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Abstract

We consider the problem of enriching current object de-

tection systems with veridical object sizes and relative depth

estimates from a single image. There are several technical

challenges to this, such as occlusions, lack of calibration

data and the scale ambiguity between object size and dis-

tance. These have not been addressed in full generality in

previous work. Here we propose to tackle these issues by

building upon advances in object recognition and using re-

cently created large-scale datasets. We first introduce the

task of amodal bounding box completion, which aims to

infer the the full extent of the object instances in the im-

age. We then propose a probabilistic framework for learn-

ing category-specific object size distributions from avail-

able annotations and leverage these in conjunction with

amodal completions to infer veridical sizes of objects in

novel images. Finally, we introduce a focal length predic-

tion approach that exploits scene recognition to overcome

inherent scale ambiguities and demonstrate qualitative re-

sults on challenging real-world scenes.

1. Introduction

Consider Figure 1. Humans can effortlessly perceive two

chairs of roughly the same height and tell that one is much

closer than the other, though still further away than the per-

son, who is taller than the chairs. Compare this to what a

state-of-the-art object detector tells us about the image: that

there are two chairs, 120 and 40 pixels tall, and one per-

son with 200 pixels from top to bottom. How can we enable

computer vision systems to move beyond this crude 2D rep-

resentation and allow them to capture richer models of their

environments, such as those that humans take for granted?

The 3D world is a lot more structured than it looks like

from the retina (or from a camera sensor), where objects

jump around with each saccade and grow and shrink as we

move closer or farther from them. We do not perceive any

of this because our brains have learned priors about how vi-

sual inputs correlate with the underlying environment, and

this allows us to directly access realistic and rich models

Figure 1: Perceiving the veridical size of objects in realis-

tic scenes, from a single image, requires disentangling size

and depth, being able to compensate for occlusions and to

determine intrinsic camera parameters. We tackle all three

of these problems, leveraging recent developments in object

recognition and large annotated object and scene datasets.

of scenes. The priors we use can be categorized as being

related to either geometry or familiarity.

Image projection properties, such as the fact that the dis-

tance of an object from the camera dictates apparent size

and that parallel lines in the scene vanish in the image, pro-

vide useful signal for perceiving structure. Familiarity cues

are complementary and impose expectations on individual

objects and configurations – we expect most objects to be

supported by another surface and we have the notion of fa-

miliar size – similar objects are of similar sizes. In this

work, we exploit geometry and familiarity cues and develop

a framework to build richer models of the visual input than

those given by current computer vision systems, which are

still largely confined to the 2D image plane.

The notion that certain geometrical cues can aid percep-

tion has been known since the time of Euclid - the points

in the image where objects touch the ground together with
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their perceived heights allows inference of real world ob-

ject size ratios [3]. Familiarity cues, on the other hand must

be learned, which can be done using available annotations

and building upon rapid recent progress in object recogni-

tion, more robustly harnessed to explain novel images. Sim-

ilar ideas have been proposed by Hoiem et al. [14, 15] and

Gupta et al. [12] who studied the interaction between object

detection and scene layout estimation and showed that, by

reasoning over object sizes within their 3D environment, as

opposed to within the image, one could perform better ob-

ject detection. Lalonde et al. [20] and Russell et al. [23] also

tackled a problem similar to operationalizing size constancy

and inferred object sizes of annotated objects. These works,

while sharing similar goals to ours, were limited in their

scope as they assumed fully visible instances - object recog-

nition technology at the time being a limiting factor. In this

paper, we aim for veridical size estimation in more realis-

tic settings – where occlusions are the rule rather than the

exception. Occlusions present a significant technical chal-

lenge as they break down a number of assumptions(e.g. in

Figure 1 not modeling occlusions would yield an incorrect

estimate of the relative depths of the two chairs shown).

To overcome these challenges, we first introduce amodal

completion. This is a very well studied ability of human

perception, primarily in the context of amodal edge percep-

tion [17], building on theories of good continuation [24]. In

the context of objects, amodal completion manifests itself

as inference of the complete shape of the object despite vi-

sual evidence for only parts of it [2]. In Section 2, we tackle

the amodal completion task and frame it as a recognition

problem, formalized as predicting the full extent of object

bounding boxes in an image, as opposed to only the visible

extent. We build amodal extent predictors based on con-

volutional neural networks which we train on the challeng-

ing PASCAL VOC dataset. In Section 3, we propose a for-

mulation that, leveraging amodally completed objects, can

disentangle relative object sizes and object distances to the

camera. This geometric reasoning allows us only to infer

distances for objects up to a scaling ambiguity in each im-

age. To overcome this ambiguity, we show in Section 4 that

it is possible to leverage statistical dependencies between

scenes and intrinsic camera parameters, and learn to predict

focal lengths of scenes from large scale scene datasets. Fi-

nally, we present qualitative results exhibiting veridical size

estimation in complex scenes.

2. Amodal Completion

“Almost nothing is visible in its entirety, yet almost ev-

erything is perceived as a whole and complete” [22]. Clas-

sic computer vision approaches have traditionally been im-

poverished by trying to explain just what we see in an im-

age. For years, standard benchmarks have focused on ex-

plaining the visible evidence in the image - not the world

behind it. For example, the well-studied task of predicting

the bounding box around the visible pixels of an object has

been the goal of current object detection systems. As hu-

mans, not only can we perceive the visible parts of the chair

depicted in Figure 1, we can confidently infer the full extent

of the actual chair.

This representation of objects, that humans can effort-

lessly perceive, is significantly richer than what current sys-

tems are capable of inferring. We take a step forward to-

wards achieving similar levels of understanding by attack-

ing the task of perceiving the actual extent of the object,

which we denote as amodal completion. The amodal repre-

sentation of objects enables us to leverage additional scene

information such as support relationships, occlusion order-

ings etc. For example, given the amodal and visible extents

of two neighboring objects in the image, one can figure out

if one is occluded by the other. Explicitly modeling amodal

representations also allow us to implicitly model occlusions

patterns rather than trying to “explain them away” while de-

tecting objects. As described in Section 3, we can use these

representations to infer real world object sizes and their rel-

ative depths just from images.

The primary focus of object recognition systems [11, 8]

has been to localize and identify objects, despite occlusions,

which are usually handled as noise. Several recently pro-

posed recognition systems do explicitly model occlusion

patterns along with detections and provide a mechanism for

obtaining amodal extent of the object [10, 28, 32]. However,

these approaches have been shown to work only on specific

categories and rely on available shape models or depth in-

puts, for learning to reason over occlusions. In contrast,

we aim to provide a generic framework that is not limited

by these restrictions. Our proposed framework is described

below.

Formulation: Given a candidate visible bounding box,

we tackle the task of amodal completion – the input to our

system is some modal bounding box (e.g. obtained via a

detection system) and we aim to predict the amodal extent

for the object. We frame this task as predicting the amodal

bounding box, which is defined as the bounding box of an

object in the image plane if the object were completely vis-

ible, i.e. if inter-object occlusions and truncations were ab-

sent. The problem of amodal box prediction can naturally

be formulated as a regression task - given a noisy modal

bounding box of an object we regress to its amodal bound-

ing box coordinates. The amodal prediction system is im-

plicitly tasked with learning common occlusion/truncation

patterns and their effects on visible object size. It can subse-

quently infer the correct amodal coordinates using the previ-

ously learned underlying visual structure corresponding to

occlusion patterns. For example, the learner can figure out

that chairs are normally vertically occluded by tables and
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that it should extend the bounding box vertically to predict

the full extent of the chair.

Let b = (x, y, w, h) be a candidate visible (or modal)

bounding box our amodal prediction system receives ((x, y)
are the co-ordinates of the top-left corner and (w, h)
are the width and height of the box respectively) and

b∗ = (x∗, y∗, w∗, h∗) be the amodal bounding box

of the corresponding object, our regression targets are

(x−x∗

w , y−y∗

h ,
(x+w)−(x∗+w∗)

w , h−h∗

h ). Our choice of targets

is inspired by the fact that for the y dimension, the height

and bottom of the box are the parameters we actually care

about (see Section 3) whereas along the x dimension the left

co-ordinate is not necessarily more important than the right.

Learning: We use a Convolutional Neural Network

(CNN) [9, 21] based framework to predict the co-ordinates

of the amodal bounding box. THe hypothesis is that the

amodal prediction task can be reliably addressed given just

the image corresponding to the visible object region – see-

ing the left of a car is sufficient to unambiguously infer the

full extent without significantly leveraging context. Based

on this observation, we extract from input image I , the re-

gion corresponding to the detection box b and train the CNN

using targets derived as above from the amodal box b∗. We

impose an L2 penalty on the targets and regress from the

extracted CNN image features to the targets. We initialize

our model using the AlexNet [19] CNN pretrained for Ima-

genet [5] classification and then finetune the model specific

to our task using backpropagation. Training is carried out

with jittered instances of the ground truth bounding box to

enable generalization from noisy settings such as detection

boxes and also serve as data augmentation.

We train two variants of the above network - class-

specific and class agnostic. Both these systems comprise of

5 convolutional layers followed by 3 fully-connected lay-

ers. The class-specific network has separate outputs in the

last layers for different classes and is trained with positive

examples from a specific class whereas the class agnostic

network has a single set of outputs across all classes. In-

tuitively, the class-specific network learns to leverage oc-

clusion patterns specific to a particular class (e.g. chair oc-

cluded by a table) whereas the class agnostic network tries

to learn occlusion patterns common across classes. Another

argument for a class agnostic approach is that it is unrea-

sonable to expect annotated amodal bounding box data for

a large number of categories. A two-stage system, where

we first predict the visible bounding box candidates and

then regress from them to amodal boxes, enables leverag-

ing these class agnostic systems to generalize to more cate-

gories. As we demonstrate in Section 3, this class agnostic

network can be applied to novel object categories to learn

object sizes.

Figure 2: Generating amodal bounding boxes for instances

in PASCAL VOC. We use the 3D models aligned to images

from the PASCAL 3D+ [29] and render them with their an-

notated 3D pose to obtain binary masks. We then use the

tightest fitting bounding box around the mask as our ground

truth amodal bounding box.

Dataset: For the purpose of amodal bounding box predic-

tion, we need annotations for amodal bounding boxes (un-

like visible bounding box annotations present in all stan-

dard detection datasets). We use the PASCAL 3D+ [29]

dataset which has approximate 3D models aligned to 12

rigid categories on PASCAL VOC [7] to generate these

amodal bounding box annotations. It also contains addi-

tional annotations for images from ImageNet [5] for each

of these categories ( 22k instances in total from ImageNet).

For example, it has between 4 different models aligned to

“chair” and 10 aligned to “cars”. The different models pri-

marily distinguish between subcategories (but might also be

redundant). The 3D models in the dataset are first aligned

coarsely to the object instances and then further refined us-

ing keypoint annotations. As a consequence, they correctly

capture the amodal extent of the object and allow us to ob-

tain amodal ground-truth. We project the 3D model fitted

per instance into the image, extract the binary mask of the

projection and fit a tight bounding box around it which we

treat as our amodal box (Figure 2). We train our amodal box

regressors on the detection training set of PASCAL VOC

2012 (det-train) and the additional images from ImageNet

for these 12 categories which have 3D models aligned in

PASCAL 3D+ and test on the detection validation set (det-

val) from the PASCAL VOC 2012 dataset.

Experiments: We benchmark our amodal bounding box

predictor under two settings - going from ground truth visi-

ble bounding boxes to amodal boxes and in a detection set-

ting where we predict amodal bounding boxes from noisy

detection boxes. We compare against the baseline of us-

ing the modal bounding box itself as the amodal bounding

box (modal bbox) which is in fact the correct prediction for

all untruncated instances. Table 1 summarizes our experi-
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ments in the former setting where we predict amodal boxes

from visible ground truth boxes on various subsets of the

dataset and report the mean IoU of our predicted amodal

boxes with the ground truth amodal boxes generated from

PASCAL 3D+. As expected, we obtain the greatest boost

over the baseline for truncated instances. Interestingly, the

class agnostic network performs as well the class specific

one signaling that occlusion patterns span across classes and

one can leverage these similarities to train a generic amodal

box regressor.

To test our amodal box predictor in a noisy setting, we

apply it on bounding boxes predicted by the RCNN[11] sys-

tem from Girshick et al. We assume a detection be cor-

rect if the RCNN bounding box has an IoU > 0.5 with the

ground truth visible box and the predicted amodal bound-

ing box also has an IoU > 0.5 with the ground truth amodal

box. We calculate the average precision for each class un-

der the above definition of a “correct” detection and call it

the Amodal AP (or AP am). Table 2 presents our AP am

results on VOC2012 det-val. As we can see again, the

class agnostic and class specific systems perform very simi-

larly. The notable improvement is only in a few classes (e.g.

diningtable and boat) where truncated/occluded instances

dominate. Note that we do not rescore the RCNN detec-

tions using our amodal predictor and thus our performance

is bounded by the detector performance. Moreover, the in-

stances detected correctly by the detector tend to be cleaner

ones and thus the baseline (modal bbox) of using the detec-

tor box output as the amodal box also does reasonably well.

Our RCNN detector is based on the VGG16 [25] architec-

ture and has a mean AP of 57.0 on the 12 rigid categories

we consider.

all trun/occ trunc occ

modal bbox 0.66 0.59 0.52 0.64

class specific 0.68 0.62 0.57 0.65

class agnostic 0.68 0.62 0.56 0.65

Table 1: Mean IoU of amodal boxes predicted from the

visible bounding box on various subsets of the validation

set in PASCAL VOC. Here occ and trunc refer to occluded

and truncated instances respectively. The class specific and

class agnostic methods refer to our variations of the train-

ing the amodal box regressors (see text for details) and

modal bbox refers to the baseline of using the visible/modal

bounding box itself as the predicted amodal bounding box.

Armed with amodal bounding boxes, we now show how

we tackle the problem of inferring real world object sizes

from images.

Figure 3: Toy example illustrating our camera model and

parameters. Please refer to the text for detailed explana-

tions.

3. Untangling Size and Depth

Monocular cues for depth perception have been well-

studied in psychology literature and there are two very im-

portant cues which emerge that tie object size and depth

- namely familiar size and relative size. Familiar size is

governed by the fact that the visual angle subtended by an

object decreases with distance from the observer and prior

knowledge about the actual size of the object can be lever-

aged to obtain absolute depth of the object in the scene. Rel-

ative size, on the other hand, helps in explaining relative

depths and sizes of objects - if we know that two objects are

of similar sizes in the real world, the smaller object in the

image appears farther. Another simple cue for depth percep-

tion arises due to perspective projection - an object further

in the world appears higher on the image plane. Leveraging

these three cues, we show that one can estimate real world

object sizes from just images. In addition to object sizes,

we also estimate a coarse viewpoint for each image in the

form of the horizon and camera height.

The main idea behind the algorithm is to exploit pair-

wise size relationships between instances of different object

classes in images. As we will show below, given support

points of objects on the ground and some rough estimate of

object sizes, one can estimate the camera height and horizon

position in the image - and as a result relative object depths.

And in turn, given object heights in the image and relative

depths, one can figure out the real world object scale ratios.

Finally, exploiting these pairwise size evidences across im-

ages, we solve for absolute real world sizes (upto a common

scale factor or the metric scale factor). Note that we use size

and height interchangeably here as our notion of object size

here actually refers to the object height.

Camera Model: We use a simplified perspective camera

model similar to Hoiem et al. [14]. Let f be the focal length

of the camera, θx the camera tilt angle along the x-axis, hc

the height of the camera, yh be the horizon position in the

image, ybi be the ground support point for the ith object in

the image and di be the distance of the ith object from the

camera along the camera axis (z axis). We assume that the
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aero bike boat bottle bus car chair table mbike sofa train tv mean

modal bbox 70.0 66.2 23.9 35.1 76.4 57.7 28.9 24.2 68.3 45.8 58.1 59.6 51.2

class specific 69.5 67.2 26.9 36.0 77.0 61.4 31.4 29.2 69.0 49.4 59.3 59.5 53.0

class agnostic 70.0 67.5 26.8 36.3 76.8 61.3 31.1 30.9 68.9 48.4 58.6 59.6 53.0

Table 2: AP am for our amodal bounding box predictors on VOC 2012 det-val. AP am is defined as the average precision

when a detection is assumed to be correct only when both the modal and amodal bounding boxes have IoU > 0.5 with their

corresponding ground truths.

images have been corrected for camera roll and all pixel co-

ordinates are with respect to the optical center (assumed to

be center of the image). Figure 3 provides a toy illustration

of our model and parameters.

Assuming that the world frame is centered at the camera

with its y axis aligned with the ground, the projection of a

world point X = (Xw, Yw, Zw) in the image in homoge-

neous co-ordinates is given by:





x

y

1



 =
1

Zw





f 0 0
0 f 0
0 0 1









1 0 0 0
0 cos θx sin θx 0
0 − sin θx cos θx 0













Xw

Yw

Zw

1









For a world point corresponding to the ground contact point

of object i, given by (Xw,−h, di), its corresponding y co-

ordinate in the image ybi is given by: ybi = f
(−hc/di+tan θx)
1+(hc/di) tan θx

Under the assumption of the tilt angle being small (tan θx ≈
θx) and height of the camera being not too large compared

to object distance (hθx ≪ di), our approximation is

ybi = −
fhc

di
+ fθx (1)

Here fθx corresponds to the position of the horizon (yh) in

the image. Repeating the above calculation for the topmost

point of the object and subtracting from Eq. 1, we obtain

hi =
fHi

di
(2)

where hi refers to the height of the object in the image and

Hi is the real world height of the object. Our model makes

some simplifying assumptions about the scene namely, ob-

jects are assumed to rest on the same horizontal surface

(here, the ground) and camera tilt is assumed to be small.

We observe that for the purpose of size inference, these as-

sumptions turn out to be reasonable and allow us to estimate

heights of objects fairly robustly.

Inferring Object Sizes: The important observation here

is that the sizes of objects in an object category are not com-

pletely random - they potentially follow a multimodal dis-

tribution. For example, different subcategories of boats may

Algorithm 1 Object Size Estimation

Initialize:

Initial size estimates H and cluster assignments

while not converged do

for all images k ∈ Dataset do

(hc, yh)← SolveLeastSquares(yb, h,H)

for all pairs (i, j) of objects in k do

Hi

Hj
←

hi

hj

yb
j−yh

yb
i
−yh

⊲ (1)

end for

end for

logH← least squares with pairwise constraints (1)

GMM cluster log scales (logH)

Reassign objects to clusters

end while

represent the different modes of the size distribution. Given

some initial sizes and size cluster estimates, our algorithm

for size estimation (Algorithm 1) works by estimating the

horizon and camera height per image (by solving a least

squares problem using Eq. 1 and Eq. 2 for all the objects in

an image). With the horizon and height estimated per im-

age, we obtain pairwise height ratios Hi

Hj
= hi

hj

yb
j−yh

yb
i
−yh

for

each pair of objects in an image. We obtain multiple such

hypotheses across the dataset which we use to solve a least

squares problem for logH - the log height for each size

cluster. Finally, we cluster the log sizes obtained in the pre-

vious step to obtain new size clusters and iterate. Note that

H refers to the vector with heights of various classes and

Hi refers to the real world size of the ith object.

This particular model is equivalent to solving a latent

variable model where the latent variables are the cluster

memberships of the instances, the estimated variables are

heights corresponding to the size clusters and the horizon

and camera height for each image. The loss function we try

to minimize is the mean squared error between the ground

contact point predicted by the model and the amodal bound-

ing box. Finally, the log of the object heights are assumed

to be a Gaussian mixture. This final assumption ties in el-

egantly with psychophysics studies which have found that

our mental representation of object size (referred to as as-

sumed size [16, 1, 6]) is proportional to the logarithm of the

131



Figure 4: Inferred log size distributions of 12 object cate-

gories on PASCAL VOC. We use our class agnostic amodal

bounding box predictor to predict amodal boxes for all in-

stances in VOC 2012 det-val and use them with our object

size estimation system to estimate size distributions for var-

ious categories. The plots above show distributions of the

log size with the mean size being shown by the orange line.

real world object size [18].

Our image evidences in the above procedure include the

ground support points and heights for all the objects in the

image. Note that amodal bounding boxes for objects pro-

vide us exactly this information. They account for occlu-

sions and truncations and give us an estimate of the full ex-

tent of the object in the image. The above algorithm with

occluded/truncated visible bounding boxes would fail mis-

erably and we use our amodal bounding box predictor to

first “complete” the bounding boxes for us before using our

size inference algorithm to infer object heights.

Inferring Object Size Statistics on PASCAL VOC: We

used our size estimation system on PASCAL VOC to esti-

mate size distributions of objects. First, we use our class ag-

nostic amodal bounding box predictor on ground truth vis-

ible bounding boxes of all instances on VOC 2012 det-val

to “upgrade” them to amodal boxes. We initialize our sys-

tem with a rough mean height for each object class obtained

from internet sources (Wikipedia, databases of cars etc.)

and run our size estimation algorithm on these predicted

amodal boxes. Figure 4 shows the distributions of log sizes

of objects of various categories in PASCAL VOC. Most

categories exhibit peaky distributions with classes such as

“boat” and “chair” having longer tails owing to compara-

tively large intra class variation. Note that we experimented

with using multiple size clusters per class for this experi-

ment but the peaky, long tailed nature of these distributions

meant that a single Gaussian capturing the log size distribu-

tions sufficed. In addition to inferring object sizes, we also

infer the horizon position and height of the camera. The

median height of the camera across the dataset was 1.4 me-

tres (roughly the height at which people take images) and

also exhibited a long tailed distribution (please refer to sup-

plementary for details). Some examples of amodal bound-

ing boxes estimated for all instances from visible bounding

boxes and horizons are shown in Figure 5.

4. Scenes and Focal Lengths

The focal length of a camera defines its field of view and

hence determines how much of a scene is captured in an

image taken by the camera. It is an important calibration

parameter for obtaining metric, as opposed to projective,

measurements from images. The focal length is usually cal-

ibrated using multiple images of a known object [30], such

as a chessboard, or as part of bundle adjustment [26], from

multiple images of realistic scenes. It is one of the best

studied sub-fields of computer vision – e.g. see [13]. Well

known existing approaches require a minimum set of van-

ishing lines [27] or exploit Manhattan-world assumptions

[4]. These techniques are very precise and elegant, but not

generally applicable (e.g. beach or forest images, etc.).

We propose instead a learning approach that predicts fo-

cal length based on statistical dependencies between scene

classes and fields of view. Given a same scene, images taken

with large focal lengths will have fewer things in them than

those captured with small focal lengths and this provides a

cue for determining focal length. However certain scenes

also have more things than others. This ambiguity can be

resolved by training a predictor with many images of each

scene class, taken with different focal lengths.

Additionally, certain scenes tend to be pictured with pre-

ferred focal lengths. As an example, consider a scene class

of “pulpits”. If a picture of a pulpit is taken with a short

focal length, then the whole church will be visible and that

image will not be tagged as a pulpit scene. In order for a

pulpit to be dominant in a picture taken with a short focal

length camera, then the photographer would have to be un-

naturally close to it.

Data: We use the Places database [31], a large dataset that

provides a dense sampling of scenes in natural images: it

has 205 scene classes, as diverse as swimming pool and rope

bridge, and 2.5 million images. We were able to scrape

focal length metadata from EXIF tags of approximately 20k

examples, on average 100 per class, and split these into a

training set having 15k and a validation set of 5k images.

Learning: We considered the problem of predicting the

ratio of the focal length to the camera sensor width, which

when multiplied by the size of the image in pixels gives the
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Figure 5: Amodal bounding box prediction and size estimation results on images in PASCAL VOC. The solid rectangles

represent the visible bounding boxes and the dotted lines are the predicted amodal bounding boxes with heights in meters.

The horizontal red line denotes the estimated horizon position for the image.

desired the focal length in pixels. We clustered the loga-

rithm of this ratio into 10 bins using k-means and formu-

lated the prediction problem as classification, using a soft-

max loss. Images in the bin with highest and smallest focal

length ratio are shown in Figure 6. We experimented fine-

tuning different popular convolutional networks, including

two trained on Imagenet classification – AlexNet [19] and

VGG-Deep16 [25] – and a network trained on the Places

scenes – the PlacesNet [31].

Results: The results are shown in Table 3 and suggest that

focal length can indeed be predicted directly from images,
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ConvNet top-1 top-3 top-5

Chance 90.0 70.0 50.0

Mode Selection 60.2 26.4 8.7

AlexNet-Imagenet 57.1 18.8 3.9

VGG-Deep16-Imagenet 55.8 15.9 3.3

PlacesNet-Places 54.3 15.3 3.1

Table 3: Focal length misclassification rate (top-1, top-3

and top-5 predictions) of networks pretrained on object im-

ages from Imagenet and the Places dataset. Lower is better.

Figure 6: Example images from the Places dataset from

clusters with the largest (up) and smallest (down) focal

lengths. Note how images with small focal lengths tend to

be more cluttered. A pattern we observed is that dangerous

or unaccessible scenes, such as those having volcanos, wild

animals and boats tend to be captured using very-high focal

lengths, which is rational.

at least approximately, and that pretraining on annotated

scene class data makes a good match with this task. Our

best model can predict correct focal length quite repeatably

among the top-three and top-five predictions. As baselines,

we measure chance performance, and performance when

picking the mode of the distribution on the training set –

the bin having most elements. Note that the bins are un-

balanced (please refer to the supplementary material for the

distribution of focal lengths across our dataset).

Note that our goal is not high precision of the type that

is necessary for high-fidelity reconstruction; we aim for a

coarse estimate of the focal length that can be robustly com-

puted from natural images. Our results in this section are a

first demonstration that this may be feasible.

5. Conclusion

We have studied the problem of veridical size estima-

tion in complex natural scenes, with the goal of enriching

the visual representations inferred by current recognition

systems. We presented techniques for performing amodal

completion of detected object bounding boxes, which to-

gether with geometric cues allow us to recover relative ob-

ject sizes, and hence achieve a desirable property of any per-

ceptual system - size constancy. We have also introduced

and demonstrated a learning-based approach for predict-

ing focal lengths, which can allow for metrically accurate

predictions when standard auto-calibration cues or camera

metadata are unavailable. We strived for generality by lever-

aging recognition. This is unavoidable because the size con-

stancy problem is fundamentally ill-posed and can only be

dealt with probabilistically.

We also note that while the focus of our work is to enable

veridical size prediction in natural scenes, the three com-

ponents we have introduced to achieve this goal - amodal

completion, geometric reasoning with size constancy and

focal length prediction are generic and widely applicable.

We provided individual evaluations of each of these com-

ponents, which together with our qualitative results demon-

strate the suitability of our techniques towards understand-

ing real world images at a rich and general level, beyond the

2D image plane.
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