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SHORT COMMUNICATION

Ammonia oxidation and
ammonia-oxidizing bacteria and archaea
from estuaries with differing histories

of hypoxia

Jane M Caffrey', Nasreen Bano?, Karen Kalanetra*® and James T Hollibaugh?
'Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, USA
and *Department of Marine Science, University of Georgia, Athens, GA, USA

Nitrification, the oxidation of NH;,” to NO; and subsequently to NO;, plays a central role in the
nitrogen cycle and is often a critical first step in nitrogen removal from estuarine and coastal
environments. The first and rate-limiting step in nitrification is catalyzed by the enzyme ammonia
monooxygenase (AmoA). We evaluate the relationships between the abundance of ammonia-
oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) amoA genes; potential nitrification
rates and environmental variables to identify factors influencing AOA abundance and nitrifier
activity in estuarine sediments. Our results showed that potential nitrification rates increased as
abundance of AOA amoA increased. In contrast, there was no relationship between potential
nitrification rates and AOB amoA abundance. This suggests that AOA are significant in estuarine
nitrogen cycling. Surprisingly, more of the variability in potential nitrification rates was predicted by
salinity and pore water sulfide than by dissolved oxygen history.
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The long-held view that ammonia oxidation was
restricted to relatively few genera in B- and v-
Proteobacteria has changed following the discovery
that amoA occurs in Crenarchaeota (Francis et al.,
2005, 2007; Treusch et al., 2005; Beman and Francis,
2006). In addition, a Crenarchaeota, Nitrosopumilus
maritimus, has been isolated that is capable of
nitrification and contains the amoA gene (Konneke
et al., 2005). However, little is known about whether
ammonia-oxidizing archaea (AOA) are significant
nitrifiers in marine and estuarine environments.
Critical environmental variables known to affect
nitrification rates include temperature (Kaplan,
1983; Henriksen and Kemp, 1986), salinity (Jones
and Hood, 1980; Rysgaard et al., 1999), dissolved
oxygen (DO) concentrations (Kaplan, 1983; Henrik-
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sen and Kemp, 1986), NH," availability (Jones and
Hood, 1980; Kaplan, 1983; Henriksen and Kemp,
1986), light (Ward, 2000) and sulfide concentrations
(Joye and Hollibaugh, 1995).

We measured potential nitrification rates; char-
acteristics of bottom water and sediments; and
abundance of ammonia-oxidizing bacteria (AOB)
and AOA amoA genes in six different estuaries at
multiple sites (Supplementary Table 1). Three
estuaries were sampled repeatedly (Supplementary
Table 1). Sampling sites differed in salinity of
overlying water; and in sediment chlorophyll a,
extractable NH," and sulfide concentrations of
sediment pore water. Bottom water DO variability
ranged from sampling sites that were often hypoxic
(DO <2mgl™) to sites that never went hypoxic
(Supplementary Table 1).

The abundance of AOA amoA genes was signifi-
cantly higher than AOB amoA (Figure 1; t-test
P=0.001). AOB amoA dominated only in samples
from Weeks Bay, particularly at the Fish River site
(Figure 1 inset). Log abundance of AOA amoA and
AOB amoA was significantly correlated with one
another (r=0.56, P=0.001; Supplementary Table 2).
We found that AOA amoA genes were more
abundant, often as much as 80 times greater than
AOB amoA genes. However, this relationship was
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Figure 1 Abundance of amoA genes for ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) normalized relative
to prokaryotic DNA for six different estuaries (see Supplementary Table 1). The relative abundance of amoA genes is expressed by
normalizing amoA gene abundance to the number of copies of prokaryotic (bacteria + archaea) 16S TRNA genes in each sample. A one-to-
one line is included for reference. Inset shows abundance of amoA genes for AOA and AOB relative to prokaryotic DNA for Weeks Bay.

not consistent, with one of the estuaries having a
higher abundance of AOB amoA than AOA amoA.
Our results contrast with previous studies showing
that AOAs were two to three orders of magnitude
more abundant than AOBs in the open ocean
(Wuchter et al., 2006; Mincer et al., 2007) and in
soils (Leininger et al., 2006).

Potential nitrification rates were significantly,
positively correlated with AOA amoA gene abun-
dance in samples from Pensacola Bay and Sapelo
Island (Figure 2). There was no relationship between
potential nitrification and abundance of AOB amoA
genes at any site (P>0.13 at all sites). Across all
sites, abundance of AOA amoA genes was positively
correlated with salinity (r=0.51, P=0.04), while
AOB abundance was not (r=0.16, P=0.39). Salinity
at the study sites ranged from 0 to 38, with two sites
being relatively oligohaline, while two sites were
euryhaline (Supplementary Table 1). Abundances of
both AOB and AOA amoA genes were greatest at
low temperatures (Supplementary Table 2). AOA
amoA was negatively correlated with pore water
sulfide (r=-0.46, P=0.02). Potential nitrification
rates were not significantly correlated with any
single environmental variable. However, a multiple
regression model revealed that potential nitrifica-
tion could be best predicted by sediment chloro-
phyll a, salinity, bottom water DO and AOA amoA
gene abundance, with sediment chlorophyll a
explaining the most variability and AOA amoA
explaining the least (Supplementary Table 3;
R*=0.51, P=0.001). The conditions leading to the
highest rates of potential nitrification occurred
when salinity and bottom water DO were low, and
sediment chlorophyll @ and AOA amoA abundance
were high. In contrast to previous studies, potential
nitrification rate was not related to AOB amoA
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Figure 2 AOA amoA abundance normalized to prokaryotic DNA
versus potential nitrification (PN) in micromoles per gram,, per
day, labeling same as Figure 1. Least-squares regression lines are
shown for Pensacola Bay (r=0.66, P=0.01) and Sapelo Island
(r=0.80, P=0.003).

abundance (Cebron et al., 2003; Dollhopf et al.,
2005).

Salinity is important in controlling the abundance
of AOB (Stehr et al., 1995; Cebron et al., 2003) and
nitrification rates (Rysgaard et al., 1999; Cebron
et al., 2003), with higher abundances of AOB and
greater nitrification rates in freshwater than marine
end-members. We were surprised that the relation-
ship between potential nitrification rates and AOA
amoA abundance was not stronger as was observed
in Wuchter et al. (2006). This may be due to the
small-scale spatial heterogeneity of sediments com-
pared to the open ocean. Because potential nitrifica-
tion rates are measured under optimal conditions,
we expected rates to scale with abundance of the
nitrifying community. This suggests that environ-
mental variables related to salinity, DO and sedi-
ment chlorophyll a are as and sometimes more
important than genetic potential in controlling
potential nitrification rates.
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Both phytoplankton and microphytobenthos can
contribute to sediment chlorophyll a concentrations
in shallow, photic estuarine sediments. It represents
a labile source of organic nitrogen, which is then
mineralized to NH, . Alternatively, the relationship
between chlorophyll a and potential nitrification
may result from microphytobenthos and nitrifiers,
both responding to the same environmental condi-
tions, such as the supply of NH,. Our results
suggest that nitrification may be maximized when
DO is present and labile organic matter is high, but
pore water sulfide is low, similar to results found in
experimental microcosms (Caffrey et al., 1993).
Furthermore, our findings suggest that AOA rather
than AOB are responsible for much of the nitrifica-
tion in estuarine sediments as has also been
observed in the Black Sea (Lam et al., 2007).
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