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Abstract

Background: The amniotic fluid (AF) cell-free transcriptome is modulated by physiologic and pathologic

processes during pregnancy. AF gene expression changes with advancing gestation reflect fetal development and

organ maturation; yet, defining normal expression and splicing patterns for biomarker discovery in obstetrics requires

larger heterogeneous cohorts, evaluation of potential confounding factors, and novel analytical approaches.

Methods: Women with a normal pregnancy who had an AF sample collected during midtrimester (n = 30) or at term

gestation (n = 68) were included. Expression profiling at exon level resolution was performed using Human Transcriptome

Arrays. Differential expression was based on moderated t-test adjusted p< 0.05 and fold change > 1.25; for differential

splicing, a splicing index > 2 and adjusted p < 0.05 were required. Functional profiling was used to interpret differentially

expressed or spliced genes. The expression of tissue-specific and cell-type specific signatures defined by single-cell

genomics was quantified and correlated with covariates. In-silico validation studies were performed using publicly

available datasets.

Results: 1) 64,071 genes were detected in AF, with 11% of the coding and 6% of the non-coding genes being

differentially expressed between midtrimester and term gestation. Expression changes were highly correlated with those

previously reported (R > 0.79, p < 0.001) and featured increased expression of genes specific to the trachea, salivary glands,

and lung and decreased expression of genes specific to the cardiac myocytes, uterus, and fetal liver, among others. 2)

Single-cell RNA-seq signatures of the cytotrophoblast, Hofbauer cells, erythrocytes, monocytes, T and B cells, among

others, showed complex patterns of modulation with gestation (adjusted p < 0.05). 3) In 17% of the genes detected, we

found differential splicing with advancing gestation in genes related to brain development processes and immunity

pathways, including some that were missed based on differential expression analysis alone.
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Conclusions: This represents the largest AF transcriptomics study in normal pregnancy, reporting for the first time that

single-cell genomic signatures can be tracked in the AF and display complex patterns of expression during gestation.

We also demonstrate a role for alternative splicing in tissue-identity acquisition, organ development, and immune

processes. The results herein may have implications for the development of fetal testing to assess placental function

and fetal organ maturity.

Keywords: Cell-free RNA, Differential splicing, Differential expression, Single-cell genomic signature, Tissue-specific

signature, Gestational age, Maternal obesity, Fetal sex

Background
Amniotic fluid (AF) provides mechanical protection to

the developing fetus and has important nutritional and

immunologic roles [1–3]. Given that AF is in direct con-

tact with the placenta and fetal membranes, surrounding

the fetus, while passing through several fetal cavities (e.g.

gastrointestinal and respiratory tracts), it is expected that

its molecular composition is both reflective of and con-

tributes to fetal wellbeing [4–6].

For decades, AF sampled through transabdominal

amniocentesis has been used to assess the fetal karyo-

type [7–11], lung maturity [12–15], and presence of

inflammatory conditions, such as intra-amniotic infec-

tion and sterile intra-amniotic inflammation [16–82]. Al-

though the ultimate goal is to develop fetal testing via

non-invasive sampling, such as urine or maternal blood,

the advantages of AF for biomarker discovery have often

been recognized [83–87].

Among the omics platforms used to study AF (see

Kamath-Rayne et al. [88] for a review), the analysis of

cell-free mRNA (cfRNA) has the advantage of being eas-

ier to profile than its proteomics [45, 89, 90] and meta-

bolomics [91–96] counterparts. The AF cfRNAs are

thought to be contributed directly by the fetus and by

apoptotic amniocytes [97] and have been shown to be al-

tered by physiologic and pathologic factors such as ges-

tational age [83, 85, 98], fetal sex [83], maternal obesity

[99], genetic syndromes [100–102], and neonatal co-

morbidities [85] (see Zwemer and Bianchi for a review

[97]). Of all the factors previously reported to be

reflected in the AF transcriptome, advancing gestation

seems to have the most dramatic effect on the AF tran-

scriptome considering the number of genes differentially

expressed. AF gene expression changes with gestational age

have been associated with cell types found in the intrauter-

ine environment and with the development of multiple

organ systems [78, 85, 98, 103]. These results point to the

possible use of the AF transcriptome to complement fetal

lung maturity evaluation [85, 98] when elective delivery

prior to term is considered, and also to discover biomarkers

for the ‘great obstetrical syndromes’ [104].

Currently, several limitations exist in defining a refer-

ence of gene expression and splicing patterns during

gestation in normal pregnancy based on publicly avail-

able data. Chief among them is the rather limited sample

size and use of measurement platforms that do not allow

assessment of non-coding RNAs and splicing patterns.

Moreover, while previous studies considered multiple

functional databases and tissue-specific gene sets to in-

terpret differentially expressed genes in AF [85, 98], de-

tailed signatures of specific cell-types were not readily

available. Recently, single-cell genomics studies enabled

the assessment of the maternal-fetal crosstalk by quan-

tifying mRNA signatures specific to sub-populations of

placental cells [105–107]. These mRNA signatures were

shown to be detectable by cell-free [105] and cellular

[108] transcriptome analyses of maternal blood; how-

ever, to date, they have not been evaluated in AF.

Therefore, the current study aimed i) to evaluate the

effect of gestational age on AF cfRNA expression and

splicing while considering relevant potential covariates

(fetal sex, maternal characteristics, mode of sample

collection, and indication for amniocentesis), ii) to deter-

mine whether the molecular dynamics of specific placen-

tal cell populations, such as those recently described by

single-cell RNA sequencing [105], can be tracked by AF

cfRNA analysis, and iii) to assess the extent to which

previously reported changes in the overall gene expres-

sion with gestational age, fetal sex, and maternal obesity

can be replicated, given differences in populations and

profiling techniques.

Methods
Study design

To conduct a prospective longitudinal study, we enrolled

pregnant women attending the Center for Advanced

Obstetrical Care and Research of the Perinatology Re-

search Branch, Eunice Kennedy Shriver National Institute

of Child Health and Human Development (NICHD), Na-

tional Institutes of Health, U.S. Department of Health and

Human Services; Wayne State University School of Medi-

cine; and Hutzel Women’s Hospital of the Detroit Medical

Center (Detroit, Michigan, USA). Based on this cohort, we

designed a retrospective study to include 30 women who

underwent transabdominal amniocentesis during the mid-

trimester at 16.4–24.0 weeks of gestation (median = 21.1
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weeks) to assess the fetal karyotype or to rule out intra-

amniotic inflammation/infection. In all cases tested, the

karyotype was normal. The study also included 68 women

at term not in labor (TNL) who had an AF sample col-

lected either by transabdominal amniocentesis (to assess

fetal lung maturity) or for research purposes during

Cesarean section at 37.1–40.9 weeks of gestation (me-

dian = 39.0 weeks). All study participants included herein

delivered at term and had a normal singleton pregnancy

with appropriate fetal growth, according to the

INTERGROWTH-21st birthweight standard [109], which

was previously found to match the population of patients

attending our research clinic [110]. Five ml of AF were

collected from each woman and processed according to

the recommended protocol [83].

RNA extraction

Starting with 5 ml of AF, we applied the Plasma/Serum

RNA Purification Maxi Kit (#56200; Norgen Biotek

Corp., Thorold, Ontario, Canada), including the optional

DNAse treatment, according to the manufacturer’s

protocol. Following RNA extraction, each sample was

concentrated to a volume of 12 μl by using the RNA

Clean & Concentrator-5 Kit (#R1015; Zymo Research,

Irvine, California, USA). The concentrates were then

quantified by UV spectrophotometry on a DropSense 96

system (PerkinElmer, Waltham, MA, USA) and then

quality assessed on the Agilent 2200 TapeStation system

(Agilent Technologies, Santa Clara, California, USA).

Microarray analysis

Ten ng of RNA was reverse-transcribed and amplified

using the Affymetrix GeneChip® WT Pico Reagent Kit

(Affymetrix, Inc., Santa Clara, California, USA), follow-

ing the manufacturer’s suggested protocol. Briefly, 5.5 μg

of sense-stranded cDNA was fragmented, labeled, and

hybridized in a final volume of 200 μl to the Affymetrix

GeneChip® Human Transcriptome Array 2.0 in an Affy-

metrix hybridization oven at 45 °C at 60 rpm for 16 h.

Wash and stain steps were performed utilizing an Affy-

metrix GeneChip® Fluidics Station 450 and scanned on

an Affymetrix GeneChip® Scanner 3000. Raw intensity

data were generated from array images using Affymetrix

GeneChip™ Command Console Software.

Data analysis

Preprocessing

Raw gene expression data of more than 6.0 million

microarray probes and 98 microarrays were preprocessed

(background correction, normalization, and summarization)

using the Robust Multi-array Average (RMA) approach

[111] implemented in the oligo package [112]. Expression

summarization was obtained into one value per sample and

transcript cluster (gene level data) for differential expression

analysis as well as at the level of each exon or exon-exon

junction (probe set level data) for differential splicing ana-

lysis. Transcript clusters were assigned to unique genes

using annotation from the hta20transcriptcluster.db pack-

age of Bioconductor [113]. Only genes expressed above

background (p < 0.05) in at least 25% of the samples of ei-

ther group (midtrimester or TNL) were retained for further

differential expression and differential splicing analyses.

Detection p-values were obtained using the Expression

Console, version 1.4. (Affymetrix, Inc.).

Differential expression

Gene level log2 expression data were analyzed using lin-

ear models implemented in the limma [114] package in

Bioconductor [113]. The gestational-age effect (TNL ver-

sus midtrimester or early midtrimester versus late midtri-

mester) was assessed while adjusting only for covariates

with significant effect on gene expression among those

considered (fetal sex, maternal race, obesity, parity, smok-

ing status, and mode of sample collection). The effect of

fetal sex was assessed while adjusting for gestational age.

Expression changes were deemed significant based on

false discovery rate q-values < 0.05 and a minimum fold

change of 1.25-fold, which are known to be rather conser-

vative for this microarray platform [108].

Differential splicing

Differential splicing was assessed in relation to gesta-

tional age, fetal sex, and obesity based on the splicing

index (SI) method [115] implemented in the Transcrip-

tome Analysis Console (TAC) version 4.0 (Affymetrix,

Inc.) using netaffx_release_36 gene annotations. The

splicing index represents the difference in average exon

usage between groups, where exon usage is defined as

exon level expression relative to overall gene abundance

in a given sample. An adjusted p < 0.05 and SI > 2.0-fold

for one exon/exon-exon junction of a gene was required

to infer significant alternative splicing for that gene. A

second differential splicing algorithm, also based on the

SI concept, was applied: DiffSplice, implemented in the

limma package [114], uses an F-test to assess whether

log fold changes (between groups) differ among exons of

the same gene. Furthermore, based on the SI and corre-

sponding p-values, specific patterns of differential spli-

cing were identified among the following: cassette exon,

mutually exclusive exons, alternative 5′ sites, alternative

3′ sites, and intron retention (see Blencowe B. for a re-

view [116]), implementing the Exon Event Estimation al-

gorithm in TAC 4.0 software, also used to display

differential splicing data for specific genes.

Functional profiling

The lists of differentially expressed/spliced genes for

each factor considered (e.g. gestational age) were tested
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for enrichment based on chromosomal location and

membership in previously described functional categories

and pathways as well as on specificity to tissues and cell

types. The functional databases considered were the De-

velopmental FunctionaL Annotation at Tufts (DFLAT)

database [117] and the Curated Gene Sets (C2) collection

from the Molecular Signatures Database (MSigDB) data-

base [118]. Tissue-specific genes were defined as those

with median expression > 30 times higher in a given tissue

than the median expression of all other tissues described

in the Gene Atlas [119]. This cut-off was chosen to enable

the direct comparison of findings to previous reports

[120]. All enrichment analyses were based on a hypergeo-

metric test (equivalent to a Fisher’s exact test) and

accounted for multiple testing, with q < 0.05 being consid-

ered a significant result.

Analysis of single-cell RNA-Seq signature expression in AF

Log2 microarray expression data were transformed into

Z-scores for each gene by subtracting the mean and

dividing to the standard deviation calculated from the

reference study group (e.g. midtrimester when assessing

changes from midtrimester to term). The Z-scores in

each sample were averaged over the set of genes previ-

ously defined as specific to a given population of cells

defined by single-cell RNA-Seq analyses in Tsang et al.

[105] The collection of gene sets included those for

extravillous trophoblasts, cytotrophoblasts, the syncytio-

trophoblast, decidual cells, dendritic cells, endothelial

cells, erythrocytes, Hofbauer cells, stromal cells, vascular

smooth muscle cells, B cells, T cells, and monocytes. Un-

like averaging over the normalized expression of

genes, as in Tsang et al. [105], the standardization of

expression data ensures that genes contribute equally

to the gene set summary [108, 121]. The average Z-score

for each single-cell signature was compared between the

TNL and midtrimester groups by using the Wilcoxon

rank sum test as well as within the midtrimester group via

linear models by correlating gene expression with gesta-

tional age (continuous).

Results
Clinical characteristics of the study population

We profiled the cell-free transcriptome in AF samples

collected during gestation at midtrimester (n = 30) and

at term from women without labor (n = 68). The median

gestational ages were 21 and 39 weeks in the midtrime-

ster and TNL groups, respectively, at the time of sample

collection. Women in the midtrimester group were more

likely to be nulliparous (26.7%) compared to those in the

TNL group (4.4%) (p = 0.003). There were no differences

in maternal age, body mass index (BMI), smoking status,

fetal sex, and gestational age at delivery between the

midtrimester and TNL groups (Table 1).

Factors affecting the AF transcriptome in normal

pregnancy

The Human Transcriptome Array 2.0 platform used in

this study was designed to probe at exon-level resolution

the expression of 44,699 protein coding and 22,829 non-

protein coding transcript clusters, simply referred to

herein as genes (67,528 total). Of these, 64,071 (95%)

were deemed expressed (present) in at least 25% of the

AF samples in either the midtrimester or the TNL

group, and were retained for further differential expres-

sion and splicing analyses. An unsupervised principal

component analysis representation of the genome-wide

gene expression profiles based on the top 1000 most

varying genes across all samples is shown in Fig. 1a. The

samples in this figure are clustered by gestational age

groups, which is suggestive [122] of large between-group

differences. Moreover, the first principal component

(PC1) was not only linearity correlated with gestational

age overall (R = 0.96) but also within the subset of midtri-

mester samples alone (R = 0.72) (both, p < 0.001) (Fig. 1b).

We considered several maternal and fetal characteristics

as well as the mode of AF sample collection and indication

for amniocentesis to evaluate their effects on overall gene

expression and splicing (Table 2). Overall, gene expression

and splicing patterns were found to change dramatically

with gestational age and modestly with fetal sex. There

was also weak evidence of changes in maternal obesity,

whereas other maternal characteristics (parity, smoking

status, and race) and mode of AF sample collection

(cesarean section versus transabdominal amniocentesis)

and indication for amniocentesis did not have a significant

effect on overall gene expression (Table 2). The effects of

gestational age and fetal sex on gene expression and spli-

cing are detailed in the next section.

Effect of gestational age on the AF cfRNA

Differential expression

Advancing gestational age from midtrimester to term

was associated with expression changes in about 10% of

the genes detected in AF (6194/64,071), representing

11% of the coding and 6% of the non-coding genes de-

tected. Gene expression changes included both an in-

crease in expression from midtrimester to term

gestation (2776 genes) and a decrease (3418 genes) (q-

value < 0.05 and fold change > 1.25) (Additional file 7:

Table S1). In addition to assessing how the AF transcrip-

tome changes from midtrimester to term, we explored

for the first time how the transcriptional program

changes with advancing gestation during the midtrime-

ster, which was not feasible in previous studies due to

sample size limitations. A differential expression analysis

between samples collected at early (16.4–21.0 weeks) and

late (21.1–24.0 weeks) midtrimester identified 413 differ-

entially expressed genes (Additional file 8: Table S2).
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In-silico validation of differential expression

To demonstrate the plausibility of AF differential expres-

sion from midtrimester to term, we conducted an in-

silico analysis to determine whether previously reported

findings support our data and vice versa. In the first ana-

lysis, we considered all 2719 genes reported by Hui et al.

[120] to change with gestational age (term versus midtri-

mester) and they were also detected present in the sam-

ples in this study (regardless of statistical significance).

We found a substantial agreement in terms of direction

of change (92% match) and correlation of log fold

changes (Spearman’s correlation, R = 79%, p < 0.0001)

(Fig. 2a). When only the subset of 1332 genes that were

significant in both studies were considered, the agree-

ment in terms of direction of change reached 99%, while

the correlation of log2 fold changes increased to 0.82

(p < 0.001). In a second in-silico experiment, we consid-

ered the genes detected in the current study (regardless

of significance) that were differentially expressed (q-

value < 0.05 fold change > 1.25) based on a re-analysis of

the RNA-Seq data reported by Kamath-Rayne et al. [85].

Our expression-change estimates for the TNL to midtri-

mester comparison were highly correlated with those of

the 1234 genes that differed between late preterm and

midtrimester (R = 0.83, p < 0.001, 97% direction of

change agreement, Fig. 2b) and with those of the 1420

genes that differed between term and midtrimester

(R = 0.79, p < 0.001, 97% direction of change agreement,

Fig. 2c), obtained by re-analysis of the Kamath-Rayne

et al. [85] dataset. Overall, these results demonstrate

high cross-study reproducibility of gene-level differential-

expression changes with gestation in amniotic fluid.

Functional profiling

Chromosome enrichment Although differential expres-

sion with advancing gestation was noted throughout the

genome, five chromosomes (Chr1, Chr4, Chr6, Chr12,

and Chr15) displayed slightly more differential expression

than expected by chance (see Additional file 1: Figure S1)

(q < 0.05, OR 1.2–1.4 for all).

Biological processes enrichment A wide range of bio-

logical processes documented in the DFLAT database

[117] were over-represented among the genes that

change in expression from midterm to term gestation in

the AF. Placental development, organ development

(lung, liver, brain, heart, etc.), and immune-related

Table 1 Demographic characteristics of the study population. Continuous variables were compared between groups using Welch’s

t-test and are summarized as medians (interquartile range). Categorical variables are shown as number (%) and were compared

using a Fisher’s exact test

Midtrimester n = 30 TNL n = 68 p-value

Age 25 (23–29.75) 27 (23–31) 0.302

Body Mass Index 26.2 (24.1–30.3) 28.3 (24–34) 0.462

Parity: 0 8/30 (26.7%) 3/68 (4.4%) 0.003

≥1 22/30 (73.3%) 65/68 (95.6%)

Race:

African American 26/30 (86.7%) 56/68 (82.4%) NS

White 1/30 (3.3%) 5/68 (7.4%)

Hispanic 2/30 (6.7%) 2/68 (2.9%)

Other 1/30 (3.3%) 5/68 (7.4%)

Smoking 4/30 (13.3%) 13/68 (19.1%) 0.574

Fetal Sex (Male) 13/30 (43.3%) 38/68 (55.9%) 0.279

Sample GA (weeks) 21.05 (19.9–22.6) 39 (38.9–39.3) < 0.001

Delivery GA (weeks) 38.8 (37.9–39.6) 39 (38.9–39.3) 0.34

Sample collection

Transabdominal 30 (100%) 4/68 (6%) < 0.001

Cesarean delivery 0 (0%) 64/68 (94%)

Indication for amniocentesis N/A

Rule out Infection/ Inflammation 20 (66.7%)

Karyotyping 12 (40%)b

Fetal lung maturity 3/67a

GA Gestational age; TNL Term not in labor. a For one case of the four obtained by transabdominal amniocentesis, the indication was not available. b 3/12 patients

with indication for Karyotyping had also an indication for ruling out infection/inflammation
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pathways (positive regulation of immune response, acti-

vation of immune response, T-cell activation) are a few

of more than 1500 biological processes related to gene

expression changes (see Additional file 9: Table S3).

Canonical pathways enrichment Similarly, about 250

pathways curated in the MSigDB collection were associ-

ated with gene expression changes with gestational age,

such as the KEGG database systemic lupus erythemato-

sus pathways and the Reactome database amyloids, cell

cycle, developmental biology, immune system, cytokine

signaling in immune system, and mRNA splicing path-

ways (q < 0.05) (Additional file 10: Table S4).

Tissue enrichment and signature analysis Finally, we

tested the association of mRNA modulation with advan-

cing gestational age and defined sets based on the Gene

Atlas [119] and found that most over-represented organs

among genes with higher expression at term were the

trachea, lung, salivary glands, tonsils, tongue, colon,

bone marrow, skin, and fetal lung, among others listed

in Additional file 11: Table S5 (q < 0.05). Although fetal

skin was not represented in the Gene Atlas-based ana-

lysis, it was proposed by Hui et al. [120] that skin-spe-

cific transcripts identified in amniotic fluid are likely

derived from the fetal skin. The most-enriched organs

for genes with higher expression during midterm gesta-

tion were the small intestine, placenta, uterus, and spe-

cific cell types (e.g. CD105+ endothelial cells, cardiac

myocytes), among others listed in Additional file 12:

Table S6 (q < 0.05). These findings were also supported

by an alternative analysis in which the expression signa-

ture of each tissue type (based on the average of the top

20 most-specific genes) was analyzed as a continuous

response as a function of gestational age (Fig. 3a&b and

Additional file 2: Figure S2). Of note, the expression of

gene signatures for the trachea, salivary glands, and

lungs increased while those for the cardiac myocytes and

uterus decreased steadily throughout gestation; yet, more

complex patterns emerged for the pituitary gland and

fetal liver, whose expression signatures peaked and bot-

tomed toward the end of the midtrimester, respectively

(Fig. 3b).

Single-cell RNA-Seq signature analysis The placenta

emerged as one of the organs associated with both in-

crease (Odds Ratio, OR = 2.1) (Additional file 11: Table

S5) and decrease (OR = 3.1) (Additional file 12: Table

S6) in gene expression from midtrimester to term gesta-

tion. We sought to further dissect placenta-specific gene

expression by averaging the expression of genes specific to

sub-populations of cells based on single-cell genomics

studies. Among the 13 cell types identified by an RNA-

Seq analysis of the placenta by Tsang et al. [105], the cyto-

trophoblast, monocyte, and syncytiotrophoblast expres-

sion increased monotonically from 16weeks of gestation

until term. By contrast, the Hofbauer cells, erythrocytes,

vascular smooth muscle cells, B cells, T cells, and others

showed more complex patterns (increase followed by de-

crease) (q < 0.05) (Fig. 4, Additional file 3: Figure S3). Of

these single-cell signatures, that of the cytotrophoblast,

defined as the average expression of the FAM3B, FOXO4,

and MIR205HG genes, was the most highly modulated,

being increased at term 1.8 SD relative to the midtrimester

A

B

Fig. 1 Principal component analysis of amniotic fluid cell-free RNA

expression in normal pregnancy. The principal components (PC)

were derived from expression of the top 1000 most varying genes

(unsupervised selection). The first panel (a) depicts each sample

based on the first two principal components (PC1 and PC2). The

values in parentheses are the % of variance explained by each

principal component. TNL: term not in labor. The linear correlation

between gestational age and PC1 is also shown in panel (b)
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group, mostly due to the contribution of FAM3B gene

expression.

Differential splicing

Alternative splicing (AS) events associated with advance-

ment from midtrimester to term gestation were identi-

fied in 17.5% (8566/48,820) of the genes detected and

met the conditions for testing (see Methods) (exon q-

value < 0.05 and SI > 2.0 or SI < − 2.0) (Additional file 13:

Table S7). Of all tested genes, 25% of the coding genes

and 4% of the non-coding genes displayed AS events as-

sociated with gestational-age difference from midtrime-

ster to term gestation. Of note, 85% of all differential

splicing results according to the SI method in TAC 4.0

software were also supported by the diffSplice algorithm

(q < 0.05). Of approximately 54% of differentially spliced

genes for which a particular type of AS event was identi-

fied by the Event Estimation algorithm, the most com-

mon types were the cassette exon (69%), alternative 5′

site (19%), alternative 3′ site (10%), and intron retention

(2%) (Additional file 13: Table S7). For genes differen-

tially expressed with gestational age, the AS analysis

pinpointed the transcript isoforms likely responsible for

overall gene expression changes: this is illustrated in

Fig. 5 for the MUC7 (salivary gland-specific), SFTPD

(lung-specific), and GKN1 (stomach-specific) genes.

These genes were previously reported to be among those

most differentially expressed with gestational age in AF

based on 3′-end biased microarray platforms studies

[120]. For example, our data suggest that most of the in-

crease in expression of MUC7 from midtrimester to

term gestation can be explained by a short isoform of

this gene (see transcript TR04000256, Fig. 5a).

The majority (76%) of differentially spliced genes were

not differentially expressed, showcasing the importance

of differential splicing in the study of the AF transcrip-

tome. For instance, CNIH1 skipped and ZNF365 in-

cluded a particular exon more frequently in the TNL

group compared to the midtrimester group, yet neither

gene met the criteria of being differentially expressed

(Fig. 6). Functional profiling of differentially spliced

genes identified about 800 DFLAT database biological

processes as enriched that were not identified as such by

analysis of differential expression, including 47 processes

related to development (ear, central nervous system

neurons, tongue, and spleen) as well as several immune-

related processes (Additional file 14: Table S8). Among

the MSigDB database pathways found to be enriched

based on differential splicing, but not differential expres-

sion analysis, the REACTOME adaptive immune system,

the BIOCARTA MEF2D pathway, and the KEGG MAPK

pathwaywere among the most enriched (Additional file 15:

Table S9). Tissues and cell types associated with gesta-

tional age by differential splicing analysis, but missed by

Table 2 Effect of covariates on amniotic fluid transcriptome. Early midtrimester is defined as gestational age 16.4–21.0 weeks and

late midtrimester is defined as gestational age 21.1–24.0 weeks. Differential splicing was assessed only for contrasts with significant

differential expression

Effect Comparison/sample size Adjustment variable Diff. expressed
Genes

Diff. spliced
Genes

In-silico validation

Gestational age effect
during midtrimester

Late midtrimester (n = 15) vs.
Early Midtrimester (n = 15)

Fetal sex 413 806

Gestational age (overall) TNL (n = 68) vs. Midtrimester
(n = 30)

Fetal sex 6194 8566 Hui et al. 2013 [98].;
Kamath-Rayne et al.
2015 [85]

Mode of collection in TNL Cesarean delivery (n = 64) versus
transabdominal amniocentesis
(n = 4)

Fetal sex 0 0

Smoking Smoker (n = 17) vs. non-smoker (n = 79) Gestational age and
fetal sex

0 0

Fetal sex Male (n = 51) vs. Female (n = 47) Gestational age 252 240 Larrabee et al. 2005 [83]

Maternal race Caucasian (n = 6) vs. African
American (n = 82)

Gestational age and
fetal sex

0 0

Parity Parous (n = 87) vs. Nulliparous
(n = 11)

Gestational age and
fetal sex

0 0

Obesity (overall) Obese (n = 38) vs. Lean (n = 33) Gestational age and
fetal sex

0 0 Edlow et al. 2014 [99]

Obesity in midtrimester Obese(n = 8) vs. Lean (n = 11) Gestational age and
fetal sex

0 0 Edlow et al. 2014 [99]

Indication for amniocentesis
during midtrimester*

Detection of infection/inflammation
(n = 17) vs. assessing fetal karyotype
(n = 9)

Gestational age and
fetal sex

0 0

TNL Term not in labor. Indications for both
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differential expression analysis, were brain tissues (e.g.

prefrontal cortex, globus pallidus, and cerebellum pedun-

cles) and T cells (CD8+ and CD4+) (Table 3).

Effect of fetal sex on the AF transcriptome

AF mRNA expression changes with fetal sex were found

for 252 genes, with 215 being decreased and 37 being in-

creased in expression in pregnancies with a male com-

pared to those with a female fetus (Additional file 16:

Table S10). All genes with increased expression in AF

samples of women with a male fetus compared to those

with a female fetus, were located on the chromosome Y

(q < 0.05, OR = 64, Additional file 4: Figure S4), with

ribosomal protein S4, Y-linked 1 (RPS4Y1) being the

most increased in pregnancies with a male fetus (8-fold

increase) (Additional file 16: Table S10). This gene was

also reported by Larrabee et al. [83] as being present in

the AF of women with a male fetus but not in those with

a female fetus. Functional profiling analysis revealed that

fetal sex gene expression differences were associated

with one PID database pathway (P 53 downstream path-

way) as well as in particular tissues (tongue and tonsils)

and cell types (bronchial epithelial cells, CD71+ early

erythroid cells) (all q < 0.05). When differential splicing

associated with fetal sex was assessed, we found 240 sig-

nificant genes, including some deemed also differentially

expressed (e.g. RPS4Y1) and others that were not differ-

entially expressed, including a transcript cluster for

TXLNGY (Additional file 5: Figure S5). Chromosomes Y

(odds ratio [OR] = 70) and X (OR = 2.4) were signifi-

cantly enriched in genes with differential splicing be-

tween pregnancies with a male or a female fetus (q <

0.05).

Effect of maternal characteristics and mode of sample

collection

Motivated by the findings of Edlow et al. [99] regarding

an association between the AF transcriptome and mater-

nal obesity, we also compared gene expression between

38 obese (BMI > 30) and 33 lean (BMI < 25) women,

while adjusting for fetal sex and gestational age at am-

niocentesis. No significant differences in expression and

splicing were found with maternal obesity for individual

genes. The same was true when limiting the analysis

A

B

C

Fig. 2 In-silico validation of differential expression between

midtrimester and term gestation groups. Each dot represents a

unique annotated gene. The y axis represents the log2 fold change

(term/midtrimester) obtained in the current study. The x-axis

represents: a) log2 fold change reported by Hui et al. [120] (term vs

midtrimester); b) log2 fold change based on a re-analysis of RNA-Seq

data reported by Kamath-Rayne et al. [85] between late preterm and

midtrimester gestation; and c) between term and midtrimester

gestation. R: Spearman’s correlation coefficient
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only to women sampled during the midtrimester, as in the

original report by Edlow et al. [99] (Table 2). However, we

found a weak but significant correlation of fold changes

derived herein for the 182 genes reported to change with

obesity by Edlow et al. [99] and present on the microarray

platform herein (Spearman’s correlation 0.2, p = 0.02),

with 62% of those genes matching in terms of the direc-

tion of change with obesity (Additional file 6: Figure S6).

Finally, we also examined the effect of other maternal

characteristics, including ethnicity (African American

versus Caucasian), parity (parous versus nulliparous),

smoking status, as well as the mode of collection

(cesarean delivery versus transabdominal amniocentesis)

and indication for amniocentesis, while adjusting for var-

iables that had a significant effect (gestational-age group

and fetal sex). No significant differences in overall gene

expression were found based on these analyses (all q >

0.1) (Table 2).

Discussion
Amniotic fluid cfRNA analysis was proposed as a means

to study real-time human fetal physiology and develop-

ment [83, 85, 88, 99]. The results presented herein are in

agreement with previous reports regarding differential

gene expression from midtrimester to term gestation;

yet, we have shown for the first time strong expression

changes even during the midtrimester alone (before 21

weeks of gestation versus after). Tissue-specific mRNA

expression patterns with gestation are found herein to

be more complex than previously reported, owing to

better coverage of the second-trimester gestational-age

range. Leveraging previous single-cell genomics studies

of the placenta, we also show for the first time that it is

feasible to track signatures of placental single-cell popu-

lations by AF cfRNA analysis to assess the dynamic of

crosstalk at the maternal-fetal interface. Finally, we

Fig. 4 Changes in the expression of RNA Seq single-cell signatures

with gestational age. For each single-cell signature, the expression of

member genes (based on Tsang et al. [105]) was transformed into Z-

scores and averaged in each AF sample. A Robust Locally Weighted

Regression and Smoothing Scatterplots (LOESS) model fit through

the Z-scores as a function of gestational age is shown using lines

(see Fig. S3 for individual values). Single-cell signature trends are set

to have the same value at 16 weeks of gestation. AF, amniotic fluid

A

B

Fig. 3 Changes in the expression of tissue-specific signatures with

gestational age. For each tissue, the expression of the top 20 most-

specific genes (based on the Gene Atlas dataset) was transformed

into a Z-score and averaged in each AF sample. A Robust Locally

Weighted Regression and Smoothing Scatterplots (LOESS) model fit

through the Z-scores as a function of gestational age is shown using

lines (see Fig. S2 for individual values). Tissue signature trends are set

to have the same value at 16 weeks of gestation. Differentially

expressed tissue signatures were sorted by the magnitude of change

from 16 to 41weeks of gestation and the top 10 tissues with increased

(a) and deceased (b) expression are shown. AF, amniotic fluid
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Fig. 5 (See legend on next page.)
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present evidence that alternative splicing, a mechanism

described to contribute to tissue-identity acquisition and

organ development [123], is modulated in the AF with

advancing gestational age and associated with the devel-

opment of complex organ systems (e.g. brain).

Amniotic fluid differential expression with advancing

gestation

Hui et al. [98] and Kamath-Rayne et al. [85] reported

that AF cfRNA displays dramatic changes with gesta-

tional age using 3′-end biased microarrays and RNA-

Seq, respectively. Using a more recent microarray plat-

form that probes both the coding and non-coding genes

at exon-level resolution, we found 6194 differentially

expressed transcript clusters (3447 unique ENTREZ

database annotated genes) to be differentially expressed

between midtrimester and term samples (Additional file

7: Table S1). The agreement between results presented

herein and these two previous studies was high in terms

of direction of change and correlation of fold changes

(Fig. 2), yet the number of genes identified herein was

larger owing to an increased sample size and sensitivity

of the microarray platform employed. Enrichment ana-

lyses based on differentially expressed genes identified

similar tissues and organ systems related to the in utero

environment, fetal development, and preparation for life

outside the uterus [83, 98]. However, given better cover-

age of the gestational-age span during midtrimester ges-

tation, we show that the expression of tissue-specific

signatures can have a complex pattern of modulation,

including the fetal liver and cardiac myocytes, among

others (Fig. 3).

Single-cell RNA-Seq signature modulation with advancing

gestation

Single-cell RNA-seq signatures of populations of placen-

tal cells were recently described as a vocabulary to inter-

pret the molecular crosstalk at the maternal-fetal

interface [105, 106, 124]. The ability to track the expres-

sion of these signatures throughout gestation [125] and

their alterations with obstetrical disease [105, 124] were

also reported. The current study provides new and ori-

ginal evidence that fetal-specific (syncytiotrophoblast,

cytotrophoblasts, Hofbauer cells, and vascular smooth

muscle cells) or maternal-fetal origin cell populations

(erythrocytes, monocytes, B cells and T cells) change

with advancing gestation in AF. The increase in the ex-

pression of the monocyte and syncytiotrophoblast

signatures reported in Fig. 4 is in agreement with obser-

vations based on cell-free [105] transcriptome analysis in

maternal circulation. Nonetheless, the sharp increase

during midtrimester gestation, followed by a decrease at

near-term gestation, for Hofbauer and other cell signa-

tures shown in Fig. 3 are for the first time described

herein. Importantly, the AF single-cell RNA signatures

of monocytes, T cells, and B cells mirrored the abun-

dance of these immune cells throughout normal preg-

nancy as quantified by flow cytometry [78].

Amniotic fluid differential splicing with advancing

gestation

Through analysis of gene expression at the level of indi-

vidual exons and exon-exon junctions, we identified AS

events associated with gestational age and fetal sex. The

exon junction arrays used in this study were previously

compared to RNA-Seq for the purpose of differential

splicing and found to have higher power when quantifying

low-abundance transcripts as well as long non-coding

RNAs that tend to be shorter than protein-coding gene

counterparts [126]. Of interest, we found more genes

(17.5% of the genes detected) displaying differential spli-

cing than differential expression (10%) with gestational

age. This can be explained, in part, by the fact that there is

a higher threshold to claim differential expression than

differential splicing. For differential expression, changes

need to concur for multiple exonic regions (Fig. 5),

while for differential splicing, changes for even a single

or a few exonic region are sufficient (Fig. 6).

Genes showing differential splicing were associated

with processes and pathways related to development and

immunity and were specific to certain complex organ

systems that were not identified as enriched based on

differential expression analysis alone (Table 3). AS is

recognized as a fundamental process by which cells ex-

pand their transcriptomic diversity, and it is particularly

widespread in the nervous system [127]. Therefore, con-

sideration of AS, as a means to assess the maturity or

developmental stage of fetal organs, is important.

Strengths and limitations

This is the largest study of the AF transcriptome in

which coding and non-coding gene expression was pro-

filed at exon-level resolution in approximately 100 nor-

mal pregnancies. One of the strengths of the study is the

simultaneous assessment of the effect of genetic (fetal

sex and maternal ethnicity), physiologic (gestational age,

(See figure on previous page.)

Fig. 5 Example of differential expression and splicing associated with gestational age differences between midtrimester and term gestation

groups. Each panel refers to a different gene (a: MUC7; b: SFTPD; c: GKN1). The top panel shows the normalized gene expression levels in each

sample (line) and each probeset (dot) of a given patient. The middle panel shows a representation of the gene model with the color scale giving

the splicing index for each probeset. The bottom layer shows possible transcript isoforms
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Fig. 6 Example of differential splicing but not expression associated with gestational age differences between midtrimester and term groups.

Each panel refers to a different gene (a: CNIH1; b: ZNF365). Details as shown in Fig. 3
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parity), and maternal risk factors (smoking, obesity) on

the transcriptome. Also, the observation that there are

no significant effects related to the AF sample collection

mode (cesarean delivery versus transabdominal amnio-

centesis) is an important addition to the literature. This

suggests that samples collected by both modalities can

be used to establish a gene expression reference. Al-

though the sample size for this particular comparison

(cesarean delivery versus transabdominal amniocentesis

at term) was low, the reduced magnitude of such an ef-

fect was reassuring. Of note, the comparison between

the two types of sample collection at term gestation was

also cofounded by the indication for amniocentesis,

since transabdominal collection was performed to assess

fetal lung maturity while collection during cesarean de-

livery was done for research purposes. The use of mul-

tiple types of functional profiling approaches and single-

cell signatures as a means to interpret differential ex-

pression and splicing results is also a strength. Finally,

although no additional wet-lab confirmatory results

were presented, the in silico validation of overall gene

expression differences with gestational age and fetal

sex, through correlations with previous reports, in-

creases confidence in the novel results presented

herein, such as differential splicing with advancing ges-

tation and fetal gender. Among the limitations, we

would also note a lower statistical power for some of

the sub-analyses assessing the effects of maternal race

and obesity in midtrimester samples.

Conclusions
We reported herein the largest AF cell-free transcripto-

mics study that catalogues physiologic adaptations with

advancing gestation in normal pregnancy and surveys

the effects of relevant maternal, fetal, and experimental

covariates on the transcriptome. Our data show that AF

mRNA profiles can be used to track placental function

through single-cell specific signatures, as a readout of

the maternal-fetal crosstalk during pregnancy. We also

propose that alternative splicing evaluation should be a

part of the future development of fetal testing to assess

organ maturity; this information could be used to inform

clinical management given the current debate about the

usefulness of fetal lung maturity evaluation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12920-020-0690-5.

Additional file 1: Figure S1. Representation of chromosome-specific

differential expression between midtrimester and term gestation groups.

The outer circle shows the chromosomes, with significant enrichment

being marked with * (q < 0.05). The inner circle shows the log2 fold

change (term/midtrimester) of differentially expressed genes, positioned

based on their genomic coordinates within each chromosome. Blue denotes

increase and red denotes decrease in the term group. Values greater than 3.0,

in absolute value, were truncated to 3.0 to enhance display

Additional file 2: Figure S2. Changes in the expression of tissue-

specific signatures with gestational age superposed to patient-specific

values. For each tissue, the expression of the top 20 most-specific genes

(based on the Gene Atlas dataset) was transformed into a Z-score and

averaged in each AF sample (dots). A Robust Locally Weighted Regression

and Smoothing Scatterplots (LOESS) model fit through the Z-scores as a

function of gestational age is shown using lines. All differentially expressed

tissue signatures (term versus midtrimester or linear correlation within the

midtrimester group) are shown. AF, amniotic fluid

Additional file 3: Figure S3. Changes in the expression of RNA Seq

single-cell signatures with gestational age. For each single-cell signature,

the expression the all specific genes (based on Tsang et al. [105]) was

transformed into a Z-score and averaged in each AF sample (dots). A

Robust Locally Weighted Regression and Smoothing Scatterplots (LOESS)

model fit through the Z-scores as a function of gestational age is shown

using lines. AF, amniotic fluid

Additional file 4: Figure S4. Representation of chromosome-specific

differential expression between pregnancies with a male those with a

female fetus. The outer circle shows the chromosomes with significant

enrichment being marked with * (q < 0.05). The inner circle shows the

log2 fold change (male/female) of differentially expressed genes, positioned

based on their genomic coordinates within each chromosome. Blue denotes

increase and red denotes decrease in the males. Values greater than 3.0 in

absolute value were truncated to 3.0

Additional file 5: Figure S5. Example of differential splicing with fetal

sex for TXLNGY gene. Details as shown in Fig. 5

Additional file 6: Figure S6. Correlation of expression changes with

maternal obesity between studies. Each dot represents a unique

annotated gene. The y axis represents the log2 fold change (obese/lean)

obtained in the current study. The x-axis represents the log2 expression

of 182 genes detected as present in the current study among those

reported as differentially expressed with obesity by Edlow et al. [99]. R:

Spearman’s correlation coefficient

Additional file 7: Table S1. Genes differentially expressed with

advancing gestational age from midtrimester to term. The table includes

the Affymetrix transcript cluster identifier (ID), gene symbol, gene name,

Table 3 Gene Atlas-based tissues and cell types associated with

gestational-age differential splicing but not with differential

expression from midtrimester to term gestation

Name Count Size Odds Ratio q

CD8+ T cells 101 206 2 0.000

CD4+ T cells 96 199 2 0.000

Prefrontal cortex 123 303 1.4 0.002

Whole brain 90 216 1.5 0.004

Cerebellum peduncles 54 120 1.7 0.004

Globus pallidus 33 67 2 0.005

Subthalamic nucleus 49 110 1.7 0.007

Pineal gland (night) 90 221 1.5 0.007

Uterus corpus 18 33 2.5 0.010

Cerebellum 44 102 1.6 0.019

Caudate nucleus 49 116 1.5 0.020

Parietal lobe 51 122 1.5 0.022

Pineal gland (day) 84 217 1.3 0.032

Occipital lobe 66 169 1.4 0.045

Pons 33 78 1.5 0.049

Count: number of differentially spliced genes associated with the ontology.

Size: total number of genes associated with the ontology that were tested;

odds ratio of enrichment based on a Fisher’s exact test; q: adjusted p-value
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ENTREZ database identifier, chromosome and strand information,

genomic coordinates (start and stop), number of microarray probes used

to measure the gene expression, assignment to coding or non-coding

region, log2 expression change (term/midtrimester), nominal p-value, and

adjusted p-value (q-value)

Additional file 8: Table S2. Genes differentially expressed with

gestational age during midtrimester. Columns are the same as in Table

S1, except that the comparison is between late (21.1–24.0 weeks) versus

early (16.4–21.0 weeks) midtrimester gestation

Additional file 9: Table S3. Biological processes from DFLAT database

associated with gestational age differential expression from midtrimester

to term. Count: number of differentially expressed genes associated with

the ontology. Size: total number of genes associated with the ontology

that were tested; odds ratio of enrichment based on a Fisher’s exact test;

q: adjusted p-value

Additional file 10: Table S4. MSigDB database canonical pathways

associated with gestational age differential expression from midtrimester

to term. Columns are as shown in the Table S3 legend

Additional file 11: Table S5. Gene Atlas-based tissues and cell types

associated with increased expression in term vs midtrimester samples.

Columns are as shown in the Table S3 legend

Additional file 12: Table S6. Gene Atlas-based tissues and cell types

associated with increased expression in midtrimester vs term samples.

Columns are as shown in the Table S3 legend

Additional file 13: Table S7. Genes differentially spliced with

gestational age (term versus midtrimester). The table includes results for

the single most-significant exon or exon junction based on splicing index

analysis. The columns include the Affymetrix transcript cluster identifier

(ID), gene symbol, gene name, probeset identifier, exon splicing index,

corresponding p-value, adjusted p-value, name of the alternative splicing

event type, and adjusted p-value based on the diffSplice algorithm

Additional file 14: Table S8. Biological processes from DFLAT database

associated with gestational-age differential splicing but not with differential

expression from midtrimester to term. Columns are as shown in the

Table S3 legend

Additional file 15: Table S9. MSigDB database canonical pathways

associated with gestational-age differential splicing but not with differential

expression from midtrimester to term. Columns are as shown in the

Table S3 legend

Additional file 16: Table S10. Genes differentially expressed with fetal

sex. Columns are the same as in Table S1, except that the comparison is

between pregnancies with a male versus a female fetus
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