urease 

and nitrification inhibitor. It was evaluated at JC only and produced the same loss as urea in 



four out of five applications and a significantly higher loss following the August 18 

application. Averaged over the five applications there was no significant difference in 

cumulative NH3-N loss between urea and urea+MIP. There is little information on the 

efficacy of MIP in temperate grassland  However, Goos et al. (2013) did not find MIP  to be 

an effective inhibitor of soil or jack bean urease and a meta-analysis by Chien et al. (2014) 

found that urea+MIP did not provide a significant average plant yield response above urea.  

Implications for ammonia inventories  

Firstly, this study has shown that CAN has low and consistent NH3-N loss across a 

range of conditions in temperate grassland (Table 1). Thus dependable estimates of national 

loss can be made based on the quantities applied irrespective of season of application or 

weather patterns within a given year. Secondly, urea usage brings challenges because its use 

in place of CAN will increase national NH3-N emissions. The calculation of this increase is 

not straightforward because urea emissions are strongly influenced by climatic conditions 

following application. In the present study, NH3-N loss from urea varied by 45 percentage 

points; moreover weather patterns can affect the volume of urea applied in conditions 

favouring loss. Thirdly, an application rate effect on NH3-N loss from urea may be expected; 

in the present study this rate effect was detectable at the 95% confidence level in four out of 

ten cases (Table 1). Averaged across application timings, doubling the urea N rate increased 

the annual NH3-N loss rate by 31% and 27% at JC and HB, respectively. Applying a NH3-N 

loss factor to the nationally utilised volume of urea, to the exclusion of the rate effect will 

introduce added uncertainty to loss estimates. Fourthly, the present study demonstrated that 

the NH3-N abatement potential of NBPT was on average 78.5% when used with urea alone or 

74% when used in combination with the nitrification inhibitor DCD and that MIP had no 

significant effect on NH3-N loss. This is important information because the use of urea 



with/without inhibitors is a potential strategy for reducing national N2O emissions which 

needs to be implemented without causing large increases in NH3-N emissions.  

Whilst this study using wind tunnels has provided comparative data on ammonia 

emissions for a range of fertiliser strategies, there is a lack of quantitative data for urea 

applied to temperate Irish grasslands which could be obtained using micrometeorological 

techniques. In the context of a national ammonia emission ceiling there is a need to address 

this knowledge gap.  

 

Conclusions 

The use of urea poses challenges at both local management and national inventory scales and 

will increase ammonia loss compared with CAN. Maximum NH3-N loss rates from urea 

occur quickly in Irish temperate grassland (within two to three days); consequently, to reduce 

loss appreciably, it is desirable to apply urea shortly before sustained precipitation is forecast 

where possible. One site had higher losses in spring and the other higher losses in summer 

owing to environmental conditions but average losses were similar between seasons, 

highlight the importance of having large multi-site databases for generation of general advice. 

The urease inhibitor NBPT effectively abates NH3-N loss from urea when used with or 

without a nitrification inhibitor. This study has provided information on the abatement 

potential of a suite of N fertiliser options, however there is an important knowledge gap 

regarding absolute levels of NH3-N loss from urea in Irish grassland which could be 

addressed by a campaign of micrometeorological measurements. Such knowledge is of 

critical importance in the context of national commitments to reduce NH3-N loss whilst 

growing the agri-food sector.   
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Table captions 

Table 1 Ammonia (NH3) loss as affected by fertiliser N treatment for each application date at 

Johnstown Castle and Hillsborough sites. 

Table 2 Annual ammonia (NH3) loss as measured by wind tunnels and the change (Δ) in loss 

compared with the urea 200 kg N/ha rate for the other treatments. N applied to grassland N 

input in five equal split applications (40 or 80 kg N/ha). 

 

Figure captions 

Figure 1 Hourly ammonia (NH3) emissions by fertiliser N treatment, daily precipitation and 

mean daily air temperature for each fertiliser N application date at the Johnstown Castle site. 



 



Figure 2 Hourly ammonia (NH3) emissions by fertiliser N treatment, daily precipitation and 

mean daily air temperature for each fertiliser N application date at the Hillsborough site.  



  



Table 1 Ammonia loss as affected by fertiliser N treatment for each application date at the 

Johnstown Castle and Hillsborough sites. 

Site  Johnstown Castle Hillsborough 

Season  Spring Summer Spring Summer
b 

Fertiliser application 

date 

 Mar 

10 

Apr 

28 

Jun 

3 

Jul 

7 

Aug 

18 

Mar 

24 

May 

6 

Jun 

9 

Jul 

28 

Sept 

8
 

Volumetric moisture 

0-5cm on day after 

application (%) 

 45.4 37.4 34.4 28.8 27.5 46 41.7 24.9 16.8 25.5 

Treatment N rate/ 

application 

(kg N/ha)
 

NH3-N loss (% of applied N) 

CAN 40 5 e
a
 7 c 2 b 4 c 2 c 4 bc 2 b 3 d 4 b 8 b 

Urea 40 53 c 25 b 20 a 26 a 30 b 21 a 8 b 33 b 31 a 33 a 

Urea 80 68 ab 38 ab 24 a 24 a 43 a 14 ab 19 a 49 a 34 a 43 a 

Urea+NBPT 40 15 de 6 c 5 b 9 bc 6 c 2 c 2 b 4 d 4 b 9 b 

Urea + DCD 40 77 a 42 a 22 a 22 a 45 a 9 bc 7 b 20 c 13 b 19 b 

Urea+NBPT+DCD 40 18 d 6 c 4 b 5 c 8 c 6 bc 2 b 7 d 6 b 11 b 

Urea+MIP 40 55 bc 34 ab 16 ab 21 ab 47 a - - - - - 
a Treatments with different letters within columns are different according to F-protected LSD test 

(P<0.05). 
b
 for the purposes of seasonal comparison the conditions following the Sept 8 application were 

considered close to those of summer and loss did not differ from summer at HB 

  



Table 2 Annual ammonia loss as measured by wind tunnels and the change (Δ) in loss 

compared with the urea 200 kg N/ha rate for the other treatments. N applied to grassland N 

input in five equal split applications (40 or 80 kg N/ha). 

Site  JC HB JC HB 

Treatment N rate Total NH3-N loss Δ NH3-N loss 

 (kg/ha/yr) 

 
(% of applied) 

(%Δ from urea 200 

kg N/ha) 

CAN. 200 4.1 d
†
 4.2 bc -87 -83 

Urea 200 30.6 c 25.1 a   

Urea 400 40.0 ab 32.0 a 31 27 

Urea + NBPT 200 8.2 d 4.0 c -73 -84 

Urea + DCD 200 41.6 a 13.7 b 36 -45 

Urea + NBPT + DCD 200 8.1 d 6.5 bc -74 -74 

Urea + MIP 200 35.1 bc - 15 n.s. - 
† 

Treatments with different letters within columns are different according to F-protected LSD test 

(P<0.05). 

n.s. not significant 
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