
Amoeba: A Methodology for Modeling and
Evolving Cross-Organizational Business Processes

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh

Business service engagements involve processes that extend across two or more autonomous or-
ganizations. Because of regulatory and competitive reasons, requirements for cross-organizational
business processes often evolve in subtle ways. The changes may concern the business transactions
supported by a process, the organizational structure of the parties participating in the process, or
the contextual policies that apply to the process. Current business process modeling approaches
handle such changes in an ad hoc manner, and lack a principled means for determining what needs
to be changed and where. Cross-organizational settings exacerbate the shortcomings of traditional
approaches because changes in one organization can potentially affect the workings of another.

This paper describes Amoeba, a methodology for business processes that is based on business
protocols. Protocols capture the business meaning of interactions among autonomous parties
via commitments. Amoeba includes guidelines for (1) specifying cross-organizational processes
using business protocols, and (2) handling the evolution of requirements via a novel application
of protocol composition. This paper evaluates Amoeba using enhancements of a real-life business
scenario of auto-insurance claim processing, and an aerospace case study.

Categories and Subject Descriptors: H.1.0 [Information Systems]: Models and Principles—General; D.2.1

[Software Engineering]: Requirements/Specifications—Methodologies; K.4.3 [Computing Milieux]: Organi-

zational Impacts—Reengineering; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multia-

gent systems

General Terms: Design

Additional Key Words and Phrases: Business process modeling, requirements evolution, business
protocols

1. INTRODUCTION

Successful cross-organizational business process management requires supporting the par-

ticipants’ autonomy, heterogeneity, and dynamism [Singh and Huhns 2005, pp. 7–10].

Supporting autonomy means modeling and enacting business processes in a manner that

minimally constrains the participants, thus maximizing their flexibility. Supporting hetero-

geneity means specifying the interactions among the participants, not their internal busi-

ness logics. Supporting dynamism means dealing with changing business requirements in a

Nirmit Desai: IBM India Research Lab, Embassy Golf Links Business Park, Bangalore 560071, India nir-

mdesa@in.ibm.com

Amit K. Chopra and Munindar P. Singh: Department of Computer Science, North Carolina State University,

Raleigh, NC 27695-8206, USA. {akchopra,singh}@ncsu.edu

Some parts of this paper previously appeared as [Desai et al. 2006], which won the Best Student Paper Award at

the IEEE International Services Computing Conference (SCC), Chicago, 2006. This paper incorporates substan-

tial revisions and extensions, especially in terms of contributing a methodology.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use

provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the

ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

c© 2008 ACM 0000-0000/2008/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, December 2008, Pages 1–40.



2 · Desai, Chopra, Singh

natural manner. Dynamism is crucial because modern businesses must often reconfigure in

the face of regulatory and competitive pressures. This paper concentrates on requirements

that pertain to interactions among the participants of a cross-organizational process. It pro-

poses guidelines not only for creating a process model but also for modifying a process

model to accommodate evolving requirements.

Information Technology practice increasingly recognizes the challenges of requirements

evolution in business processes [Smith and Fingar 2002]. The term business-IT divide

alludes partly to the difficulty of accommodating changing business needs in current IT

systems. Smith and Fingar observe the importance of interaction and note that, as a process

evolves, its set of participants and their capabilities may grow or shrink. Interestingly,

we realized after naming our project that Smith and Fingar refer to process evolution as

being “amoeba-like” (ch. 2). Existing approaches either ignore interaction or address it

purely in low-level terms that correspond more to implementation (such as by specifying

the legal sequences of message exchanges between services) than to the business-level

specification of interaction. Consequently, existing approaches not only limit flexibility in

implementation, but also lack a notion of compliance suitable for business interaction.

A key feature of our approach is its treatment of interaction at the level of business

meaning, not merely at the level of messaging, as is common today. We use business

protocols as the basic building blocks of business processes. A business protocol specifies

a conceptually cohesive set of interactions among two or more roles. Examples include

Order placement, Payment, and Shipping. A protocol is

—meaningful, being based on a business purpose associated with each interaction in terms

of commitments and other propositions [Yolum and Singh 2002; Winikoff et al. 2005];

—abstract because, like a component interface, it does not model the proprietary reasoning

databases or business logic (e.g., what item to ship and what price to quote) of the agents

enacting its roles; and

—modular because it groups interactions relating to a specific business goal while support-

ing composition with other protocols.

We employ UML sequence charts (with extensions to notate commitments) to graph-

ically depict selected scenarios of protocols. However, the textual descriptions and the

corresponding formal specifications (provided below) are definitive. (As a convention, in

this paper, we write protocol names Slanted and role names in SMALL CAPS.) For ex-

ample, Fig. 1 shows a scenario of Order protocol for specifying interactions between a

BUYER and a SELLER. Here, the BUYER sends a request for quote for an item to which

the SELLER responds with a quote. The business meaning of a message is captured in

terms of commitments (shown below the given message). For example, sending a quote

creates a commitment from the SELLER to the BUYER that if the BUYER pays, the SELLER

will deliver the goods. The BUYER may accept or reject the quote (Fig. 1 shows only the

acceptance scenario).

Commitments are central to representing the business meaning of a protocol. In simple

terms, commitments are reified directed obligations: they can be flexibly manipulated,

such as via delegation and assignment [Singh 1999]. (Section 2.1 discusses commitments

in greater detail.) As the agents participating in a business protocol interact, they enter

into and manipulate their commitments to each other. Commitments yield a notion of

compliance expressly suited to business processes: an agent is compliant as long as it

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 3

Fig. 1. Example: A scenario of Order protocol

discharges its commitments. This, in turn, enables flexible implementation and enactment:

all runs of the protocol wherein the participants discharge their commitments are allowed.

Protocols may be composed [Desai et al. 2005]. For example, we may define Purchase

as a composition of Order, Payment, and Shipping. The same protocols may be composed

in different ways, thus enabling their reuse across processes. A composed protocol is like

any other protocol in every way: the only difference might be that some protocols exist be-

fore the process design and some are created during the design. We show how composition

is central to the ability to adapt process models according to evolving requirements.

Following Singh et al.’s classification of architectural patterns for services [2009], we

identify three classes of business requirements and changes to them. The identification of

the classes derives from three architectural elements of business processes: the transac-

tions a business process represents, the organizations that participate in a process, and the

overarching context within which the process operates. Fig. 2 depicts these elements. The

corresponding classes of requirements are as follows.

—Transactional. The business transaction that the process seeks to accomplish, e.g., a

purchase. An example of change is if we decide to modify a purchase process to include

refunds for damaged goods.

—Structural. The relationships within and among the organizations involved, such as

which party plays which role, or whether a party may delegate or assign certain com-

mitments to another party. An example of change is when a vendor outsources payment

processing to another party.

—Contextual. The rules of encounter to which the business process is subject. For ex-

ample, a contract is voided in case of fraud by any of the participants. An example of

change is when marketplace rules or government regulations change.

The above classification is one way of partitioning the requirements space. Others have

studied alternative—yet similar in spirit—classes of requirements and changes [Harker

and Eason 1993; Lam and Loomes 1998]. To evaluate Amoeba, we identify requirements

changes corresponding to each of the above classes in the case of a real-world process, and

describe how the guidelines proposed in Amoeba handle these changes.

Contributions

This paper seeks to justify the claim that commitment-based process modeling better ac-

commodates requirements evolution in cross-organizational processes than traditional ap-

ACM Journal Name, Vol. V, No. N, December 2008.



4 · Desai, Chopra, Singh

proaches do. Based on previous work on protocol specification and enactment, this paper

proposes the Amoeba methodology for designing and maintaining cross-organizational

processes. Two advantages of using protocols are that they not only enable flexible enact-

ment [Winikoff 2007; Yolum and Singh 2002] but also facilitate accommodating require-

ments changes [Desai et al. 2006]. Amoeba gives center stage to managing commitments

among the participants as a way of handling requirements evolution. It shows (1) how to

derive protocols from interaction requirements as may be hidden in conventional designs

and (2) how to guide designers in accommodating evolving interaction requirements. A

real-world business process scenario helps evaluate Amoeba.

Fig. 2. Three elements of requirements of cross-organizational business processes

Organization

Section 2 introduces the background on commitments and protocols necessary for Amoeba.

Section 3 introduces and applies Amoeba to a real-life insurance industry scenario. Sec-

tion 4 addresses handling requirements changes that pertain to the interactions among the

participants in a process. It applies Amoeba to the insurance scenario as it goes through

the three kinds of requirements changes outlined above. Section 5 evaluates Amoeba by

applying it to a case study from a European Union project. Section 6 discusses related

work and outlines some directions for future research.

2. BACKGROUND AND RUNNING EXAMPLE

This section briefly presents the key concepts of commitments, protocols, and protocol

composition needed to understand Amoeba. Since the participants in cross-organizational

processes are autonomous and heterogeneous, we represent them computationally as agents

[Wooldridge 2002; Singh and Huhns 2005]. Whereas agents are instantiated executable

entities, roles are abstract entities. Thus, protocols are specified in terms of roles, and busi-

ness processes as instantiations of protocols where each agent plays one or more roles. The

(generally private) business logic of an agent determines how it plays its roles. A process

model consists of a protocol and a set of preexisting contractual relationships among its

roles.

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 5

We use the term participant in the descriptions of Amoeba to emphasize that the pro-

cesses are specified in terms of business entities. The participants are abstracted into roles,

and the roles would be played by agents who realize the various participants.

2.1 Commitments

Commitments [Singh 1999] help capture the business meaning of the interactions of in-

terest. At runtime, the commitments arise among agents. In the models, commitments

are expressed abstractly among roles. The following discussion is about agents, but ap-

plies equally to roles. A base commitment C(x, y, p) denotes that agent x is committed

(roughly obligated) to agent y for bringing about condition p. Here, x is the debtor, y the

creditor, and p the condition of the commitment. Commitments can be conditional, de-

noted by CC(x, y, p, q), meaning that x is committed to y to bringing about q if p holds.

Here p is called the antecedent of the commitment and q its consequent. A base commit-

ment is merely an abbreviation for a conditional commitment whose antecedent is true.

A commitment condition is a subformula of the antecedent or consequent of a commit-

ment. Commitments are created, satisfied, and transformed according to the following

operations:

—CREATE(x, y, p, q) is an operation performed by x and it causes C(x, y, p, q) to hold.

—CANCEL(x, y, p, q) is an operation performed by x and it causes C(x, y, p, q) to not hold.

—RELEASE(x, y, p, q) is an operation performed by y and it causes C(x, y, p, q) to not

hold.

—DELEGATE(x, y, p, q, z) is an operation performed by x and it causes C(z, y, p, q) to

hold.

—ASSIGN(x, y, p, q, z) is an operation performed by y and it causes C(x, z, p, q) to hold.

The rules below describe the discharge of a commitment. Each rule is specified in terms

of the conditions and the caused actions.

—A base commitment is discharged when its consequent is brought about.

—A conditional commitment is detached when its antecedent is brought about, and a cor-

responding base commitment is created.

—A conditional commitment is discharged when its consequent is brought about. No base

commitment is created in this case because the consequent has already been brought

about.

Consider, for example, a scenario where a buyer and a seller are exchanging goods for

payment. A conditional commitment CC(BUYER, SELLER, goods, payment) denotes an

obligation from the buyer to the seller that if the goods are delivered, the buyer will pay. In

the event that the antecedent goods holds, the conditional commitment changes to a base

commitment C(BUYER, SELLER, payment). In the event that payment holds, the buyer’s

commitment is discharged. Commitments do not imply temporal ordering. For example,

payment may happen before goods, thus discharging the above conditional commitment.

We give messages a business meaning by specifying how they affect various commit-

ments. In the example above, a shipment message would bring about the antecedent goods

and a payment message would bring about the consequent payment. In the Order protocol

ACM Journal Name, Vol. V, No. N, December 2008.



6 · Desai, Chopra, Singh

of Fig. 1, sending a quote message creates a commitment for the SELLER. As the interac-

tion progresses, the messages exchanged manipulate the commitments. At any time, the

active commitments reflect the pending obligations of the concerned parties.

Previous works describe the formal semantics of all commitment operations, especially

in the face of concurrency [Desai et al. 2005; Desai et al. 2007]. Other considerations

include the transfer (or not) of responsibility upon a delegate or assign [Singh et al. 2009].

For example, a payer may relinquish responsibility of paying by delegating its commitment

to pay to a bank. Conversely, a seller may not relinquish its responsibility of delivering

some goods by delegating the commitment to a shipper. Business scenarios can differ

in this regard. The present examples involve retaining responsibility, which is the more

complex situation.

2.2 Specifying a Protocol

The following discussion provides an overview of our protocol specification language; the

semantics of the language is formalized elsewhere [Desai and Singh 2007]. Briefly, a pro-

tocol specification maps to a transition system consisting of states and transition between

the states. Each path in the transition system corresponds to a conversation in the protocol.

For example, the Order protocol introduced earlier yields the transition system of Fig. 3.

Events occur along transitions and a state is defined by the fluents that hold in it.

Fig. 3. The transition system model of the Order protocol

A protocol primarily specifies one or more messages in terms of the conditions they

bring about, and the operations they perform on commitments. Further, a protocol con-

strains the occurrence and ordering of the messages. A protocol specification thus consists

of role and message declarations, and logical axioms. Three axiom schemas are relevant.

—Message axioms specify the effects of messages—the effects may be conditional. Mes-

sage axioms are written pevent → effect if premise q, where event is a message, effect

is either a commitment operation or a commitment condition, and premise is a logical

expression over fluents. An event corresponds to the exchange of a message; the event

counts as bringing about the specified effects only if the specified premises hold. For

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 7

example, the payment of a specified amount would count as discharging the commit-

ment to pay that amount. And, quoting a price for an item to a customer may create a

commitment to deliver the specified item if the customer pays the price. The latter can

be specified as p quote → CREATE(CC(S, B, pay, goods)) if true q. For simplicity, we

omit the name of the operation when it is CREATE and the premise when it is true.

—Data Flow axioms specify the data flow from the parameters of a source message to

those of a sink message. Data flow axioms are written pmsg1 .param1 ❀ msg2 .param2q,

where msg1 is the source message and msg2 is the sink message. Such axioms specify

the constraint that in all conversations of the protocol, the sink message parameter is

bound to the value of the source message parameter. For example, in Order, the item pa-

rameter of a quote must match that of the preceding reqForQuote. This can be specified

as preqForQuote.itemID ❀ quote.itemIDq. To specify data flow across protocols, we

qualify the source and sink messages by the respective protocol names.

—Event Order axioms specify temporal dependencies between the occurrences of vari-

ous messages. Event order axioms are written either pmsg1 ≺ msg2q or pmsg1 XOR

msg2q. The first schema specifies the constraint that in all conversations of the protocol,

msg1 must occur before msg2 . For example, in (prepaid) purchase, an item must be paid

for before it is shipped. This can be specified as ppay ≺ goodsq. The second schema

specifies the constraint that in all conversations, either msg1 or msg2 but not both can

occur. (This interpretation is different from the conventional meaning of XOR, since it

does not require one of the alternatives.) For example, in Order, the buyer may either

accept or reject a quote exclusively. This can be specified as paccept XOR rejectq. Note

that a data flow axiom implicitly specifies a temporal ordering with the source message

preceding the sink message.

These axiom schemas are subject to important well-formedness properties, as discussed

in our prior work [Desai and Singh 2007]. The following axioms specify Order of Fig. 1,

further illustrating the above axiom schemas of our language. For readability, we elide the

parameters of the commitment conditions in the figures although we include them in the

formal specifications.

ORD1 . quote(itemID, itemPrice) → CC(S, B, pay(itemPrice), goods(itemID))

ORD2 . acceptQuote(itemID, itemPrice) → CC(B, S, goods(itemID), pay(itemPrice))

ORD3 . reqForQuote.itemID ❀ quote.itemID

ORD4 . quote.itemID ❀ acceptQuote.itemID

ORD5 . quote.itemPrice ❀ acceptQuote.itemPrice

ORD6 . quote.itemID ❀ rejectQuote.itemID

ORD7 . quote.itemID ❀ rejectQuote.itemPrice

ORD8 . acceptQuote XOR rejectQuote

The parties enacting a protocol would play their respective roles in that protocol. Their

behavior is constrained only up to their commitments. For example, in Order, when the

SELLER quotes a price, it commits to providing the goods at that price. Whether goods

are shipped first or the payment is made first does not matter for this commitment. Also,

whether and when the receipts are provided is immaterial.

As mentioned earlier, protocol specifications map to transition systems, against which

queries may be run to establish useful formal properties of protocols [Desai and Singh

ACM Journal Name, Vol. V, No. N, December 2008.



8 · Desai, Chopra, Singh

2007]. Also, tools exists that help extract role skeletons—a role’s perspective of the

interaction—from the protocols. Role skeletons can be augmented with business poli-

cies to create executable agents [Desai et al. 2005]. A business process corresponding to a

protocol is enacted when agents that have derived role skeletons from the protocol interact

with each other. It is worth noting that protocol specifications are enactable if and only if

they satisfy certain well-formedness properties [Desai and Singh 2008].

2.3 Composing Protocols: Concepts

The power of protocols in modeling arises from the fact that they can be readily composed.

A classical example is Purchase, which can be modeled as a composition of simpler pro-

tocols that handle Order, Payment, and Shipping, respectively. A composite protocol is

treated on par with any other protocol.

Specifying the composition of two or more protocols involves the axiom schemas of

Section 2.2 augmented with the following, which help relate the roles of the protocols

being composed.

—Role Identification axioms specify how a role in the composite protocol replaces selected

roles in existing protocols (as debtor or creditor of any commitments and sender or re-

ceiver of any messages). Role identification axioms are written pprotocolnew .rolenew
.
=

protocol1 .role1 , . . . , protocolk .rolekq. Here rolenew is a role in the composite protocol

protocolnew and for 1 ≤ j ≤ k, protocolj is one of the protocols being composed and

rolej is a role selected from it. Multiple roles from the same protocol may be identified.

The constraint being specified is that the agent playing rolenew must play each rolej . In

the model, this is achieved by simply renaming each rolej to rolenew . For example, the

PURCHASER in Purchase would be the BUYER in Order, the PAYER in Payment, and the

RECEIVER in Shipping. This can be specified as pPurchase.purchaser
.
= Order .buyer ,

Payment .payer , Shipping .receiverq.

Section 3.5 illustrates the composition of two protocols.

2.4 Running Example: Automobile insurance processing

This paper demonstrates and evaluates Amoeba using a real-life insurance claim processing

case [Browne and Kellett 1999]. This real-life business scenario provides an independent

and significant test-case and helps contrast Amoeba with a traditional approach. This con-

trast is significant because even the prevalent process modeling techniques such as BPEL

[2007] are based on the abstraction of workflows similar to those employed in the insurance

case study. Section 5 describes how Amoeba applies in a case study from the aerospace

industry.

Fig. 4 (due to [Browne and Kellett 1999]) shows the parties involved and the overall

process flow. AGF Irish Life Holdings (AGFIL), a subsidiary of Allianz, is an insurance

company in Ireland. AGFIL underwrites automobile insurance policies and covers losses

incurred by policy holders. Europ Assist provides a 24-hour help-line service for receiving

claims. An approved mechanic provides repair services. Lee CS is a consulting firm that

coordinates with AGFIL and the mechanics to handle a claim. AGFIL holds ultimate

control in deciding if a given claim is valid and if payment is made to a mechanic.

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 9

�������

�		�
�

�	��

	�����	

�	������	

����

�������	

����

����	�

����

�������	

����

�������

�����	

�������

�����

�	�	��	

����

������	

�	���������

����	���

���

�	�����

���
������	

 !�����

�	�����


�������

�����	

�������

��"#����

���		�

�	����


�	�$�

������	

������	�

%�&''


�	�$�

��������

 !�����

��������

Fig. 4. Traditional model of a cross-organizational insurance claim process

3. MODELING A CROSS-ORGANIZATIONAL BUSINESS PROCESS VIA PROTOCOLS

The motivation behind business protocols is to address the major shortcomings of the tradi-

tional approaches for modeling cross-organizational business processes [Desai et al. 2005].

To contrast protocol and traditional flow-based representations, notice that each box

in Fig. 4 represents a participant’s flow that synchronizes at various touch points with

other flows. However, the touch points lack a business-level meaning: they fix the control

flow but ignore the business significance of the synchronization. Real-life cases are rife

with subtle business significance. For example, one might ask: does AGFIL relinquish

the responsibility for a claim to Lee CS by asking it to handle it? Is it significant at the

business-level if Europ Assist assigns a claim to a garage before notifying AGFIL? How

does it affect the various business relationships if inspectors are directly controlled by

AGFIL and not by Lee CS? There is no basis for answering such questions in the absence

of an appropriate business-level meaning. Organizations must thus follow a rigid sequence

of steps and any deviation from this expected sequence must be treated as significant,

regardless of the business-level significance—or lack thereof—of the deviation.

By contrast, based on its explicit meaning, a protocol can be readily substituted by an-

other protocol involving different roles or messages while preserving the business meaning

of the overall process. For example, a single message may be replaced by an extended ne-

gotiation or vice versa. In a purchase process, a merchant—instead of following a rigid

sequence of steps—may advertise goods instead of waiting for requests for quotes, and

yet remain compliant with the protocol if it discharges its commitments. The essence of

the interaction—captured via appropriate commitments—is to exchange goods and money

without constraining the agents to follow a rigid sequence of steps.

Another limitation of the flow-oriented approaches is that the flows are monolithic, and

formed by ad hoc intertwining of the participants’ internal business logics and external

interactions. For example, Lee CS may have a unique policy to behave differently if the

estimated cost of repairs is under a threshold amount. Since such business logic is typically

proprietary, the flow of one agent would not be available for reuse by another. Moreover,

ACM Journal Name, Vol. V, No. N, December 2008.



10 · Desai, Chopra, Singh

since such business logic is contextual, the flow of one agent would not be readily usable by

another agent, even when available. For instance, if a new consultant were to participate

in this process, its flow would need to be developed from scratch, even though it would

interact with the other partners in the same manner as Lee CS does. Protocols capture the

reusable interaction patterns and abstract out the business logic. Each agent would specify

its business logic as it adopts a role in a protocol.

To illustrate a shortcoming of flow-oriented approaches, it is worth remarking that Fig. 4

does not include the insurance holder. From the standpoint of interactions, this is a major

shortcoming. Although the internal flow of the insurance holder’s process (its box) may

not be important to AGFIL, its external interactions with other parties (i.e., the insurance

holder’s interconnections) are crucial. Although omitting a participant may be an exception

rather than the norm, it points to the unsuitability of flow-oriented modeling abstractions

for cross-organizational processes.

Table I. The main steps of Amoeba

Step Description Knowledge Required Artifacts Produced

M1 Identify roles played by the

participants in the process, and

the corresponding interactions

Boundaries of autonomy Role identities and protocol

names (with message

declarations)

M2 Identify and capture contractual

relationships as commitments

Roles and expectations from

roles

Commitments describing

contractual relationships

M3 Specify message meanings

emphasizing the creation and

manipulation of commitments

How the contracts play out Message axioms

M4 Specify constraints on message

occurrence and ordering within

each protocol

Bindings among parameters

and applicable conventions

regarding order

Data flow and event order

axioms

M5 Compose individual protocols to

specify the process model

How the roles are identified

in the process; how the

messages affect

commitments; and how the

messages are constrained

Process model specifying

the participants’ interactions

Commitments and protocols yield a natural way of modeling a cross-organizational pro-

cess in terms of interactions among the roles, which would be played by autonomous

business partners. What Amoeba primarily demonstrates is how (as Section 4 shows)

protocol-based modeling yields a natural treatment of evolving requirements. Table I out-

lines Amoeba, showing the inputs and outputs for its main steps, which are described below

in greater detail. The steps are to be performed in sequence and may be iterated over.

Previous work on protocol-based process modeling represents the actors, their goals,

and their mutual dependencies to induce the protocols of interest [Mallya and Singh 2006;

Bresciani et al. 2004]. Additionally, Amoeba accommodates the equally important situa-

tion when a process has already been modeled using traditional means. Accordingly, this

section illustrates Amoeba in such a reverse engineering setting, where protocols are iden-

tified from a traditionally modeled cross-organizational process. However, the above steps

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 11

are equally applicable to a case where no traditional model exists and the protocols must

be identified and designed from scratch.

When a conventional process model exists, it often includes a specification of the busi-

ness logics of one or more of the participants (depending on whose perspective was taken

in the original model). Such business logics can be readily identified as they do not involve

interacting with another participant. However, whereas interactions are reusable, business

logics generally are not. For this reason, Amoeba concentrates on the interactions among

the participants and disregards their business logics. For example, how Lee CS determines

whether an estimate is below a certain threshold depends upon its business logic. Any

other claims handler would participate in the same interactions, but would apply its own

potentially distinct business logic.

3.1 Step M1: Identify Roles and Protocols

3.1.1 Identify Participants. Since we begin from a concrete process, it helps to first

identify the participants and then abstract them into the roles of interest. The participants

are the units of autonomy at a chosen level of detail. In general, identifying the relevant

participants requires human insight.

An existing process may have been specified as a choreography, i.e., a constrained set

of messages exchanged among the participants from a global perspective, or as an or-

chestration, i.e., control and data flows of service invocations from a single participant’s

perspective. A choreography makes the participants explicit, but might sometimes artifi-

cially separate a participant into multiple roles. A monolithic orchestration would invoke

services: the participants are the orchestrator and the providers of the invoked services.

(When the participants are proactive, more than one orchestration may be involved. Fig. 4

illustrates synchronized orchestrations: each box therein represents a participant.)

Thus, the participants in the insurance process are AGFIL, Lee CS, Europ Assist, the

mechanics, the policy holder, and the inspectors (the last two having been added by us.)

3.1.2 Identify and Group Logically Related Interactions. Some interactions together

contribute to a related business purpose. These interactions include communications such

as reporting claims, gathering information (policy holder and call center), validating policy

details (call center and insurance company), and so on. Likewise, interactions pertaining

to the buying and selling of insurance coverage go together. In some cases, existing (tra-

ditional) models may fail to identify an interaction. For example, AGFIL would obtain the

claim form from Europ Assist even though Fig. 4 omits this interaction.

3.1.3 Map Participants to Roles and Interactions to Protocols. Each related group of

interactions identified in Section 3.1.2 forms a protocol. For example, the interactions re-

lated to receiving claims would naturally go together as a claim reception protocol. For

each protocol, define suitable roles, ideally with names that reflect their essential contribu-

tion to that protocol. For example, describe the claim reception protocol as arising between

the REPORTER, CALL CENTER, and PROVIDER roles, not the specific participants. These

roles would apply in any process involving insurance claims, not just the present process.

Likewise, we can consider Ins, the insurance buying (and selling) protocol, which involves

two roles (SUBSCRIBER (S) and VENDOR (V)).

Interactions map to sets of messages. For each message, identify its parameters, in-

cluding identifiers of the information records exchanged such as policy numbers and claim

numbers. Such parameters can be found as the content of the interactions. If the protocol

ACM Journal Name, Vol. V, No. N, December 2008.



12 · Desai, Chopra, Singh

is being defined from scratch, then the parameters are defined as well. For example, Ins in-

cludes the messages reqForQuote(driverID, coverage), quote(driverID, policyNO, premium),

and pay(policyNO, premium).

3.2 Step M2: Identify Contractual Relationships

Identify any assumed contractual relationships among the participants that exist prior to

their engaging in the process. For example, AGFIL already has partnered with Lee CS

and Europ Assist. The negotiations that yield such partnerships are out of the scope of

insurance claim processing. Identify additional contractual relationships that are generated

as the interaction progresses. Capture both kinds of relationships in terms of commitments.

In most cases, both kinds of relationships are derived from the clauses described in the legal

contracts among the participants. The obligatory clauses in such legal contracts naturally

map to commitments. If the obligation under question is created before the interactions

take place, then it is an assumed contractual relationship. An obligation that is created as a

result of the interactions is a generated contractual relationship.

In the case of assumed relationships, leave out the specification of creation of the cor-

responding commitments. Specify how the assumed commitments are manipulated and

satisfied by the protocols. For other relationships, specify the creation, manipulation, and

discharge of the corresponding commitments.

Fig. 5. Assumed relationships as commitments in the auto insurance scenario

We propose relationship diagrams to depict contractual relationships among partners in

business ecosystems. A relationship diagram depicts each partner as a node. An edge

between two nodes depicts a contractual relationship between the corresponding partners

as a set of commitments. Edges are directed from the debtor to the creditor. Some of the

edges depict assumed and some generated relationships.

Fig. 5 shows the assumed relationships in our running example. AGFIL has agreed

to pay Europ Assist for responding to filed claims on its behalf. Also, AGFIL would

authenticate the policy holders filing the reports. Similarly, AGFIL has agreed to pay

for the consulting services provided by Lee CS. Lee CS has hired inspectors, who would

assess vehicle damage and estimate repair expenses. The relationship between AGFIL

and John Doe (insured) is not assumed: protocols would specify how the corresponding

commitments are created.

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 13

3.3 Step M3: Specify Message Meanings

Specify the meaning of a message in terms of the conditions it brings about and how

it affects the commitments among the participants. As an example, the axioms below

capture the meanings of the messages in Ins (identified in Section 3.1.3). INS1 specifies

the meaning of quote as creating a commitment from the VENDOR (abbreviated V) to

the SUBSCRIBER (abbreviated S) that if the SUBSCRIBER subscribes to the policy then

the VENDOR commits to providing insurance coverage. The parameters occurring in a

commitment condition are bound to those of the message that creates or manipulates the

commitment. INS2 specifies that if the payment occurs and the amount matches the quoted

premium then it counts as a subscription for the specified policy with the premium paid.

That is, the SUBSCRIBER is subscribed if the quoted premium is paid. INS3 decomposes the

commitment to provide insurance coverage to the policy holder into two commitments: all

valid claims must be served and all claim requests must be responded to. The parameters

of these conditions are left unspecified in Ins: they would possibly be specified when Ins

is composed with other protocols. Also, as long as the SUBSCRIBER is insured, multiple

claims can be filed and served. This is because INS3 keeps creating the commitments to

serve as long as the insurance commitment is active. Thus, filing and servicing a claim

discharges the commitments on the right, which are recreated because the commitment on

the left remains active. When the policy expires and insurance is caused, the commitment

on the left is discharged.

INS1 . quote(driverID, policyNO, premium) →

CC(V, S, subscribe(policyNO, premium), insurance(policyNO))

INS2 . pay(policyNO, premium) → subscribe(policyNO, premium) if

quote(driverID, policyNO, premium)

INS3 . true → CC(V, S, serviceReq ∧ validClaim, claimService)

∧ CC(V, S, reqForClaim, claimResponse) if C(V, S, insurance(policyNO))

3.4 Step M4: Specify Constraints Among Messages

Constrain message occurrences based on data flow requirements or temporal ordering re-

quirements. The axioms below illustrate this step. INS4 specifies that the parameter driverID

of quote must be bound to the parameter driverID of reqForQuote. Data flow axioms im-

ply temporal ordering between the messages. Similarly, INS5 and INS6 specify that the

parameters policyNO and premium of pay are bound to those of quote.

INS4 . reqForQuote.driverID ❀ quote.driverID

INS5 . quote.policyNO ❀ pay.policyNO

INS6 . quote.premium ❀ pay.premium

The formal specifications of protocols (as given in the appendix) are definitive. To ease

exposition, Fig. 6 (and Fig. 9 below) show representative scenarios from some protocols

derived from Fig. 4. The messages in Ins are annotated with the commitments they create.

Fig. 7 illustrates the progression of contractual relationships in this example. As de-

scribed earlier, part (a) (copied from Fig. 5) shows the relationships assumed at the outset—

these relationships exist even when the process model under construction includes no pro-

tocols. As we proceed, the model progresses to include additional protocols, and the re-

lationships affected by these protocols (as they are incorporated in the model via com-

position) are depicted. Part (b) depicts the contractual relationships for the model corre-

ACM Journal Name, Vol. V, No. N, December 2008.



14 · Desai, Chopra, Singh

Fig. 6. Example scenarios (annotated with commitments) from Rec and Ins in the insur-

ance claim process of Fig. 4

Fig. 7. The progression of contractual relationships via protocol composition

sponding to Ins. Ins creates the relationship between AGFIL and John Doe. Similarly,

part (c) depicts the contractual relationships for the model corresponding to a composi-

tion of Ins, Rec, and Mon. In Fig. 7, dashed edges denote commitments that have been

delegated to a new debtor. The original debtors remain responsible for ensuring the fulfill-

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 15

ment of the commitments: in case the new debtor fails to fulfill a commitment, the original

debtor would be expected to arrange for its fulfillment. AGFIL delegates to Europ Assist

its commitment to John Doe for responding to claims. AGFIL also delegates to Lee CS its

commitment to John Doe for handling all valid claims. Finally, part (d) shows the contrac-

tual relationships for the model corresponding to a composition of Ins, Rec, Mon, and Han.

Here, Lee CS enters into agreement with a mechanic (by virtue of Han), and delegates to

the mechanic its commitment for providing claim services.

3.5 Step M5: Compose Protocols to Reconstruct a Business Process

Once we factor out individual protocols from a traditionally modeled process, we can com-

pose these protocols to reconstruct the original process.

Any realistic business process would involve multiple protocols. For example, AGFIL

participates in protocols for selling insurance policies (Ins) and for receiving and handling

claims (Rec). Consider how protocols can be composed to form a more complete protocol.

Let’s assume that AGFIL outsources its help-line service for receiving claim reports to a

call center, but handles the claims itself (without the benefit of any partnership with Lee CS,

the mechanics, or the inspectors). The claim reception and validation part is supported by

the protocol Rec (shown in Fig. 6). The requisite process can be obtained by composing Ins

(specified above) and Rec (Appendix A.1) into a new protocol called Bas (Basic insurance

claim processing).

3.5.1 Specify role identification axioms. Identify the roles in the desired composite

protocol. These are typically mapped from the participants identified in the initial part

of Step M1 (Section 3.1.1). For each of the identified roles, determine the roles of the

components protocols that should be played by an agent that plays the role. Accordingly,

specify a role identification axiom for each of the roles of the composite protocol.

For example, BAS1 defines a role INSURED in protocol Bas and states that the SUB-

SCRIBER in Ins and the REPORTER in Rec are identified and replaced by INSURED in Bas.

BAS2 and BAS3 similarly define additional roles in Bas.

BAS1 . Bas.Insured
.

= Ins.Subscriber, Rec.Reporter

BAS2 . Bas.Insurer
.

= Ins.Vendor, Rec.Provider

BAS3 . Bas.CallCenter
.

= Rec.CallCenter

3.5.2 Specify message axioms. As in Step M3 (Section 3.3), specify the meaning of

a message in terms of the conditions it brings about and how it affects the commitments

among the participants. Here too the message effects are local to one protocol, although

a message originally from one protocol may affect a commitment originally specified in

another protocol. For each pair of messages and commitments in the protocols being com-

posed, determine if the given message affects the commitment. If so, specify a message

axiom to capture the desired effect.

For example, BAS4 is a message axiom stating that the authentication of the REPORTER

by the PROVIDER in Rec means that the filed claim should be counted as being valid in the

context of Ins. Notice how the meaningful parameter claimNO for the validClaim condition

of Ins is provided here. BAS5 states that the reporting of a claim counts as a request for claim

service in the context of Ins. Similarly, according to BAS6 and BAS7, both the approval and

denial of a reported claim count as claim responses in the context of Ins. For brevity, let ‘·’

denote a parameter that is not relevant in the given axiom.

ACM Journal Name, Vol. V, No. N, December 2008.



16 · Desai, Chopra, Singh

BAS4 . Rec.authOK(claimNO, policyNO) → Ins.validClaim(claimNO)

BAS5 . Rec.report(driverNO, policyNO, info) → Ins.reqForClaim(driverNO, policyNO)

BAS6 . Rec.approved(claimNO, policyNO) → Ins.claimResponse(claimNO, policyNO)

if Rec.report(·, policyNO, ·)

BAS7 . Rec.denied(claimNO, policyNO) → Ins.claimResponse(claimNO, policyNO)

if Rec.report(·, policyNO, ·)

3.5.3 Specify data flow axioms. As in Step M4 (Section 3.4), constrain message oc-

currences based on data flow requirements. The the messages being constrained may be

originally specified in different protocols. For each pair of messages in the protocols be-

ing composed, determine if a parameter of a message must be bound to the value of a

parameter of the other message. If so, specify a data flow axiom to capture the constraint.

For example, BAS8 binds the driverNO parameter of the quote messages in Ins to driverID

parameter of the report message in Rec via a data flow axiom. Similarly, BAS9 binds the

policyNO parameter.

BAS8 . Ins.quote.driverID ❀ Rec.report.driverNO

BAS9 . Ins.quote.policyNO ❀ Rec.report.policyNO

3.5.4 Specify event order axioms. As in Step M4 (Section 3.4) constrain message

occurrences based on temporal ordering requirements. Again, the messages being con-

strained may originally be specified in different protocols. The messages constrained by

a data flow axiom are implicitly temporally ordered: the source precedes the sink. Apart

from these, for each pair of the messages from the protocols being composed, determine

if temporal ordering or mutual exclusivity between them is desired. If so, capture it via

an event order axiom. The present example does not need event order axioms. However,

protocols Rep, Han, Picp, and Pcsc demonstrate such axioms.

3.5.5 Result. The axioms introduced above are simply unioned with the axioms of Ins

and Rec to yield the protocol Bas, which captures the desired interactions. Fig. 12 shows

a representative scenario of Bas in the context of another example.

Following [Desai et al. 2005], we use protocol-composition diagrams to provide a high-

level view of compositions of protocols. Fig. 8 shows role identifications by binding the

new roles to the original roles being identified. Message, data flow, and event order axioms

are depicted as directed bridges between specified elements of the protocols being com-

posed. The direction of the data flow axioms is the direction in which the data flow occurs.

Similarly, the direction of the message axioms is the direction of causality. The direction

of the event order axioms is earlier to later.

The diagrams become dense as the number of axioms grows. This is not a weakness

of the notation per se. The notation is no less scalable than an ontology visualizer or a

UML model visualizer. A tool for designing interactions would support examining a few

related interactions at a time. To reduce clutter, composition diagrams in this paper show

only selected axioms. A fundamental advantage of Amoeba is that in natural situations,

we need to compose only a small number of protocols at a time. This helps reduce the

complexity of the design compared to monolithic approaches. Imagine that Fig. 4 were

to be fleshed out with details of parameters, and expanded to include additional paths to

support flexible execution. It would be quite unwieldy then.

By virtue of composition, the protocols factored out of a traditional model can be com-

posed in many ways. One of the compositions would yield the original (as traditionally

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 17

Fig. 8. Composing Ins with Rec to produce Bas

modeled) process. Thus, a process model based on protocols would generalize over a tra-

ditionally modeled process by including alternatives that represent various configurations

of the original process.

Composing protocols is an iterative process. Initially, designers may overlook some of

the desired composition axioms. Thus, tools to determine if a given composite protocol is

missing important axioms are essential. Desai and Singh introduce properties of protocols

that ensure they can be enacted correctly, and a method to check whether a protocol satisfies

these properties [2008].

The following discussion assumes a composite protocol Picp (Partial insurance claim

processing) constructed from the composition of Bas, Mon (Monitoring outsourced han-

dling), Han (Handling filed claims), and Rep (Administering repairs). The roles in Picp

are INSURER, INSURED, CONSULTANT, CALL CENTER, REPAIRER, and ASSESSOR. Picp

carries out the core steps of the insurance claim process. Appendix A.5 specifies Picp.

4. ACCOMMODATING EVOLVING INTERACTION REQUIREMENTS

The foregoing shows how a cross-organizational process may be specified via its inter-

action requirements, and in a manner that deemphasizes internal business logics and be-

haviors. Let us now consider the evolution of the requirements of cross-organizational

processes, specifically, evolution that calls for modifications in the structure of the interac-

tions among the parties involved. Changes local to the internal functioning of any of the

participants can be handled through conventional means.

Section 4.1 shows how Amoeba accommodates requirements changes that affect inter-

actions. Sections 4.2, 4.3, and 4.4 exercise Amoeba on the three kinds of requirements

changes introduced in Section 1: transactional, structural, and contextual.

ACM Journal Name, Vol. V, No. N, December 2008.



18 · Desai, Chopra, Singh

Fig. 9. Example scenarios (annotated with commitments) from Mon, Rep, and Han in the

insurance claim process of Fig. 4

4.1 Amoeba: Process Adaptation via Protocol Composition

Given a changed requirement, how does a designer come up with the right set of composi-

tion axioms to adapt the process model? When a change calls for additional interactions,

participants, and commitments, what guidance can we provide to a designer on what ele-

ments are needed? Let us assume we are given (1) the process model corresponding to the

original process and (2) the new requirements. Then, the following steps guide designers in

handling the changed requirements. In essence, these steps derive from those presented in

Table I: instead of identification and specification of elements from a traditionally modeled

process, these steps involve modifications and adjustments to the protocols.

4.1.1 Step M1: Identify new roles and protocols. Generally, the evolution of a busi-

ness model results in the formation of new business relationships, possibly with new par-

ticipants. Some existing participants may leave. Identify the new participants according to

the original Step M1 (Section 3.1.1).

Also, the interactions among the participants may change: a new group of interactions

may become necessary, or an existing protocol may become obsolete. Define a protocol

for the new group of interactions according to the original Step M1 (Section 3.1.2). Drop

any obsolete protocols simply by excluding them from the composition.

Finally, such evolution may introduce new roles or render existing roles unnecessary.

This is a common situation. For example, buyers and sellers may switch from a direct

transaction to an escrow model for routing payments, or back, thereby introducing or re-

moving the role of an escrow agency. Following the original Step M1 (Section 3.1.3),

update the mapping of participants to roles and interactions to protocols. Capture the new

mappings via role identification axioms. Handle the removal of a role by fusing it with an

existing role via a role identification axiom.

4.1.2 Step M2: Identify changes to contractual relationships. The new participants,

may form new contractual relationships outside the scope of the process. Capture such

new assumed contractual relationships among existing or newly identified participants as

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 19

commitments according to the original Step M2 (Section 3.2).

Determine what commitments are affected by the proposed changes. If necessary, iden-

tify newer ways to operate on existing commitments, e.g., via discharge, cancel, or dele-

gate. Specifically, a message in a newly introduced protocol may discharge a commitment

created in an existing protocol. For example, a buyer and a seller may commit to each

other: the buyer to paying and the seller to delivering the goods. However, to fulfill these

commitments presupposes two new protocols: Shipping and Payment, respectively.

4.1.3 Step M3: Modify message meanings. Either identify the existing messages, or

introduce new messages to communicate the modified operations on commitments and

effects on other conditions (as identified in the previous step). Express the meanings of the

newly introduced messages via message axioms. Group new messages into newly defined

protocols based on the commonality of their purpose. If the necessary roles are not yet

defined, go back to the first step to introduce such roles.

In general, identify messages that affect the commitments in the newly formed contrac-

tual relationships. Also, identify commitments that are affected by messages in the newly

defined protocols. Capture these via message axioms.

4.1.4 Step M4: Modify message constraints. Perform this step according to the guid-

ance given in the original Step M4 (Section 3.4).

Capture data flows among messages. Capture data flows via parameter bindings, estab-

lishing the main relationships among the existing protocols and the newly defined proto-

cols, and any refinements within the newly defined protocols.

Capture event orders. Typically, these constraints are not required by the data but are

imposed as a matter of convention (possibly reflecting negotiations among the concerned

parties). For example, we may wish to restrict Purchase to allow only prepayment: in that

case, payment must precede shipment. Identify and capture such constraints among the

existing protocols and the newly defined protocols, and any refinements within the newly

defined protocols.

4.1.5 Step M5: Compose new protocols. Perform this step according to the guidance

given in the original Step M5 (Section 3.5).

The above steps are the simplest when elements are introduced and composed with ex-

isting protocols. But what happens if an existing element needs to be changed or removed?

Examples include changes in message parameters, message ordering and data flows, or

message meaning. For such cases, simply replace an existing protocol with a new protocol

(retrieved from a repository or defined afresh) via composition.

Let us now apply Amoeba on the three kinds of requirements changes introduced above.

4.2 Transactional Change: Alternative Enactment to Discharge Commitments

A transactional change is caused by a change in the way the business transaction supported

by the process is carried out. A business transaction can be captured in terms of the life

cycles of the commitments involved. Thus, a change in the business transaction would map

to alternative life cycles of the underlying commitments. For example, damaged goods may

be returned by a buyer, thereby canceling the buyer’s commitment to pay if the payment

was not made. If the payment was already made, a new commitment for the seller to refund

ACM Journal Name, Vol. V, No. N, December 2008.



20 · Desai, Chopra, Singh

the payment is created. The transaction respects its previous function via the fulfillment of

the corresponding commitments, but more flexibly than before.

In handling claims where the value of the car is less than the estimated cost of repairs,

the COMPANY may want to scrap the car, i.e., declare it a total loss. To settle such a case,

the COMPANY pays the OWNER a sum equal to the value of the car and takes possession

of the car instead of administering repairs on it. Alternatively, especially if the damage is

minor, the OWNER may accept a cash settlement instead of having the car repaired. The

net result is that the COMPANY becomes committed to paying the OWNER the value of the

car or an amount it offers in lieu of repairs (if the OWNER accepts the offer).

4.2.1 Step M1: Identify new roles and protocols. There may be no change to the set

of participants due to the evolution of transactional requirements. However, new roles and

a new protocol are needed to capture the change.

According to the changed business policy, AGFIL, Lee CS, and the policy holders would

interact in new ways to achieve a settlement. Each party would adopt a role, say, COM-

PANY, CONSULTANT, and OWNER, respectively. Let us name their containing protocol

Pcsc (Pay cash and scrap car). Since no new participants are involved, the new roles are

fused with the existing roles of Picp yielding the roles of the composite protocol Icp (In-

surance claim processing) as follows.

ICP1 . Icp.Insured
.

= Picp.Insured, Pcsc.Owner

ICP2 . Icp.Insurer
.

= Picp.Insurer, Pcsc.Company

ICP3 . Icp.Consultant
.

= Picp.Consultant, Pcsc.Consultant

ICP4 . Icp.Repairer
.

= Picp.Repairer

ICP5 . Icp.CallCenter
.

= Picp.CallCenter

ICP6 . Icp.Assessor
.

= Picp.Assessor

4.2.2 Step M2: Identify changes to contractual relationships. AGFIL would have del-

egated its commitment CC(V, S, serviceReq ∧ validClaim, claimService) to Lee CS, thereby

making Lee CS responsible for servicing claims. Lee CS would in turn delegate the servic-

ing of claims to the REPAIRER. Fig. 7(d) shows the REPAIRER (mechanic) being committed

to the POLICY HOLDER (John Doe). When Lee CS advises scrapping the car or making a

cash payment for minor damage, it fulfills its commitment to provide the consulting ser-

vice. As a result, the commitment to service the claim falls back to AGFIL, which becomes

committed to paying John Doe. Further, when AGFIL settles the payment, it provides the

claim service, thereby discharging its commitment.

Fig. 10. A scenario of Pcsc (pay cash and scrap car)

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 21

4.2.3 Step M3: Modify message meanings. The new roles would need additional mes-

sages to effect the above described evolution of commitments. Fig. 10 shows a scenario

of Pcsc having new messages and their respective parameters. The CONSULTANT advises

the COMPANY to either scrap the car and pay the value of the car to the OWNER or to pay

a cash amount in lieu of administering repairs. In the former case, the COMPANY may pay

the value of the car to the OWNER via a settle message. In the latter case, the COMPANY

offers a cash amount and, if the OWNER accepts the offer, pays that amount via the settle

message. Appendix A.6 specifies Pcsc.

The following message axioms capture the desired evolution of commitments.

ICP7 . Pcsc.adviseScrap(claimNO, value) →

Picp.delegate(Con, Ir, CC(Rp, Id, serviceReq ∧ validClaim, claimService))

ICP8 . Pcsc.adviseCash(claimNO, amount) →

Picp.delegate(Con, Ir, CC(Rp, Id, serviceReq ∧ validClaim, claimService))

ICP9 . Pcsc.adviseScrap(claimNO, value) → Picp.consultingService(claimNO)

ICP10 . Pcsc.accept(claimNO, amount) → Picp.consultingService(claimNO)

if Pcsc.adviseCash(claimNO, amount)

ICP11 . Pcsc.settlement(claimNO, amount) → Picp.claimService(claimNO)

if Pcsc.accept(claimNO, amount)

ICP12 . Pcsc.settle(claimNO, value) → Picp.claimService(claimNO)

if Pcsc.adviseScrap(claimNO, value)

4.2.4 Step M4: Modify message constraints.

Capture data flows among messages. Since either of adviseScrap and adviseCash may

occur, and since Pcsc does not open a new claim, the value of the claimNO parameter in

these messages must flow in from other protocols. The new behavior would apply only to

claims approved during claim reception. Thus, we need the following data flows.

ICP13 . Picp.approved.claimNO ❀ Pcsc.adviseScrap.claimNO

ICP14 . Picp.approved.claimNO ❀ Pcsc.adviseCash.claimNO

Capture event orders. No additional temporal constraints are needed between the mes-

sages of Pcsc and Picp.

4.2.5 Step M5: Compose new protocols. No other changes within existing protocols

are needed and thus no existing protocols need to be replaced. Axioms INS1 through ICP14

yield the composite protocol Icp.

4.2.6 Result. Fig. 11 shows the corresponding composition diagram (omitting IN-

SURED (Id), REPAIRER (Rp), CALL CENTER (Ca), and ASSESSOR (A) for Picp to reduce

clutter). Notice how Amoeba helps accommodate a business logic change internal to AG-

FIL across the business process. In practical terms, the commitments involved are not

affected. AGFIL must still handle an insured subscriber’s claim: instead of repairing the

car, AGFIL discharges its commitment by paying off the subscriber.

4.3 Structural Change: Outsourcing

A structural change is caused by changes in the participants and their relationships cap-

tured via commitments among them. Thus, changes in relationships amount to new com-

mitments among the participants, and the delegation or assignment of the original com-

mitments to new or existing participants. Outsourcing illustrates changes not only to the

ACM Journal Name, Vol. V, No. N, December 2008.



22 · Desai, Chopra, Singh

Fig. 11. Accommodating a transactional change by composing Icp from Picp and Pcsc

internal functioning of the outsourcer but also to the interactions involved because a new

participant is introduced that interacts with the other existing participants. Insourcing to

undo the effects of outsourcing would likewise alter the interactions.

Let’s assume AGFIL is operating based on Bas (as in Section 3.5). Say AGFIL wishes

to outsource the handling of claims to a consulting firm. To outsource the claim handling to

a consultant presupposes that AGFIL interacts with the consultants, monitors progress, and

makes the necessary decisions. AGFIL may do so by reusing Mon of Fig. 9, as specified

in Appendix A.4. The COMPANY assigns claims to the CONSULTANT to handle. The

CONSULTANT takes the necessary steps and returns with an invoice for repairs. The final

decision on whether or not to authorize such repairs is up to the COMPANY. Thus Mon and

Bas can be composed to yield Out (Outsourced handling).

Fig. 12. Accommodating a structural change by composing Out from Mon and Bas

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 23

Appendix A.7 describes the composition of Out from Mon and Bas. Fig. 12 shows the

corresponding composition diagram. Obviously, a change in the business model is a big

shift for an enterprise; new partnerships are formed and new interactions emerge.

4.4 Contextual Change: Handling Business Exceptions

A contextual change reflects changes in the legal or other context (such as government

regulations) under which the participants interact. The contextual rules can be captured

as metacommitments. For example, a legal context requires that a merchant delivers the

goods by the deadline the merchant specified in its offer. If the merchant fails to meet

this commitment, then the context ensures that the customer’s commitment to pay by a

deadline is canceled. Such contextual rules enable handling business exceptions elegantly.

Exceptions are abnormal conditions arising during a business interaction. In our example,

a fraudulent auto-insurance claim can be understood as an exception. Policy holders may

file fraudulent claims. AGFIL would need a way to detect such claims and respond appro-

priately. If the current process model does not accommodate the appropriate treatment of

fraudulent claims, it needs to be updated with additional interactions. We classify handling

fraud as a contextual change because, due to the surrounding legal framework, fraudulent

activity by one party can release another party from its commitments, in essence relieving

it from its contractual obligations to the fraudulent party.

4.4.1 Step M1: Identify new roles and protocols. Handling fraudulent claims in this

setting does not involve additional contracts and does not introduce new participants. How-

ever, new roles and a new protocol are needed to capture the change.

Fraudulent claims are detected by the inspectors when they conduct an inspection. Be-

cause the inspectors have no direct contract with AGFIL, any interaction triggered by

fraud detection must be propagated to AGFIL via Lee CS. AGFIL can then notify the

policy holder. Thus, new roles need to be adopted by the policy holder (OWNER), AG-

FIL (COMPANY), Lee CS (CONSULTANT), and the inspectors (ASSESSOR). The new roles

fall into a new protocol, Fra (Fraudulent claims detection). Since no new participants are

needed, the new roles are fused with the roles of Picp, yielding the roles of the composite

protocol Ficp (Fraud-resistant insurance claim processing) as follows.

FICP1 . Ficp.Insured
.

= Picp.Insured, Fra.Owner

FICP2 . Ficp.Insurer
.

= Picp.Insurer, Fra.Company

FICP3 . Ficp.Consultant
.

= Picp.Consultant, Fra.Consultant

FICP4 . Ficp.Repairer
.

= Picp.Repairer

FICP5 . Ficp.CallCenter
.

= Picp.CallCenter

FICP6 . Ficp.Assessor
.

= Picp.Assessor, Fra.Assessor

4.4.2 Step M2: Identify changes to contractual relationships. It is clear that handling

this exception involves addressing the distinct goals of detecting it and responding to it.

An auto inspector detects the exception, and AGFIL and Lee CS respond to it.

AGFIL responds by canceling the policy coverage of the policy holder and Lee CS re-

sponds by releasing the repairers from the commitment to perform repairs (Appendix A.2).

The ASSESSOR’s detection of fraud counts as an inspection response and thus discharges

CC(A, Con, inspectReq, inspectRes) (Appendix A.3). When AGFIL and Lee CS form their

relationship, a conditional commitment CC(Com, Con, consultingService, payForService)

is created, meaning that AGFIL will authorize payments for handling individual claims

ACM Journal Name, Vol. V, No. N, December 2008.



24 · Desai, Chopra, Singh

if Lee CS provides the consulting service (Fig. 7(a)). The CONSULTANT propagating the

detection of fraud to the COMPANY counts as the consulting service being provided.

4.4.3 Step M3: Modify message meanings. New messages are needed to propagate

information about the detected fraud and to notify the policy holder. In general, we can

model two roles apiece for detecting and responding to each exception: one sending a

message (of a detected exception or a concomitant response), and the other receiving the

message. In our present scenario, the ASSESSOR deals only with the CONSULTANT, and

only the COMPANY deals with the OWNER when a fraudulent claim is detected. For this

reason, we would need to introduce another message to convey this information from the

CONSULTANT to the COMPANY.

The ASSESSOR may send an adviseFraud message to the CONSULTANT who may propa-

gate it as a fraudulent message to the COMPANY. The COMPANY may notify the OWNER of

the fraud detection via a fraud message. Each of these messages has a claimNO parameter

for correlation. Appendix A.8 specifies Fra. The following axioms describe part of the

composition of Fra and Picp into Ficp.

FICP7 . Fra.fraud(claimNO) →

Picp.cancel(Ir, CC(Rp, Id, serviceReq ∧ validClaim, claimService))

FICP8 . Fra.adviseFraud(claimNO) →

Picp.release(Con, CC(Rp, Con, acceptEstimate(claimNO, price), performRepair(claimNO)))

FICP9 . Fra.adviseFraud(claimNO) → Picp.inspectRes(claimNO)

FICP10 . Fra.fraudulent(claimNO) → Picp.consultingService(claimNO)

4.4.4 Step M4: Modify message constraints.

Capture data flows among messages. Clearly, the value of the claimNO parameter in

the fraudulent and fraud messages flows from the adviseFraud message. However, because

Fra does not open a new claim, the value of claimNO in adviseFraud must flow into Fra

from other protocols. Only the claims approved during the claim reception can go to the

inspectors. Thus, the following data flow is identified between Picp and Fra.

FICP11 . Picp.approved.claimNO ❀ Fra.adviseFraud.claimNO

Capture event orders. No additional temporal constraints are needed between the mes-

sages of Fra and Picp.

4.4.5 Step M5: Compose new protocols. No other changes within existing protocols

are needed and thus no existing protocols need to be replaced.

Fig. 13. A scenario of Fra (fraudulent claims detection)

4.4.6 Result. Fig. 13 illustrates the new protocol Fra for interactions relating to de-

tecting frauds. The composition diagram of Fig. 14 shows how a composite protocol Ficp

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 25

(Fraud-resistant insurance claim processing) is constructed by composing Picp and Fra.

Here INSURED (Id), REPAIRER (Rp), CALL CENTER (Ca), and ASSESSOR (A) are not

shown for Picp.

Fig. 14. Accommodating a contextual change: Incorporating handling of fraudulent claims

Notice how the resulting interaction supports AGFIL ending the process by canceling

and releasing the commitments in case of fraud. Simply adjusting the commitments can

yield greater flexibility while enabling the parties to continue to interoperate. Thus, fraud,

which is an exception, is handled by applying contextual rules to adjust the commitments—

AGFIL cancels its commitment to handle an otherwise insured subscriber’s claim.

5. CASE STUDY: AEROSPACE AFTERMARKET SERVICES

To evaluate Amoeba further, we apply it to the modeling and evolution of cross-organizational

processes developed under the European Union CONTRACT project [van Aart et al. 2007]

in the domain of aerospace aftermarket services.

Fig. 15. A high-level model of the aerospace aftermarket process (verbatim from the CON-

TRACT project [van Aart et al. 2007])

ACM Journal Name, Vol. V, No. N, December 2008.



26 · Desai, Chopra, Singh

Fig. 15 shows a high-level flow of a process in aerospace aftermarket services. This pro-

cess involves three parties: an operator (i.e., an airline), an aircraft engine manufacturer,

and a parts manufacturer. The engine manufacturer provides the required number of ser-

viceable engines to keep the airline operator’s aircrafts flying. The engine manufacturer is

paid by the hour when the engines are available and suffers a penalty when planes are on

the ground waiting for a serviceable engine. The operator regularly supplies engine health

data to the manufacturer. Based on an analysis of the data, the manufacturer informs the

operator of any required engine maintenance. Alternatively, the operator proactively re-

quests maintenance. In the aerospace industry jargon, these are termed unscheduled and

scheduled maintenance, respectively. In either case, the operator and the manufacturer

schedule a time and place for the engine to be serviced. The manufacturer may either re-

place the engine or refurbish it. The engine manufacturer maintains a pool of serviceable

engines via contracts with one or more parts manufacturers, who supply individual engine

parts.

5.1 Modeling

Performing Amoeba steps M1–M5 of Section 3 yields several protocols (as in Figs. 16) and

contractual relationships (as in 17). The contract between the operator and the manufac-

turer is created in Msc. A similar protocol (not shown in Fig. 16) would create the contract

between the engine manufacturer and the parts manufacturer. Fig. 17 shows the contrac-

tual relationships that hold after Msc is added to the process model. No other contractual

relationships need be assumed. The remaining protocols simply detach or discharge the

commitments created in Msc. Message annotations within square brackets show the com-

mitment conditions being brought about.

Let us observe a few important points about the commitments and the protocols of

Figs. 16 and 17. In Msc, the creation of C1 and C2 would detach and discharge C0, respec-

tively. Also, as in INS3, as long as C1 is active, C4 and C5 may be created and discharged

multiple times. Similarly, C2 keeps creating C3 and C6. In Pma, both refurbishEngine and

replaceEngine count as serviceInTime. If the service was delayed, the operator would pay

for the service and the manufacturer would pay the penalty for being delayed. The penalty

for a delayed parts consignment in Spa is modeled similarly.

5.2 Evolution

We applied Amoeba to accommodate requirements changes in the aerospace aftermarket

process. As in the insurance scenario, we consider a transactional, a structural, and a

contextual change. For each change, we now describe the additional requirements and how

to accommodate them. The following assumes a protocol Ams (Aerospace aftermarket

services) defined as a composition of Msc, Sma, Uma, Pma, Opa, and Spa. The engine

manufacturer plays CONSUMER in Spa and BUYER in Opa. The parts manufacturer plays

SUPPLIER in Spa and SELLER in Opa. The other role identifications are self-explanatory.

5.2.1 Transactional Change. Flights are commonly delayed due to bad weather. In

Sma and Uma, the operator and the manufacturer have agreed on an airport and a time

for performing maintenance on a particular engine. It is quite possible that the aircraft

with the engine to be serviced is delayed and is not available for service. As the weather

improves, a large number of aircraft become available for service, possibly from different

operators. This overloads the maintenance resources of the manufacturer, who thus ends up

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 27

Fig. 16. Protocols in the aerospace aftermarket business process

Fig. 17. The contractual relationships with Msc in the process model

ACM Journal Name, Vol. V, No. N, December 2008.



28 · Desai, Chopra, Singh

paying penalties for service delays. To amend this situation, the manufacturer negotiates

new conditions for its service contracts with the operators such that if the engine is not

available at the agreed upon schedule, then the delay penalty is waived.

Following steps M1–M5 in Section 4.1, a new protocol Wpe (Waive penalty) is intro-

duced wherein the manufacturer signals that an engine is unavailable to the operator. In the

composition of Wpe with Ams, the effect of the “engine unavailable” message is captured

via a message axiom that cancels the commitment to pay the penalty for delayed service.

5.2.2 Structural Change. The engine manufacturer decides to focus on its core com-

petency of building and diagnosing engines and decides to outsource to a service company

the work of performing timely maintenance on the various engines and aircraft.

Following steps M1–M5 in Section 4.1, a new partnership between the manufacturer

and the service company is formed and a new protocol Scm (Subcontracted maintenance)

is introduced wherein the manufacturer delegates C3 to the service company and pays the

service company for maintenance services in return. As a new interaction, the manufacturer

informs the service company of the schedules of maintenance that it has agreed upon. In

role identifications, the service company would play MANUFACTURER in Pma. (The role

name may be changed from MANUFACTURER to SERVER to reflect the new usage.)

5.2.3 Contextual Change. A regulatory agency, such as the US FAA (Federal Aviation

Administration) or similar, changes its safety regulations. Under the new regulations, in

order to ensure safety, all engine manufacturers must be licensed by the agency. Also, an

agency official may inspect aircraft at any time without prior warning, and may suspend or

revoke the license of any manufacturer whose engine is found to perform inadequately.

Following steps M1–M5 in Section 4.1, we assume a commitment from the MANUFAC-

TURER to the OPERATOR that the MANUFACTURER holds a valid license whenever it ser-

vices an aircraft. Also, we introduce a new protocol Ias (Inspect aircraft safety) capturing

the inspection interactions between the REGULATOR, the OPERATOR, and the MANUFAC-

TURER. If the REGULATOR finds the MANUFACTURER has not informed the OPERATOR of

a required maintenance of an engine it judges to defective, the REGULATOR suspends the

license of the MANUFACTURER, releases the service company from its commitments, and

cancels C1, C4, and C5. This effectively ends the contracts between the MANUFACTURER

and the OPERATOR.

6. DISCUSSION AND FUTURE WORK

Amoeba facilitates modeling cross-organizational business processes via commitment-

based business protocols. The various requirements changes result in changes to the roles

and the protocols in which they participate. The process model at each stage is driven by

the business meanings of the interactions among the participants. The above case studies

provide evidence of Amoeba’s usefulness in business process modeling, especially in the

face of evolving requirements.

A dominant paradigm for service-oriented business process modeling today is orches-

tration, as epitomized by the Business Process Execution Language (BPEL) [2007]. In

orchestration, a process is represented from the perspective of a central engine that in-

vokes various services and sets up desired data and control flows among them. Business

processes have traditionally been modeled as workflows, and BPEL reflects this legacy.

However, workflows inadequately model interactions, and cannot properly handle cross-

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 29

organizational settings in which the autonomy of the participants is crucial [Bussler 2001].

In contrast with orchestration, the emerging choreography approaches support a peer-

to-peer metaphor for business processes. Choreography efforts include the Electronic

Business Extensible Markup Language (ebXML) Business Process Specification Schema

(BPSS) recently standardized by OASIS [ebBP 2006] and the Web Services Choreogra-

phy Description Language being considered for recommendation by the W3C [WS-CDL

2005]. Because choreographies explicitly accommodate autonomous participants, they

more readily support cross-organizational processes than orchestration does.

Existing orchestration and choreography approaches, even if formal, lack an appropriate

encoding of business meaning. Traditional semantics reflects the occurrence and ordering

of tasks (units of orchestrations) or messages (units of choreographies), but fails to identify

the business interactions that these support. For example, they would specify that a quote

message can be followed by an acceptance or a rejection message, but would ignore the

business commitment that an acceptance of the quote creates. This limitation becomes all

the more pronounced under requirements evolution, because absent a business meaning,

there is no principled basis for validating a business process or modifying it in a reliable

manner.

6.1 Treatment of Requirements in Agent-Oriented Software Engineering

Like existing agent-oriented software engineering (AOSE) methodologies [Bergenti et al.

2004; Henderson-Sellers and Giorgini 2005], Amoeba addresses the challenges of auton-

omy and heterogeneity. Amoeba complements existing AOSE methodologies by concen-

trating on requirements evolution, which they deemphasize. Also, unlike other AOSE

methodologies, Amoeba provides guidelines for reverse engineering traditionally modeled

processes. In principle, Amoeba could be incorporated into existing AOSE methodologies

by enhancing them with protocols as reusable artifacts based on commitments.

Recent years have seen the emergence of common evaluation criteria for agent-oriented

methodologies. Important evaluation efforts include those by Dam and Winikoff [2004] (of

MaSE, Prometheus, and Tropos); Sturm and Shehory [2004] (of Gaia, Tropos, and MaSE);

Tran and Low [2005] (of ten methodologies). Sudeikat et al. [2004] frame comparisons

relative to a target platform. These studies have identified key criteria including concepts,

modeling techniques, development processes, and tool support for methodologies. Table II

applies these criteria to Amoeba.

Importantly, the vital criterion of handling requirements evolution does not feature in

the existing studies. An evaluation with respect to requirements evolution would consider

the guidance provided by a methodology in (and the complexity of) updating models for

specific changes in interaction requirements. Table III compares Amoeba with Tropos,

Gaia, Prometheus, and MaSE under this criterion.

Most of the current AOSE methodologies agree on protocols as reusable message pat-

terns among roles. The key commonly missing pieces are a business-level abstraction such

as commitments (or something analogous) and a mechanism for composing protocols as

a way of accommodating requirements change. Below, we reflect on what it would take

to accommodate changing requirements in Tropos and Gaia. In the interest of brevity, we

omit similar arguments that can be made about the other methodologies.

ACM Journal Name, Vol. V, No. N, December 2008.



30 · Desai, Chopra, Singh

Table II. Amoeba evaluated with respect to the established criteria for agent-oriented methodologies

Criterion Evaluation

Concepts Agent: roles in protocols are adopted by agents

Role: interactions are described among roles

Message: roles interact via messages

Protocol: logically related messages are grouped into protocols

Properties Proactivity: agent business logics can be proactive

Reactivity: Agents react to events according to the protocol

Sociality: roles interact and create (social) commitments

Autonomy: agents adopting roles are autonomous and are constrained only by

their commitments

Model Properties Analyzability: the specifications can be analyzed

Abstraction: three levels: commitments, protocols, agents enacting protocols

Precision: unambiguous due to formal specifications

Expressiveness: due to formal representation

Modularity: protocols are modular and can be composed

Testability: implementations can be tested

Development Process Guidelines and steps for analysis, design, reverse engineering, and

requirements evolution

Tools Tools supporting some Amoeba steps exist [Desai et al. 2005]

Composition: given a set of protocols to compose and composition axioms,

generate the composite protocol

Model generation: Generate all possible conversations supported by a protocol

specification

Skeleton generation: Generate role skeletons from protocols

Enactment: Augment role skeletons with business logic and generate

implementations for roles, e.g., using messaging middleware

Requirements Evolution in Tropos. In contrast with object-oriented models, Yu argues

for an emphasis on the intentional aspects of actor relationships for early-phase require-

ments engineering [1996], which is in line with the notion of commitments in Amoeba.

Tropos builds on Yu’s approach. It employs the abstractions of goals, dependencies, and

organizations to capture requirements. Transactional changes would correspond to newer

subgoals, tasks, and resources for fulfilling goals. Structural changes would alter the actor

diagram of the corresponding organization via changes in the stakeholders. Contextual

changes would be accommodated via modeling the context as an actor. Even assuming

that a methodology for accommodating such changes is available, Tropos offers limited

support for such changes. Although prominent in the early and late requirements phases,

the autonomous actors disappear in the detailed design phase and only a single informa-

tion system actor remains. Thus a centralized information system is designed instead of

one information system for each actor. Thus, Tropos seems to be targeted at applications

where the actors collaborate via a central information system.

Also, mapping the dependencies to interactions is nontrivial; Mallya and Singh [2006]

propose a set of guidelines to this end. Compared to commitments, goals deemphasize the

participants’ autonomy. For example, agents would not normally be able to manipulate

the goals of other agents. However, delegation and assignment of commitments are quite

common in business service engagements and hence it is crucial to support such operations.

Lastly, it is nontrivial to map any changes to the models in the early phases to models in

the later phases. For example, how would a new goal in the actor diagram affect the

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 31

means-ends analysis? Hence, Tropos would benefit from a decentralized perspective with

an abstraction of commitments and guidelines for accommodating and tracing the changes

in the various phases of the methodology.

Requirements Evolution in Gaia. Unlike Tropos, the newer versions of Gaia explicitly

target open environments such as marketplaces. Thus, each agent adopts roles and has

an independent interaction model instead of a centralized model for all agents. Explicit

models of the environment and the organizations make it easier to accommodate structural

and contextual changes. Gaia gives responsibilities first-class status, but describes them

in terms of procedural coordination rather than declarative (contractual or goal-based) re-

quirements. Thus, Gaia lacks a direct high-level abstraction to capture a transactional

change. Gaia would benefit from role schemas described in terms of commitments being

created and manipulated. Our technique of protocol composition can be readily adapted

for Gaia protocols. Methodologies based on Gaia, such as ROADMAP [Juan et al. 2002],

explicitly model goals in role schemas and are a step in the right direction. However, the

arguments about goals versus commitments in Tropos also apply to ROADMAP.

Table III. Methodologies evaluated relative to requirements evolution

Methodology Evaluation

Tropos [Bresciani et al.

2004]

Requirements changes would map to the exclusion or inclusion of new actors,

changed dependencies between actors, changed goals, and changed ways to

achieve the goals in the early and late requirements analysis phases

Gaia [Juan et al. 2002;

Zambonelli et al. 2003]

Requirements changes would cut across the analysis and architectural design

phases with possible changes to the environmental, role, and interaction

models; organizational rules; and organizational structure

Prometheus [Padgham

and Winikoff 2005]

Requirements changes would result in changes in scenarios, goals, and

potentially changes in interaction protocols and functionalities

MaSE [DeLoach 2004] Requirements changes would cut across goal hierarchy, use cases, sequence

diagrams, role models, and conversation diagrams

Amoeba Requirements changes yield changes in roles and changed ways to fulfill

commitments that are captured via composition axioms

A crucial distinguishing feature of Amoeba is its foundation in commitments. Con-

sidering commitments explicitly enables us to give processes a suitable and precise busi-

ness meaning, which is lacking in most existing approaches. Commitments are valuable

because they support both flexibility and compliance: agents may flexibly choose their

actions as long as they comply with their commitments. Traditional, low-level represen-

tations support compliance but only at the cost of flexibility. Winikoff [2007] concurs

that conventional message-oriented protocols lack business meaning, thus leading to rigid

implementations. Winikoff models commitments between agents to yield agent imple-

mentations whose flexibility derives from being able to plan. In a similar vein, Cheong

and Winikoff [2009] advocate declaratively specifying interactions for achieving greater

flexibility. They employ interaction goals, which can be understood in terms of social

commitments, to drive the design of protocols. Narendra and Orriëns [2007] also use com-

mitments to express functional requirements from which they derive service compositions.

ACM Journal Name, Vol. V, No. N, December 2008.



32 · Desai, Chopra, Singh

Maamar et al. [2007] propose interactions to support design and development of compos-

ite services. They separate service interactions into two layers: business logic and support,

which is similar in spirit to how Amoeba separates protocols from the business logics of

the interacting participants. These recent works signal an increased interest in interactions

and a recognition of commitments as a natural abstraction to capture the essence of the

interactions among autonomous parties.

Kongdenfha et al. [2006] outline a taxonomy of possible adaptations that (business

process) services might undergo to accommodate clients, but these adaptations are at the

level of messages. For instance, a service might require only one of the many messages that

a client sends to achieve a business functionality (message merge); another kind involves

adaptation of the type of an incoming message to a type understood by a service (type

mismatch). The adaptations themselves are achieved using aspect-oriented programming

(AOP) in the services. It would be interesting to see such adaptations analyzed at the

level of commitments. For example, a customer may discharge a commitment to make

a payment of $100 in five steps of $20 each. Either AOP or Winikoff’s planning-based

approach may be used for implementing such agents.

Service composition has been extensively studied. The orchestration approaches dis-

cussed above mix interactions with local business logic, complicating the reuse and adapta-

tion of interactions. OWL-S [DAML-S 2002], which includes a process model for Web ser-

vices, facilitates dynamic composition. The Semantic Web Services Framework (SWSF)

[2005] proposes an expressive formal language and an ontology for modeling services.

Similarly Web Services Modeling Ontology (WSMO) [2004] employs a formal language

and an ontology for modeling the behavior of services and of the mediators that facil-

itate interoperability among services. However, dynamic composition presumes perfect

markup and an ontological matching of the services being composed. The semantic web

services approaches focus on the representation and reasoning about services rather than on

methodologies for the evolution of requirements. By contrast, Amoeba seeks only to guide

a human designer in composing services. Semantic Annotations for WSDL (SAWSDL)

[2007] is an approach for annotating and reasoning about the input, output, and metadata

of Web services. Amoeba can benefit from SAWSDL for handling the data heterogeneity

of protocols.

Vitteau and Huget [2004] compose protocols from microprotocols in a bottom-up man-

ner, but only in limited ways, and do not support interleaving protocols. Mazouzi et al.

[2002] compose protocols in a top-down manner by associating refinements with abstract

transitions in Colored Petri Nets, but also do not support interleaving. By contrast, Amoeba

provides composition axioms that offer indirection, which enables us to arbitrarily com-

pose protocols including by interleaving them.

OMG’s Model-Driven Architecture (MDA) [OMG 2006] promotes three kinds of mod-

els (from higher to lower levels of abstraction): computation independent, platform inde-

pendent, and platform dependent. In MDA, development proceeds by transforming higher

to lower models. Amoeba operates on protocol-based, i.e., computation-independent,

models, thus specializing MDA for cross-organizational business processes. Krüger et

al. [2006] motivate interaction patterns as first-class modeling elements for all levels of

abstraction in MDA. They treat interaction patterns as aspects and explore the space of

suitable service-oriented architectures. Being composable, protocols are similar in spirit to

aspects albeit with a business-level focus. Thus, the techniques proposed by Krüger et al.

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 33

can be extended for cross-organizational engagements by adopting protocols as aspects.

6.2 Software Requirements Evolution

The software engineering community has long studied the challenges of handling evolv-

ing requirements. The main distinguishing aspect of Amoeba with respect to this body

of work is that we focus on business-level requirements pertaining to interactions among

organizations. Existing approaches differ in the style of handling requirements evolution.

Zowghi and Offen [1997] propose a logical framework for reasoning about requirements

evolution. They employ nonmonotonic reasoning and belief revision to relate successively

refined requirement models, each expressed in a nonmonotonic theory. Etien and Salinesi

[2005] address the evolution of requirements where a change impacts multiple aspects of

a system, such as its teams, engineering domains, viewpoints, or components. The main

challenge they address is that of maintaining consistency between the various aspects as

they evolve together. Of the three styles of handling evolution of requirements that Etien

and Salinesi describe, our approach addresses requirements evolution explicitly. However,

unlike Amoeba, neither of the above works focus on business-level interaction require-

ments and it is not clear how they would treat these as first-class requirements. Unlike in

our approach, they present neither a methodology nor any case studies.

Requirements evolution has been studied from the nonfunctional requirements perspec-

tive. Chung et al. [1995] propose a model in which nonfunctional requirements are rep-

resented as goals, which may be decomposed and analyzed in relation with one other. In

addition, the model may be systematically annotated with design decisions and rationales.

An important feature of Chung et al.’s model is that it captures the history of the evolving

requirements. Cleland-Huang et al. [2005] propose an approach for understanding the

impact of a functional requirements change on nonfunctional requirements. They capture

nonfunctional requirements and their interdependencies via a soft-goal interdependency

graph. Cleland-Huang et al. use a probabilistic model to identify subgraphs affected by

a change. Although our emphasis is on business-level cross-organizational requirements

rather than nonfunctional intraorganizational requirements, Amoeba can benefit both from

maintaining the history of the evolving requirements and from understanding the relation-

ship between the functional and the nonfunctional requirements.

Other approaches emphasize different perspectives on requirements. Lormans [2007]

proposes a system for tracing requirements into other products of the software develop-

ment life cycle as a means of monitoring and managing requirements evolution. For end

users, the system presents different views on requirements, depending on the perspective

selected. Lam and Loomes [1998] propose a conceptual model for requirement evolu-

tion, and a process that uses this model in analyzing changes. In particular, they classify

requirements changes into four categories: environment, (functional) requirements, view-

point, and design. These roughly correspond to the three classes considered in this paper.

However, Lam and Loomes neither provide modeling abstractions nor comprehensive case

studies. Anderson and Felici [2001] argue for a product-oriented instead of a process-

oriented methodology for requirements evolution. They seek to characterize industrial

settings so that specific methodologies can be developed taking product features into ac-

count. Anderson and Felici describe case studies where the requirements are related not to

business contracts but to safety critical features in avionics and to security in smart cards.

Also, in all of these works, the focus is on the requirements of a single software project

rather than of a cross-organizational information system.

ACM Journal Name, Vol. V, No. N, December 2008.



34 · Desai, Chopra, Singh

6.3 Future Work

Amoeba introduces key computational abstractions and primitives with which to model

processes and their adaptations. This opens up a fruitful line of research for agent-oriented

software engineering and more broadly for service-oriented computing. A comprehensive

tool-suite to support Amoeba is essential. With tools, Amoeba can be employed in practical

settings and can be applied to handle requirements changes in the context of various real-

life processes. Such studies could uncover additional properties, benefits, and potential

pitfalls in the methodology.

ACKNOWLEDGMENTS

We thank Nanjangud Narendra, Michael Winikoff, Pınar Yolum, and the anonymous re-

viewers for helpful comments on previous versions of this paper. This research was par-

tially supported by the National Science Foundation under grant IIS-0139037 and by a gift

from Intel. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the sponsors.

REFERENCES

ANDERSON, S. AND FELICI, M. 2001. Requirements evolution from process to product oriented management.

In Proceedings of the International Conference on Product Focused Software Process Improvement. 27–41.

BERGENTI, F., GLEIZES, M.-P., AND ZAMBONELLI, F., Eds. 2004. Methodologies and Software Engineering

for Agent Systems. Kluwer, Boston.

BPEL. 2007. Web services business process execution language, version 2.0. http://docs.oasis-

open.org/wsbpel/2.0/.

BRESCIANI, P., PERINI, A., GIORGINI, P., GIUNCHIGLIA, F., AND MYLOPOULOS, J. 2004. Tropos: An agent-

oriented software development methodology. Journal of Autonomous Agents and Multi-Agent Systems 8, 3

(May), 203–236.

BROWNE, S. AND KELLETT, M. 1999. Insurance (motor damage claims) scenario. Document Identifier D1.a,

CrossFlow Consortium.

BUSSLER, C. 2001. The role of B2B protocols in inter-enterprise process execution. In Proceedings of the

2nd International Workshop on Technologies for E-Services. Lecture Notes in Computer Science, vol. 2193.

Springer-Verlag, 16–29.

CCALC. 2004. The causal calculator CCalc. http://www.cs.utexas.edu/users/tag/cc/.

CHEONG, C. AND WINIKOFF, M. 2009. Hermes: Designing flexible and robust agent interactions. In Multi-

Agent Systems: Semantics and Dynamics of Organizational Models, V. Dignum, Ed. IGI, Chapter 5. To appear.

CHUNG, L., NIXON, B. A., AND YU, E. 1995. Using non-functional requirements to systematically support

change. In Proceedings of the IEEE International Symposium on Requirements Engineering. 132–139.

CLELAND-HUANG, J., SETTIMI, R., BENKHADRA, O., BEREZHANSKAYA, E., AND CHRISTINA, S. 2005.

Goal-centric traceability for managing non-functional requirements. In Proceedings of the International Con-

ference on Software Engineering. 362–371.

DAM, K. H. AND WINIKOFF, M. 2004. Comparing agent-oriented methodologies. In Agent-Oriented Informa-

tion Systems, P. Giorgini, B. Henderson-Sellers, and M. Winikoff, Eds. Vol. 3030. Springer-Verlag, 78–93.

DAML-S. 2002. DAML-S: Web service description for the semantic Web. In Proceedings of the 1st Inter-

national Semantic Web Conference (ISWC). Lecture Notes in Computer Science, vol. 2342. Springer-Verlag,

348–363. Authored by the DAML Services Coalition, which consists of (alphabetically) Anupriya Ankolekar,

Mark Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini

Narayanan, Massimo Paolucci, Terry R. Payne and Katia Sycara.

DELOACH, S. A. 2004. The MaSE methodology. In Methodologies and Software Engineering for Agent Sys-

tems, F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Eds. Kluwer, Boston, Chapter 6, 107–126.

DESAI, N., CHOPRA, A. K., AND SINGH, M. P. 2006. Business process adaptations via protocols. In Proceed-

ings of the 3rd IEEE International Conference on Services Computing (SCC). IEEE Computer Society Press,

Los Alamitos, 103–110.

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 35

DESAI, N., CHOPRA, A. K., AND SINGH, M. P. 2007. Representing and reasoning about commitments in

business processes. In Proceedings of the 22nd Conference on Artificial Intelligence (AAAI). 1328–1333.

DESAI, N., MALLYA, A. U., CHOPRA, A. K., AND SINGH, M. P. 2005. Interaction protocols as design

abstractions for business processes. IEEE Transactions on Software Engineering 31, 12 (Dec.), 1015–1027.

DESAI, N. AND SINGH, M. P. 2007. A modular action description language for protocol composition. In

Proceedings of the 22nd Conference on Artificial Intelligence (AAAI). 962–967.

DESAI, N. AND SINGH, M. P. 2008. On the enactability of business protocols. In Proceedings of the 23rd

Conference on Artificial Intelligence (AAAI). 1126–1131.

EBBP. 2006. Electronic business extensible markup language business process specification schema v2.0.4.

docs.oasis-open.org/ebxml-bp/2.0.4/OS/.

ETIEN, A. AND SALINESI, C. 2005. Managing requirements in a co-evolution context. In Proceedings of the

International Conference on Requirements Engineering. 125–134.

GIUNCHIGLIA, E., LEE, J., LIFSCHITZ, V., MCCAIN, N., AND TURNER, H. 2004. Nonmonotonic causal

theories. Artificial Intelligence 153, 1-2, 49–104.

HARKER, S. D. P. AND EASON, K. D. 1993. The change and evolution of requirements as a challenge to

the practice of software engineering. In Proceedings of the IEEE International Symposium on Requirements

Engineering. 266–272.

HENDERSON-SELLERS, B. AND GIORGINI, P., Eds. 2005. Agent-Oriented Methodologies. Idea Group, Her-

shey, PA.

JUAN, T., PEARCE, A., AND STERLING, L. 2002. ROADMAP: extending the Gaia methodology for complex

open systems. In Proceedings of the 1st International Joint conference on Autonomous Agents and Multiagent

Systems. ACM Press, New York, 3–10.

KONGDENFHA, W., SAINT-PAUL, R., BENATALLAH, B., AND CASATI, F. 2006. An aspect-oriented framework

for service adaptation. In Proceedings of the 4th International Conference on Service Oriented Computing.

ACM Press, New York, 15–26.

KRÜGER, I. H., MATHEW, R., AND MEISINGER, M. 2006. Efficient exploration of service-oriented archi-

tectures using aspects. In Proceeding of the 28th International Conference on Software Engineering. IEEE

Computer Society, Los Alamitos, 62–71.

LAM, W. AND LOOMES, M. 1998. Requirements evolution in the midst of environmental change: A managed

approach. In Proceedings of the Euromicro Conference on Software Maintenance and Reengineering. 121–

127.

LORMANS, M. 2007. Monitoring requirements evolution using views. In Proceedings of the European Confer-

ence on Software Maintenance and Reengineering. 349–352.

MAAMAR, Z., BENSLIMANE, D., AND SHENG, Q. Z. 2007. Towards a two-layered framework for managing

web services interaction. In Proceedings of the 6th IEEE/ACIS International Conference on Computer and

Information Science. IEEE Computer Society, Los Alamitos, 87–92.

MALLYA, A. U. AND SINGH, M. P. 2006. Incorporating commitment protocols into Tropos. In Proceedings

of the International Workshop on Agent Oriented Software Engineering, J. P. Müller and F. Zambonelli, Eds.

LNCS, vol. 3950. Springer-Verlag, 69–80.

MAZOUZI, H., SEGHROUCHNI, A. E. F., AND HADDAD, S. 2002. Open protocol design for complex interac-

tions in multi-agent systems. In Proceedings of the 1st International Joint Conference on Autonomous Agents

and MultiAgent Systems (AAMAS). ACM Press, New York, 517–526.

NARENDRA, N. C. AND ORRIËNS, B. 2007. Modeling web service composition and execution via a

requirements-driven approach. In Proceedings of the ACM Symposium on Applied Computing. ACM Press,

New York, 1642–1648.

OMG. 2006. The Object Management Group’s Model Driven Architecture (MDA). http://www.omg.org/mda/.

PADGHAM, L. AND WINIKOFF, M. 2005. Prometheus: A practical agent-oriented methodology. In Agent-

Oriented Methodologies, B. Henderson-Sellers and P. Giorgini, Eds. Idea Group, Hershey, PA, Chapter 5,

107–135.

SAWSDL. 2007. Semantic Annotations for WSDL–SAWSDL. http://www.w3.org/2002/ws/sawsdl/.

SINGH, M. P. 1999. An ontology for commitments in multiagent systems: Toward a unification of normative

concepts. Artificial Intelligence and Law 7, 97–113.

ACM Journal Name, Vol. V, No. N, December 2008.



36 · Desai, Chopra, Singh

SINGH, M. P., CHOPRA, A. K., AND DESAI, N. 2009. Commitment-based SOA. IEEE Computer 42. To

appear. Draft available at http://www.csc.ncsu.edu/faculty/mpsingh/papers/.

SINGH, M. P. AND HUHNS, M. N. 2005. Service-Oriented Computing: Semantics, Processes, Agents. John

Wiley & Sons, Chichester, UK.

SMITH, H. AND FINGAR, P. 2002. Business Process Management: The Third Wave. Megan-Kiffer Press, Tampa.

STURM, A. AND SHEHORY, O. 2004. A comparative evaluation of agent-oriented methodologies. In Methodolo-

gies and Software Engineering for Agent Systems, F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Eds. Kluwer,

Boston, Chapter 7, 127–150.

SUDEIKAT, J., BRAUBACH, L., POKAHR, A., AND LAMERSDORF, W. 2004. Evaluation of agent-oriented

software methodologies: Examination of the gap between modeling and platform. In Agent-Oriented Software

Engineering, P. Giorgini, J. P. Müller, and J. Odell, Eds. LNCS, vol. 3382. Springer Verlag, 126–141.

SWSF COMMITTEE. 2005. SWSF: Semantic web services framework (W3C submission).

http://www.daml.org/services/swsf/.

TRAN, Q.-N. N. AND LOW, G. C. 2005. Comparison of ten agent-oriented methodologies. In Agent-Oriented

Methodologies, B. Henderson-Sellers and P. Giorgini, Eds. Idea Group, Hershey, PA, Chapter 12, 341–367.

VAN AART, C. J., CHABERA, J., DEHN, M., JAKOB, M., NAST-KOLB, K., SMULDERS, J. L. C. F., STORMS,

P. P. A., HOLT, C., AND SMITH, M. 2007. Usecase outline and requirements. Document Identifier D6.1,

IST-CONTRACT Project. http://tinyurl.com/6adejz.

VITTEAU, B. AND HUGET, M.-P. 2004. Modularity in interaction protocols. In Advances in Agent Communi-

cation, F. Dignum, Ed. LNCS, vol. 2922. Springer-Verlag, 291–309.

WINIKOFF, M. 2007. Implementing commitment-based interaction. In Proceedings of the 6th International

Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS). International Foundation for Au-

tonomous Agents and MultiAgent Systems, Columbia, SC, 868–875.

WINIKOFF, M., LIU, W., AND HARLAND, J. 2005. Enhancing commitment machines. In Proceedings of the

2nd International Workshop on Declarative Agent Languages and Technologies (DALT). LNAI, vol. 3476.

Springer-Verlag, 198–220.

WOOLDRIDGE, M. 2002. An Introduction to MultiAgent Systems. John Wiley & Sons.

WS-CDL. 2005. Web services choreography description language version 1.0. www.w3.org/TR/ws-cdl-10/.

WSMO COMMITTEE. 2004. WSMO: Web services modeling ontology. http://www.wsmo.org/TR/d2/v1.2/.

YOLUM, P. AND SINGH, M. P. 2002. Flexible protocol specification and execution: Applying event calculus

planning using commitments. In Proceedings of the 1st International Joint Conference on Autonomous Agents

and MultiAgent Systems (AAMAS). ACM Press, New York, 527–534.

YU, E. S.-K. 1996. Modelling strategic relationships for process reengineering. Ph.D. thesis, University of

Toronto, Toronto, Canada.

ZAMBONELLI, F., JENNINGS, N. R., AND WOOLDRIDGE, M. 2003. Developing multiagent systems: The Gaia

methodology. ACM Transactions on Software Engineering Methodology 12, 3, 317–370.

ZOWGHI, D. AND OFFEN, R. 1997. A logical framework for modeling and reasoning about the evolution of

requirements. In Proceedings of the IEEE International Symposium on Requirements Engineering. 247–257.

A. PROTOCOL LISTINGS: MAY BE PLACED ONLINE

This section presents complete specifications of the protocols referenced above.

A.1 Claim Reception and Verification (Rec)

A scenario of Rec is shown in Fig. 6. REC2 states that the CALL CENTER sending authReq

should count as meeting the antecedent of the assumed commitment of REC1. Both the

success and failure of authentication count as authentication responses (REC3 and REC4).

When parameters are omitted, all parameters of the message on the left are bound to the

corresponding parameters of the message on the right.

REC1 . start → CC(P, C, reqAuth(claimNO, policyNO), authResponse(claimNO, policyNO))

REC2 . authReq(claimNO, policyNO, info) → reqAuth(claimNO, policyNO)

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 37

REC3 . authOK(claimNO, policyNO) → authResponse(claimNO, policyNO)

if authReq(claimNO, policyNO, info)

REC4 . authNOK(claimNO, policyNO) → authResponse(claimNO, policyNO)

if authReq(claimNO, policyNO)

REC5 . report.policyNO ❀ authReq.policyNO

REC6 . authReq ❀ authOK

REC7 . authOK ❀ approved

REC8 . authReq ❀ authNOK

REC9 . authNOK ❀ denied

REC10 . approved ❀ notification

A.2 Administering Repairs (Rep)

A scenario of Rep is shown in Fig. 9. The roles of OWNER and REPAIRER would be adopted

by the policy holders and the mechanics, respectively. The OWNER requesting repairs

counts as her committing to the mechanic to acknowledge any repair services provided

(REP1). The REPAIRER completing the repairs counts as him providing the repair service

(REP2). The OWNER responding either positively or negatively counts as her affirming the

provision of repair services (REP3 and REP4). The value of claimNO flows from repairReq to

repaired and subsequently to repairOK or repairNOK (REP6 and REP7). Messages repairOK

and repairNOK are mutually exclusive (REP8).

REP1 . repairReq(claimNO) → CC(O, Rp, repairServed(claimNO), affirm(claimNO))

REP2 . repaired(claimNO) → repairServed(claimNO) if repairReq(claimNO)

REP3 . repairOK(claimNO, approval) → affirm(claimNO) if repaired(claimNO)

REP4 . repairNOK(claimNO) → affirm(claimNO) if repaired(claimNO, policyNO)

REP5 . repairReq ❀ repaired

REP6 . repaired.claimNO ❀ repairOK.claimNO

REP7 . repaired ❀ repairNOK

REP8 . repairOK XOR repairNOK

A.3 Handling Filed Claims (Han)

A scenario of Han is shown in Fig. 9. The roles of HANDLER, GARAGE, and ASSESSOR

would be adopted by Lee CS, the mechanics, and the inspectors, respectively. The assumed

commitment to respond to inspection requests would have been created when the inspector

and Lee CS formed their relationship (HAN1).

The GARAGE estimating a price for repairs counts as a commitment to perform repairs

if the HANDLER accepts the estimate (HAN2). The HANDLER may ask the ASSESSOR to

assess the cost of repairs and the value of the car, which counts as a request for inspection

(HAN3). The ASSESSOR responding with the necessary assessments counts as an inspection

response (HAN4). The HANDLER may accept to deal with the mechanic on a previous

estimate. Doing so creates a commitment for the HANDLER to pay for the completed

repairs (HAN5). Also, if the price of the deal matches that of the estimate, then a deal counts

as acceptance of the estimate (HAN6). The mechanic performs repairs, obtains approval

from the policy holder, and sends a bill to the consultant. Billing on a previously accepted

estimate counts as completing the repairs (HAN7). The HANDLER’s paying the bill counts

as payment for the repairs (HAN8).

ACM Journal Name, Vol. V, No. N, December 2008.



38 · Desai, Chopra, Singh

The value of claimNO flows from estimate to deal or noDeal, and to inspect (HAN9,

HAN10, and HAN11). Because deal does not depend on inspect, requesting inspections is

not always necessary. The price in the bill must flow from the price specified in the deal

(HAN14). Similarly, the paid price must be the same as the billed price (HAN16). Other data

flows are self explanatory. Finally, deal and noDeal are mutually exclusive (HAN17).

HAN1 . start → CC(A, H, inspectReq(claimNO), inspectRes(claimNO))

HAN2 . estimate(claimNO, price) →

CC(G, H, acceptEstimate(claimNO, price), performRepair(claimNO))

HAN3 . inspect(claimNO) → inspectReq(claimNO)

HAN4 . inspected(claimNO, cost, carValue) → inspectRes(claimNO) if inspect(claimNO)

HAN5 . deal(claimNO, price) → CC(H, G, performRepair(claimNO), payment(price))

HAN6 . deal(claimNO, price) → acceptEstimate(claimNO, price) if estimate(claimNO, price)

HAN7 . bill(claimNO, price, approval) → performRepair(claimNO) if deal(claimNO, price)

HAN8 . pay(claimNO, price) → payment(price) if bill(claimNO, price, approval)

HAN9 . estimate ❀ deal

HAN10 . estimate ❀ noDeal

HAN11 . estimate.claimNO ❀ inspect.claimNO

HAN12 . inspect.claimNO ❀ inspected.claimNO

HAN13 . deal.claimNO ❀ bill.claimNO

HAN14 . deal.price ❀ bill.price

HAN15 . bill.claimNO ❀ pay.claimNO

HAN16 . bill.price ❀ pay.price

HAN17 . deal XOR noDeal

A.4 Monitoring (Mon)

A scenario of Mon is shown in Fig. 9. The roles of COMPANY and consultant would

be adopted by AGFIL and Lee CS, respectively. The COMPANY assigns a case to the

CONSULTANT who after taking necessary steps, returns with an invoice. The COMPANY

authorizes payment for the consulting services provides by the CONSULTANT.

The assumed commitment represents an agreement between the COMPANY and the

CONSULTANT reached a priori (MON1).

The CONSULTANT returning back with an invoice of a handled claim counts as the CON-

SULTANT providing the consulting service (MON2). The COMPANY authorizing a payment

to the CONSULTANT counts as a payment for the consulting service (MON3). The values

of claimNO and policyNO flows from handle to invoice, and from invoice into authorizePay

(MON4, MON5, MON6, and MON7). Also, the value of quote flows from invoice into autho-

rizePay (MON8).

MON1 . start → CC(Com, Con, consultingService(claimNO), payForService(claimNO))

MON2 . invoice(claimNO, quote, approval) → consultingService(claimNO) if handle(claimNO)

MON3 . authorizePay(claimNO, quote) → payForService(claimNO)

if invoice(claimNO, quote, approval)

MON4 . handle.claimNO ❀ invoice.claimNO

MON5 . handle.policyNO ❀ invoice.policyNO

MON6 . invoice.claimNO ❀ authorizePay.claimNO

ACM Journal Name, Vol. V, No. N, December 2008.



The Amoeba Methodology · 39

MON7 . invoice.policyNO ❀ authorizePay.policyNO

MON8 . invoice.quote ❀ authorizePay.quote

A.5 Partial insurance claim processing (Picp)

Picp is composed of Bas, Mon, Han, and Rep. The following role identifications are self

explanatory.

PICP1 . Picp.Insured
.

= Bas.Insured, Rep.Owner

PICP2 . Picp.Insurer
.

= Bas.Insurer, Mon.Company

PICP3 . Picp.CallCenter
.

= Bas.CallCenter

PICP4 . Picp.Consultant
.

= Han.Handler, Mon.Consultant

PICP5 . Picp.Repairer
.

= Rep.Repairer, Han.Garage

PICP6 . Picp.Assessor
.

= Han.Assessor

The INSURED requesting repairs from a REPAIRER counts as a request for repair service

(PICP7). INSURED approving the repairs counts as provision of claim service (PICP8). The

value of claimNO flows from approved into repairReq and from notification into handle

(PICP10 and PICP9). Similarly, the claimNO in estimate gets its value from the claimNO in

repairReq (PICP11).

PICP7 . Rep.repairReq(claimNO) → Bas.serviceReq(claimNO)

PICP8 . Rep.repairOK(claimNO, approval) → Bas.claimService(claimNO) if Rep.repaired(claimNO)

PICP9 . Bas.notification.claimNO ❀ Mon.handle.claimNO

PICP10 . Bas.approved.claimNO ❀ Rep.repairReq.claimNO

PICP11 . Rep.repairReq.claimNO ❀ Han.estimate.claimNO

Before the REPAIRER performs repairs, the repair estimate must have been accepted

by the CONSULTANT (PICP12). Similarly, before the REPAIRER sends a bill to the CON-

SULTANT, the approval of repairs from the INSURED must have been acquired (PICP13).

Finally, the CONSULTANT must have received a bill from the REPAIRER before he sends

an invoice to the INSURER (PICP14).

PICP12 . Han.deal ≺ Rep.repaired

PICP13 . Rep.repairOK ≺ Han.bill

PICP14 . Han.bill ≺ Mon.invoice

A.6 Pay cash and scrap car (Pcsc)

A scenario of Pcsc is shown in Fig. 10. The roles of OWNER, COMPANY, and CONSUL-

TANT would be adopted by the policy holders, AGFIL, and Lee CS, respectively.

The COMPANY offering cash in lieu of repairs creates a commitment to pay the offered

amounts as settlement if the offer is accepted (PCSC1). Similarly, the COMPANY notifying

the OWNER of scrapping of the car and promising settlement money creates a commitment

to pay the value of the car as settlement (PCSC2). The OWNER accepting the offer counts

as an acceptance of the cash offer (PCSC3). The COMPANY paying the settlement amount

counts as achievement of a settlement. The data flows are self-explanatory. Finally, the

CONSULTANT can either advise to scrap the car or advise to pay cash in lieu of repairs, but

not both (PCSC11). Similarly, the cash offer can either be accepted or rejected, but not both

(PCSC12).

ACM Journal Name, Vol. V, No. N, December 2008.



40 · Desai, Chopra, Singh

PCSC1 . cashOffer(claimNO, amount) → CC(Com, O, acceptCash(claimNO), settlement(amount))

PCSC2 . adviseScrap(claimNO, value) → C(Com, O, settlement(value))

PCSC3 . accept(claimNO, amount) → acceptCash(claimNO) if cashOffer(claimNO, amount)

PCSC4 . settle(claimNO, amount) → settlement(amount) if accept(claimNO, amount)

PCSC5 . settle(claimNO, value) → settlement(value) if adviseScrap(claimNO, value)

PCSC6 . adviseScrap ❀ settle

PCSC7 . adviseCash ❀ cashOffer

PCSC8 . cashOffer ❀ accept

PCSC9 . accept ❀ settle

PCSC10 . cashOffer ❀ reject

PCSC11 . adviseScrap XOR adviseCash

PCSC12 . accept XOR reject

A.7 Outsourced insurance claim processing (Out)

A scenario of Out is shown in Fig. 12. The roles of INSURED, INSURER, CALL CENTER,

and CONSULTANT would be adopted by the policy holders, AGFIL, Europ Assist, and

Lee CS respectively. In Out, the details of how the CONSULTANT handles claims are

hidden as business logic.

The role identification axioms are self explanatory. The CONSULTANT returning back

with an invoice of a handled claim counts as provision of the claim service to the INSURED

(OUT5). The invoice is signed with an approval by the INSURED. The INSURED asking

the CONSULTANT to handle a claim counts as a request for repair services (OUT6). The

condition serviceReq affects the commitments created via Ins. The data flows are self

explanatory.

OUT1 . Out.Insured
.

= Bas.Insured

OUT2 . Out.Insurer
.

= Bas.Insurer, Mon.Company

OUT3 . Out.CallCenter
.

= Bas.CallCenter

OUT4 . Out.Consultant
.

= Mon.Consultant

OUT5 . Mon.invoice(claimNO, quote, approval) → Bas.claimService(claimNO)

if Mon.handle(claimNO)

OUT6 . Mon.handle(claimNO) → Bas.serviceReq(claimNO)

OUT7 . Bas.approved.claimNO ❀ Mon.handle.claimNO

OUT8 . Bas.approved.policyNO ❀ Mon.handle.policyNO

A.8 Fraudulent Claims Detection (Fra)

A scenario of Fra is shown in Fig. 13. The roles of OWNER, COMPANY, CONSULTANT, and

ASSESSOR would be adopted by the policy holders, AGFIL, Lee CS, and the inspectors,

respectively. Due to the absence of indigenous commitments, no message axioms are

needed. The value of claimNO flows from adviseFraud into fraudulent, and from fraudulent

into fraud.

FRA1 . adviseFraud.claimNO ❀ fraudulent.claimNO

FRA2 . fraudulent.claimNO ❀ fraud.claimNO

Received December 2007; revised May 2008, November 2008

ACM Journal Name, Vol. V, No. N, December 2008.


